Incorporating Boosted Regression Trees into Ecological Latent Variable Models

Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich School of EECS, Oregon State University

Motivation

Species Distribution Modeling (SDM)

- SDMs characterize the geographic distribution of a species in terms of a set of environmental variables.
- Supervised classification problem from features X to species observations y.

$$\{(X_i, y_i)\}_{i=\{1,...,N\}} \to y = f(X)$$

Goals

- Mapping current distribution
- Understanding habitat requirements
- Predicting distribution
- SDMs can be used as input to reserve design algorithms

Outline

Background on 2 challenges for SDM:

- Imperfect detection
 - Existing solution: hierarchical probabilistic approach called site-occupancy or occupancy-detection models [MacKenzie et al 2006]
- Complexity of ecological systems
 - Existing solution: boosted regression trees have been successful in SDM [Elith et al 2006]

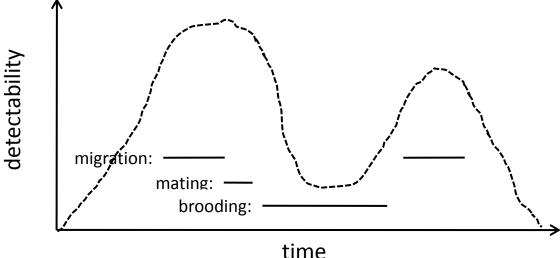
Our work: A hybrid approach

 Site-occupancy models fit with an ensemble of regression trees via functional gradient descent [Friedman 2001]

Experimental results on eBird data

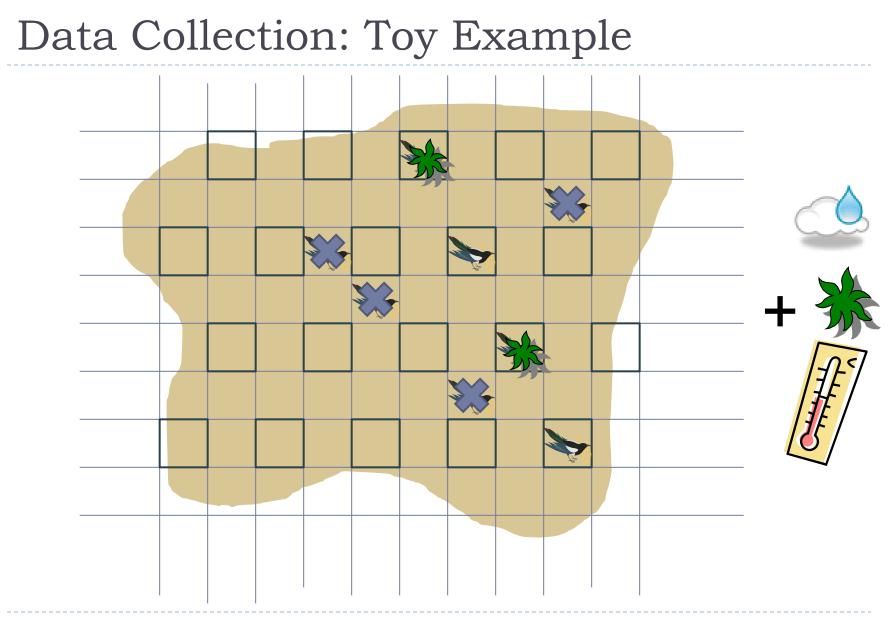
Challenge #1: Imperfect Detection

Problem: many species are hard to detect even when present, so their data contain false negatives



• Solution:

- Survey sites multiple times
- Use a hierarchical model to describe the data collection process explicitly and correct for false zeros



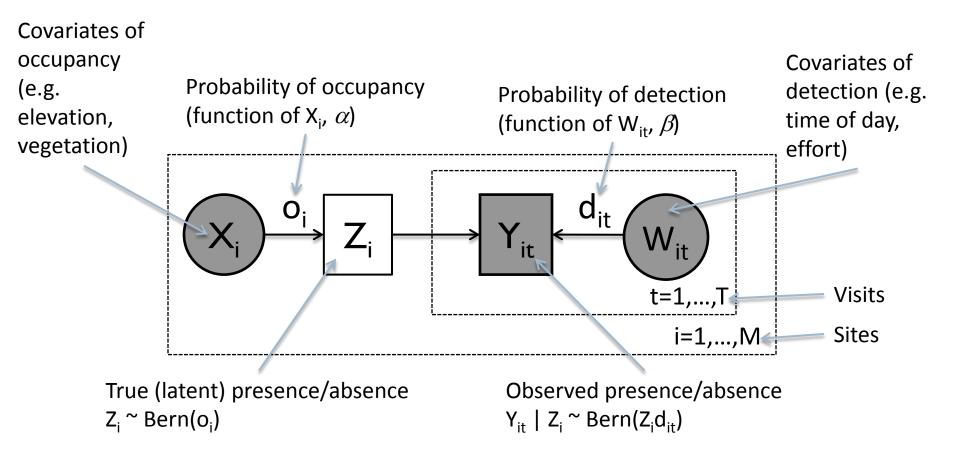
Data: Detection Histories

6

		Detection History		
Site	True occupancy (latent)	Visit 1 (rainy day, 12pm)	Visit 2 (clear day, 6am)	Visit 3 (clear day, 9am)
A (forest <i>,</i> elev=400m)	1	0	1	1
B (forest <i>,</i> elev=300m)	1	0	0	0
C (grassland, elev=200m)	0	0	0	0

* Assumption: experts never report false positives.

Occupancy-Detection Models



$$logit(o_i) = F(X_i) = \alpha \cdot X_i$$
$$logit(d_{it}) = G(W_{it}) = \beta \cdot W_{it}$$

- Gradient search methods can be applied to find the maximum likelihood values of α and β
- Model selection:
 - construct models including different sets of occupancy and detection covariates
 - evaluate fit with AIC
 - hypothesis tests/confidence intervals

Challenge #2: Complexity!

- We may lack prior knowledge of the complex relationships underpinning ecological systems
- Constructing an occupancy-detection model may entail:
 - Dealing with missing inputs
 - Rescaling/centering inputs
 - Linearizing suspected nonlinear relationships (e.g., via log or sqrt transforms)
 - Transforming ordinal variables and nominal variables
 - Selecting interaction terms to include in the model
- Solution: Boosted regression trees have been successful in SDM [Elith et al 2006]
 - But they don't account for imperfect detection

Incorporating Regression Trees into Occupancy-Detection Models

$$logit(o_{i}) = F(X_{i}) = \sum_{j=1}^{J} \rho_{j}^{(o)} tree_{j}^{(o)}(X_{j})$$
$$logit(d_{it}) = G(W_{it}) = \sum_{j=1}^{J} \rho_{j}^{(d)} tree_{j}^{(d)}(W_{it})$$

How to fit this version of occupancy models?

Previous Work

- Friedman (2001): L2-Tree-Boost
 - Fit a logistic regression as a weighted sum of regression trees:

•
$$\log \frac{P(y=1|x)}{P(y=0|x)} = \rho_0 + \rho_1 \operatorname{tree}_1(x) + \dots + \rho_L \operatorname{tree}_L(x)$$

- Fit via functional gradient descent (a form of boosting)
- Dietterich et al. (2004):TreeCRF
 - Fit a Conditional Random Field model using weighted sum of regression trees
- Both cases assume fully-observed outputs (although input features may be missing)
- Can we extend tree boosting to latent variable models?

Fitting Boosted Regression Trees in Occupancy-Detection Models

F⁽⁰⁾ = G⁽⁰⁾ = 0
For
$$j = 1, ..., J$$
For each site i , compute
 $\tilde{z_i} = \partial \ell_i / \partial F|_{F=F^{(j-1)}(x_i)}$
Fit regression tree f_j to $\{\langle x_i, \tilde{z_i} \rangle\}_{i=1}^M$
Occupancy Sub-Model
Let $F^{(j)} = F^{(j-1)} + \rho_j f_j$
For each visit t to site i , compute
 $\tilde{y}_{it} = \partial \ell_i / \partial G|_{G=G^{(j-1)}(w_{it})}$
Fit regression tree g_j to $\{\langle w_{it}, \tilde{y}_{it} \rangle\}_{i=1,t=1}^{M,T_i}$
Detection Sub-Model
Let $G^{(j)} = G^{(j-1)} + \nu_j g_j$

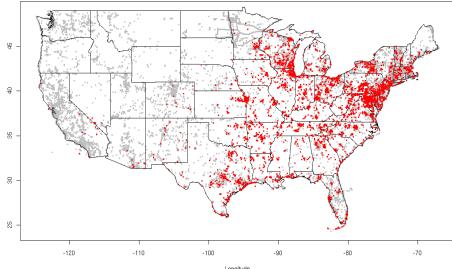
Experiment: 4 models

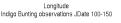
	Supervised (S) $(x_i, w_{it}) \rightarrow y_{it}$	Occupancy- Detection (OD) (latent variable models)
Linear (LR)	S-LR Logistic regression	OD-LR F and G as logistic regressions
Tree-based (BRT)	S-BRT Boosted Regression Trees	OD-BRT F and G as regression tree ensembles

eBird Data

- "Citizen Science" Data:
 - I2 bird species
 - ▶ 3 synthetic species
 - 3124 observations from New York State, May-July 2006-2008
 - Pre-processing for occupancy models to group records into sites
 - I9 occupancy features, 4 detection features

ERD 2.0 Traveling & Stationary 2004-09



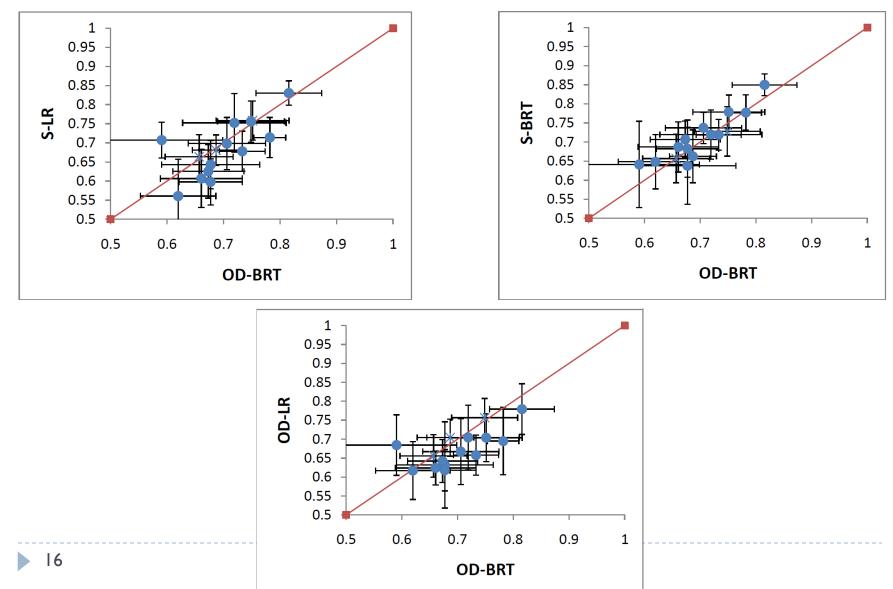


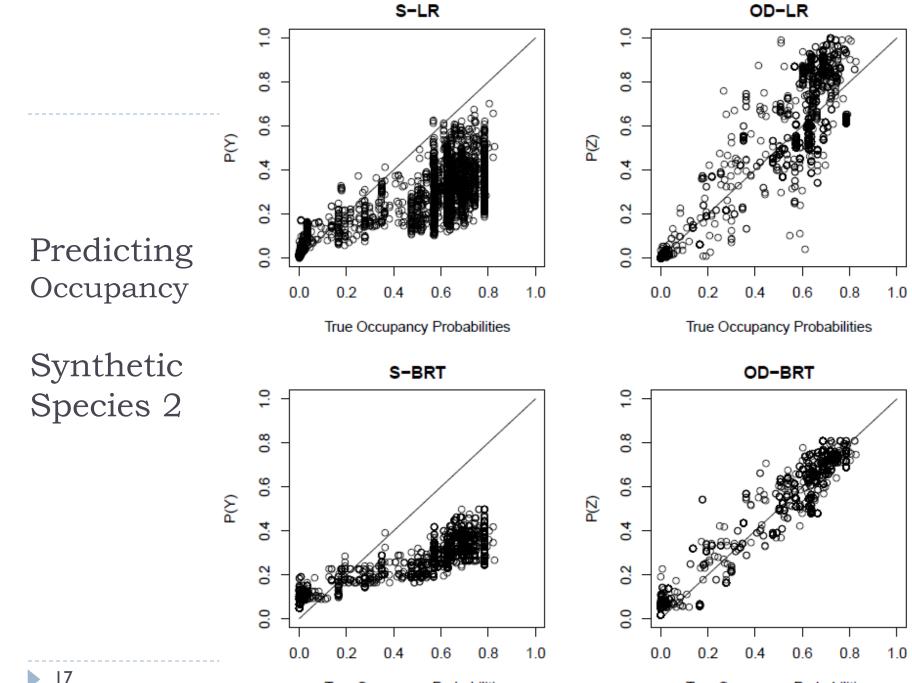
Synthetic Species

Synthetic Species I: F and G linear $logit(o_i) = -2x_i^{(4)} + 2x_i^{(13)}$ $logit(d_{it}) = w_{it}^{(2)} + w_{it}^{(3)} - 1$

- Synthetic Species 2: *F* and *G* nonlinear $logit(o_i) = -2 \left[x_i^{(1)} \right]^2 + 3 \left[x_i^{(2)} \right]^2 - 2x_i^{(3)}$ $logit(d_{it}) = exp(-0.5w_{it}^{(4)}) + sin(1.25w_{it}^{(1)} + 5)$
- Synthetic Species 3: *F* and *G* nonlinear with interactions $logit(o_i) = -exp(-x_i^{(4)}x_i^{(12)}) - 2x_i^{(1)} - 0.5$ $logit(d_{it})$ $= exp(-0.5w_{it}^{(4)}) \cdot sin(1.25w_{it}^{(1)} + 5) + exp(-0.5w_{it}^{(4)})$ $+ sin(1.25w_{it}^{(1)} + 5)$

Results for AUC of *y*_{*it*}: No Significant Differences





True Occupancy Probabilities

True Occupancy Probabilities

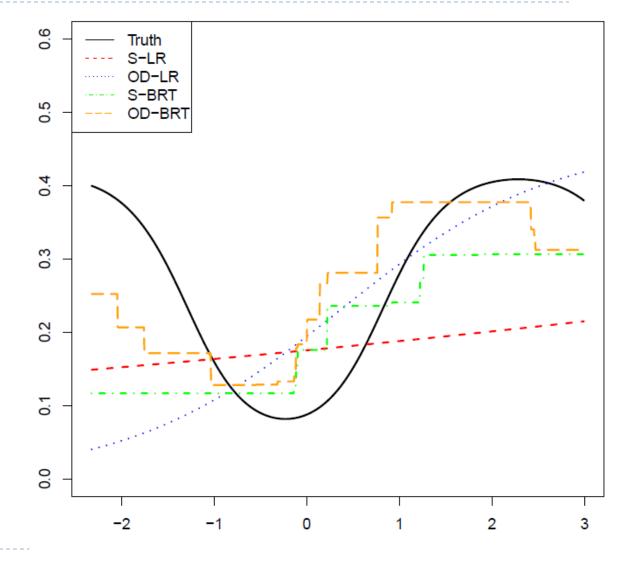
17

Partial Dependence Plot Synthetic Species 1

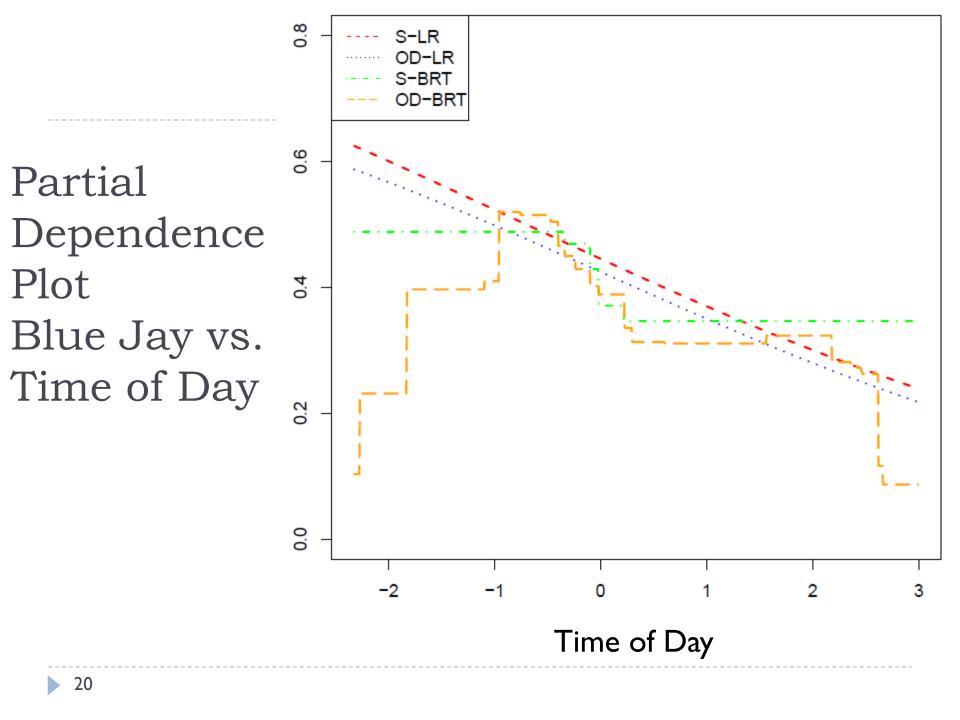
0.6 Truth S-LR OD-BRT has OD-LR S-BRT 0.5 OD-BRT the least bias 0.4 0.3 0.2 0.1 0.0 0.5 1.0 1.5 0.0 2.0 2.5 3.0 Distance of survey

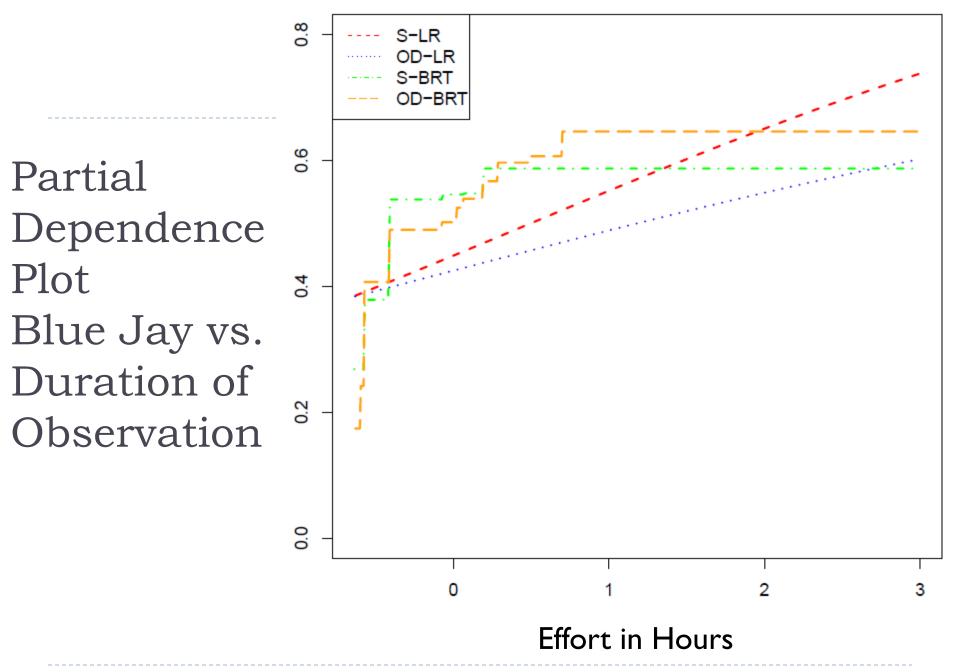
Partial Dependence Plot Synthetic Species 3

 OD-BRT has the least bias and correctly captures the bimodality



Time of Day





Conclusions and Contributions

- We have succeeded in incorporating BRTs into the occupancy-detection models
 - Accurate predictions of both the observations and the latent variables
 - The fitted trees are correctly capturing nonlinearities
- Machine learning: case study for doing functional gradient descent in latent variable models
- Ecology: allows two major modeling challenges to be addressed simultaneously

Next Steps

- Preparing an R package
- Collaborating with ecologists to apply OD-BRT to more datasets
- Experiments to validate interaction discovery
- Extending the method to models with more complex latent structure

References and Acknowledgements

- Elith J, Graham CH, Anderson RP, et al. **Novel methods improve** prediction of species' distributions from occurrence data. *Ecography*. 2006;29(2):129-151.
- Dietterich, TG, Ashenfelter, A, and Bulatov, Y. **Training Conditional Random Fields via Gradient Tree Boosting**. International Conference on Machine Learning, 2004.
- Friedman J. Greedy function approximation: a gradient boosting machine. Annals of Statistics. 2001;29(5):1189-1232.
- MacKenzie DI, Nichols JD, Royle JA, et al. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, San Diego, USA; 2006.

This research was funded by the National Science Foundation under grant number NSF-0832804.

Thanks!

Questions?