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Motivation 

 Species Distribution Modeling (SDM) 

 SDMs characterize the geographic distribution of a species in 
terms of a set of environmental variables. 

 Supervised classification problem from features X to species 
observations y. 

 

𝑿𝑖 , 𝑦𝑖 𝑖= 1,…,𝑁 → 𝑦 = 𝑓 𝑿  
 

 Goals 
 Mapping current distribution 
 Understanding habitat requirements 
 Predicting distribution  

 SDMs can be used as input to reserve design algorithms 
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Outline 
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 Background on 2 challenges for SDM: 

 Imperfect detection  

 Existing solution: hierarchical probabilistic approach called site-occupancy 
or occupancy-detection models [MacKenzie et al 2006] 

 Complexity of ecological systems 

 Existing solution: boosted regression trees have been successful in SDM 
[Elith et al 2006] 

 

 Our work:  A hybrid approach 

 Site-occupancy models fit with an ensemble of regression trees via 
functional gradient descent [Friedman 2001] 

 

 Experimental results on eBird data 

 



Challenge #1: Imperfect Detection 

 Problem: many species are hard to detect even when 

present, so their data contain false negatives 

 

 

 

 

 

 Solution: 

 Survey sites multiple times 

 Use a hierarchical model to describe the data collection 

process explicitly and correct for false zeros 
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Data Collection: Toy Example 

+ 
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Data: Detection Histories 

Detection History 

Site True 
occupancy 
(latent) 

Visit 1 
(rainy day, 
12pm) 

Visit 2 
(clear day, 
6am) 

Visit 3 
(clear day, 
9am) 

A  
(forest, 

elev=400m) 

1 0 1 1 

B 
(forest, 

elev=300m) 

1 0 0 0 

C  
(grassland, 
elev=200m) 

0 0 0 0 

* Assumption: experts never report false positives. 
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Occupancy-Detection Models 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

Covariates of  
occupancy 
(e.g.  
elevation, 
vegetation) 

Covariates of  
detection (e.g.  
time of day, 
effort) 

Observed presence/absence 
Yit | Zi ~ Bern(Zidit) 

True (latent) presence/absence 
Zi ~ Bern(oi) 

Probability of occupancy 
(function of Xi, a) 

Probability of detection 
(function of Wit, b) 

Sites 

Visits 

MacKenzie, et al, 2006 
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Typical Usage 

 Gradient search methods can be applied to find the 

maximum likelihood values of a and b 

 Model selection:  

 construct models including different sets of occupancy 

and detection covariates 

 evaluate fit with AIC 

 hypothesis tests/confidence intervals 

logit 𝑜𝑖 = 𝐹 𝑋𝑖 = 𝛼 ⋅ 𝑋𝑖 

logit 𝑑𝑖𝑡 = 𝐺 𝑊𝑖𝑡 = 𝛽 ⋅ 𝑊𝑖𝑡 
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Challenge #2: Complexity! 

 We may lack prior knowledge of the complex relationships 
underpinning ecological systems 

 

 Constructing an occupancy-detection model may entail: 
 Dealing with missing inputs 

 Rescaling/centering inputs 

 Linearizing suspected nonlinear relationships (e.g., via log or sqrt 
transforms) 

 Transforming ordinal variables and nominal variables 

 Selecting interaction terms to include in the model 

 

 Solution: Boosted regression trees have been successful in 
SDM [Elith et al 2006] 
 But they don’t account for imperfect detection 
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Incorporating Regression Trees into 

Occupancy-Detection Models 

 

 

 

 

 

 

 

 

 How to fit this version of occupancy models? 

 

logit 𝑜𝑖 = 𝐹 𝑋𝑖 = 𝜌𝑗
𝑜
𝑡𝑟𝑒𝑒𝑗

𝑜
𝑋𝑗

𝐽

𝑗=1

 

logit 𝑑𝑖𝑡 = 𝐺 𝑊𝑖𝑡 = 𝜌𝑗
𝑑
𝑡𝑟𝑒𝑒𝑗

𝑑
(𝑊𝑖𝑡)

𝐽

𝑗=1
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Previous Work 
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 Friedman (2001): L2-Tree-Boost 

 Fit a logistic regression as a weighted sum of regression trees: 

 log
𝑃(𝑦=1|𝑥)

𝑃(𝑦=0|𝑥)
= 𝜌0 + 𝜌1tree1 𝑥 +⋯+ 𝜌𝐿tree𝐿(𝑥) 

 Fit via functional gradient descent (a form of boosting) 

 Dietterich et al. (2004): TreeCRF 

 Fit a Conditional Random Field model using weighted sum of 
regression trees 

 Both cases assume fully-observed outputs (although input 
features may be missing) 

 

 Can we extend tree boosting to latent variable models? 



Fitting Boosted Regression Trees in 

Occupancy-Detection Models 

 𝐹 0 = 𝐺 0 = 0 

 For 𝑗 = 1,… , 𝐽 
 For each site 𝑖, compute  

 𝑧𝑖 = 𝜕ℓ𝑖/𝜕𝐹|𝐹=𝐹(𝑗−1) 𝑥𝑖  

 Fit regression tree 𝑓𝑗 to 𝑥𝑖 , 𝑧 𝑖 𝑖=1
𝑀  

 Let 𝐹 𝑗 = 𝐹 𝑗−1 + 𝜌𝑗𝑓𝑗  

 

 For each visit 𝑡 to site 𝑖, compute 

  𝑦 𝑖𝑡 = 𝜕ℓ𝑖/𝜕𝐺|𝐺=𝐺 𝑗−1 𝑤𝑖𝑡
 

 Fit regression tree 𝑔𝑗 to 𝑤𝑖𝑡, 𝑦 𝑖𝑡 𝑖=1,𝑡=1
𝑀,𝑇𝑖  

 Let 𝐺 𝑗 = 𝐺 𝑗−1 + 𝜈𝑗𝑔𝑗 
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Occupancy Sub-Model 

Detection Sub-Model 



Experiment: 4 models 
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Supervised (S) 

𝑥𝑖 , 𝑤𝑖𝑡 → 𝑦𝑖𝑡 

Occupancy-

Detection (OD) 

(latent variable 

models) 

 

Linear 

(LR) 

S-LR 

 

Logistic regression 

OD-LR 

 
𝐹 and 𝐺 as logistic 

regressions 

 

Tree-based 

(BRT) 

S-BRT 

 

Boosted Regression 

Trees 

OD-BRT 

 
𝐹 and 𝐺 as regression 

tree ensembles 



eBird Data 

 “Citizen Science” Data: 

 12 bird species 

 3 synthetic species 

 3124 observations from 

New York State, May-

July 2006-2008 

 Pre-processing for 

occupancy models to 

group records into sites 

 19 occupancy features, 4 

detection features  
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Synthetic Species 

 Synthetic Species 1: 𝐹 and 𝐺 linear 

logit 𝑜𝑖 = −2𝑥𝑖
4 + 2𝑥𝑖
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logit 𝑑𝑖𝑡 = 𝑤𝑖𝑡
2
+ 𝑤𝑖𝑡

3
− 1 

 

 Synthetic Species 2: 𝐹 and 𝐺 nonlinear 

logit 𝑜𝑖 = −2 𝑥𝑖
1

2
+ 3 𝑥𝑖

2
2
− 2𝑥𝑖

3
 

logit 𝑑𝑖𝑡 = exp(−0.5𝑤𝑖𝑡
4
) + sin(1.25𝑤𝑖𝑡

1
+ 5) 

 

 Synthetic Species 3: 𝐹 and 𝐺 nonlinear with interactions 

logit 𝑜𝑖 = −exp −𝑥𝑖
4
𝑥𝑖

12
− 2𝑥𝑖

1
− 0.5 

logit 𝑑𝑖𝑡

= exp(−0.5𝑤𝑖𝑡
4
) ⋅ sin 1.25𝑤𝑖𝑡

1
+ 5 + exp −0.5𝑤𝑖𝑡

4

+ sin 1.25𝑤𝑖𝑡
1
+ 5  
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Results for AUC of 𝑦𝑖𝑡: 
No Significant Differences 
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Predicting 
Occupancy 

 

Synthetic 

Species 2 
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Partial Dependence Plot 

Synthetic Species 1 

 OD-BRT has 

the least bias 

Distance of survey 18 



Partial Dependence Plot 

Synthetic Species 3 

 OD-BRT has 

the least bias 

and correctly 

captures the 

bimodality 

Time of Day 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Time of Day 

Time of Day 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Duration of 

Observation 

Effort in Hours 
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Conclusions and Contributions 

 We have succeeded in incorporating BRTs into the 

occupancy-detection models 

 Accurate predictions of both the observations and the 

latent variables 

 The fitted trees are correctly capturing nonlinearities 

 

 Machine learning: case study for doing functional 

gradient descent in latent variable models 

 Ecology: allows two major modeling challenges to be 

addressed simultaneously 
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Next Steps 

 Preparing an R package  

 Collaborating with ecologists to apply OD-BRT to more 

datasets 

 Experiments to validate interaction discovery 

 Extending the method to models with more complex 

latent structure 
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Thanks! 
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 Questions? 


