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Abstract

Functional Magnetic Resonance Imaging (fMRI) technology allows us to
study the brain in action at the resolution of millimeters and seconds. Ma-
chine learning provides a principled approach to studying the data collected
through fMRI in hopes of better understanding cognitive behavior. Our goal
is to use machine learning to improve the cognitive modeling process by con-
necting hypotheses about processes occurring in the brain during particular
tasks to fMRI data collected while subjects perform those tasks. This would
permit hypotheses to be compared, modified, and even learned based on ex-
perimental data.

In this thesis, we propose a class of probabilistic models designed for
fMRI data called Hidden Process Models (HPMs). HPMs assume a system
of partially observed, linearly additive processes that overlap in space and
time, motivated by characteristics of cognitive processes. In preliminary ex-
periments, HPMs have shown promise in analyzing both real and synthetic
fMRI data, but they need some extensions to be widely useful. For instance,
we plan to extend the parameterization of HPMs, improve the inference al-
gorithm for HPMs, and develop algorithms for learning HPMs under more
types of uncertainty.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a safe, non-invasive technology
that allows us to collect measurements of brain activity at a temporal resolution on
the order of seconds and a spatial resolution on the order of millimeters. We can
use fMRI to study the brain by designing experiments in which subjects perform
controlled tasks in the scanner. fMRI has the potential to revolutionize the way that
cognitive theories are developed and evaluated, because it affords us the opportu-
nity to compare cognitive models to data from real human subjects.

Machine learning techniques provide a principled approach to analyzing fMRI
data. Two significant challenges to doing machine learning in this domain are that
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fMRI data is high-dimensional and sparse. In a typical experiment, the brain is
divided into about 10,000 volume elements, or voxels, each of which is imaged
approximately every second for perhaps 15-20 minutes. Over this time, we usually
only acquire a few dozen examples of the tasks that the subject performs. This
results in a very large feature set (voxels at time points), for which we may have
only 10-40 training trials from which to learn.

Another challenge we face in analyzing fMRI data is due to the nature of the
fMRI signal: it is a highly noisy measurement of an indirect and temporally blurred
neural correlate. fMRI measures changes in the blood oxygenation level (also
called thehemodynamic responseor theBlood Oxygen Level Dependent (BOLD)
response). The hemodynamic response to a short burst of less than a second of
neural activity lasts for 10-12 seconds. The fMRI signal we acquire then is really
a series of temporally and/or spatially overlapped hemodynamic responses which
represent neural activity smeared over time.

Our goal in applying machine learning to fMRI data is to improve the cognitive
modeling process. We envision a setting in which a cognitive scientist can compare
several hypotheses of the cognitive processes a subject invokes during a particular
task based on the likelihood of the experimental data under each model. Consider
for example a study in which subjects in the scanner repeatedly view a picture and
read a sentence and indicate whether the sentence correctly describes the picture.
We would like a method in which the cognitive scientist can compare a simple
model in which the only two cognitive processes are ReadSentence and ViewPic-
ture to a slightly more complex model adding a third process, Decide, or to even
more complex models of this task. A convincing justification for a theory would be
its ability to outperform competing theories in explaining real human fMRI data.

To create such a tool for cognitive scientists, we must overcome the challenges
of learning in the fMRI domain and provide a model framework powerful enough
to deal with uncertainty about the processes underlying the data. In short, our
problem is to learn the parameters and timing of potentially overlapping, partially
observed responses to cognitive processes in the brain using many features and a
small number of noisy training examples.

2 Related Work

The most common approach to modeling fMRI data in the neuroimaging commu-
nity is to employ multiple regression methods based on the General Linear Model
(GLM) (e.g., [7], [8]). In these methods it is assumed that the fMRI data is gener-
ated by a collection of cognitive processes withknowntiming and identities. The
activation at each voxel at each time is assumed to be governed by a Gaussian
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distribution whose mean is the linear sum of contributions from all processes ac-
tive at that time. Each process is assumed to generate a spatio-temporal signature
in the observed fMRI data, where the process’ contribution to each voxel at each
time relative to the process onset may be characterized by an independent param-
eter. Given known timings and identities of a set of processes, and a sequence of
observed fMRI data, multiple regression methods can be used to find maximum
likelihood estimates of the spatio-temporal signature of each process. While this
GLM approach captures modeling assumptions which have been found very useful
for fMRI analysis, it is restricted to the case where process timings and identities
are known.

Another approach to modeling time series data, which has not been widely
used for fMRI analysis, is Dynamic Bayesian Networks (DBNs) [19, 11]. For
instance, we could model fMRI data with factorial Hidden Markov Models (fH-
MMs) [13, 12], in which each hidden Markov chain represents a cognitive process
that can be on or off. However, applying fHMMs is problematic for our task be-
cause the hemodynamic response renders fMRI data non-Markovian, and because
the fHMM is unable to represent multiple instantiations of the same cognitive pro-
cess overlapping in time without significant computational and modeling overhead.
Furthermore, the sample complexity of learning unconstrained DBNs will often be
prohibitive given the sparsity of available fMRI data. We require a more con-
strained, informed model to learn in the presence of such sparse training data.

Other tools for analyzing fMRI data include ACT-R [1] and 4-CAPS [15].
Based on production rules, these systems make predictions about the fMRI data
that will be observed when subjects in the scanner do algebra problems or read
sentences, respectively. This approach revolutionized cognitive science by provid-
ing a framework in which cognitive theories can be specified via computer pro-
grams whose output can be compared to real fMRI data. We would like to provide
a method in which cognitive theories can be partially specified and the details can
be filled in by learning them from real data. That is, we would like to develop a
data-driven model, rather than taking a predictive approach.

In approaching the problem of tracking cognitive processes in the brain using
fMRI data, it is instructive to note that several machine learning techniques have
been successful in analyzing fMRI data for slightly different purposes. For exam-
ple, several groups have been able to accurately classify non-overlapping windows
of fMRI data. For instance, [18] trained classifiers for differentiating between win-
dows where the subject was viewing a picture or reading a sentence (as in the
experiment alluded to above), for differentiating different types of sentences, and
for differentiating 12 semantic categories of stimuli. Other groups have also trained
classifiers to tell apart several semantic categories of stimuli, such as photographs
of faces versus chairs [14]. Classifiers such as linear discriminant analysis and
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support vector machines have even been successful at classifying different stimuli
categories across multiple sessions for the same subject [6]. These methods do not
directly address the problem of tracking unknown cognitive processes, but it is en-
couraging to note that enough useful information is captured in the fMRI signal to
do these classification tasks, despite the noise level and sparsity of the data.

While all of these approaches have been important and useful to the fMRI
community, none of them quite achieve the goal we have outlined for fMRI data
analysis. The GLM provides a method for estimating the hemodynamic response
from the data, but requires us to assume that we know the timing of all the cognitive
processes in advance, which is overly restrictive. DBNs are a natural choices for
time series modeling, but we have concerns about the sample complexity issues
we face with such sparse data. ACT-R and 4-CAPS can make predictions about
fMRI data for some tasks, but we would like to learn cognitive models from the
data. We would like a method that combines the best of these techniques; the
model should learn process hemodynamic responses from real data with minimal
assumptions about their timing, track cognitive processes over time, and provide
cognitive scientists a framework for expressing theories and validating them with
fMRI data.

3 Thesis

The central thesis of this work is that we can develop machine learning techniques
to simultaneously estimate a hemodynamic responseand the timing of the cog-
nitive processes that generate it. We have designed a method specifically for this
purpose called Hidden Process Models (HPMs). HPMs are a potentially signif-
icant contribution to the field because existing methods require either the timing
or the hemodynamic response of a set of events to be assumed in advance in or-
der to analyze the data. HPMs on the other hand allow researchers to search for
hidden cognitive events that do not correspond directly to stimuli, and to compare
competing theories in a principled manner driven by experimental data.

Hidden Process Models are a probabilistic model for multivariate time series
data generated by a system of partially observed, linearly additive processes that
overlap in space and time. We use HPMs to model fMRI data by assuming there is
a partially observed series of hidden, overlapping cognitive processes in the brain
that probabilistically generate the observed fMRI time series. HPMs represent an
intermediate point between GLM approaches and DBNs on the spectrum of ex-
pressibility versus learnability. HPMs extend the expressiveness of the GLM by
allowing us to learn hemodynamic responses for processes whose timing is un-
known. They are a more constrained approach than DBNs in that they incorporate
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more domain knowledge than general DBNs, which improves their learnability.
More details on how HPMs relate to the GLM and to DBNs are given in Appen-
dices A and B, respectively.

Our work so far on HPMs has shown that they can accomplish the goal of
simultaneously estimating the hemodynamic response and timing of events in con-
strained situations. For instance, HPMs can currently estimate nonparametric hemo-
dynamic responses for datasets in which we know the number of processes and the
durations of their responses in advance, and we have a relatively small number
of timing combinations to consider. Much of the future work in this area focuses
on removing these types of constraints so that HPMs can work in more general
problem situations. For instance, we would like to allow parametric hemodynamic
responses, more timing possibilities, variable durations, and unknown numbers of
processes. We will discuss these extensions in more detail in Section 5.

4 Preliminary Work

This section describes our work so far on Hidden Process Models. To date, we
have established a formal notation for HPMs, developed inference and learning
algorithms for HPMs, and applied these algorithms to real and synthetic fMRI
data.

In order to describe HPMs more clearly, we introduce a particular dataset to
use as a concrete example. This dataset was obtained from an fMRI study [16]
in which human subjects were presented a sequence of 40 trials. In half of these
trials subjects were presented a picture (involving the symbols *, +, and $) for 4 sec
followed by a blank screen for 4 sec, followed by a sentence (e.g. “The star is above
the plus.”). They then pressed a button to indicate whether the sentence correctly
described the picture. In the other half of the trials the sentence was presented
first and the picture second, using the same timing. Throughout the session, fMRI
images of brain activity were captured every 500 msec (i.e., TR = 500 msec). In
the real data, each image was summarized in terms of the mean activation in 7
pre-defined regions. We also created synthetic data to match the timing of this
experiment, in which we varied experimental parameters like the number of voxels
and the signal-to-noise ratio. Our goal in applying HPMs to this data is to model
the underlying cognitive processes used by subjects to perform their task.

4.1 HPM Formalism

Figure 1 depicts an HPM for the synthetic picture/sentence data. HPMs assume the
observed time series data is generated by a collection of hidden process instance.
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Figure 1: Synthetic 2-process HPM. Processes each have a duration, timing distri-
bution, and response signature over time and space. They are instantiated multiple
times, at start times depending on timing landmarks derived from the input stimuli
and the timing distribution of the process. The predicted mean of the data is the
sum of the contributions of each active process instance at each time point.

Each process instance is active during some time interval, and influences the ob-
served data only during this interval. Process instances inherit properties from
general process descriptions. The timing of process instances depends on timing
parameters of the general process it instantiates, plus a fixed timing landmark de-
rived from input stimuli. If multiple process instances are simultaneously active
at any point in time, then their contributions sum linearly to determine their joint
influence on the observed data.

More formally, we consider the problem setting in which we are given observed
dataY and known input stimuli∆. The observed dataY is a T × V matrix
consisting ofV time series, each of lengthT . For example, these may be the time
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series of fMRI activation atV different locations in the brain. The information
about input stimuli,∆, is aT × I matrix, where matrix elementδti = 1 if an input
stimulus of typei is initiated at timet, andδti = 0 otherwise. The observed dataY
is generated nondeterministically by some system in response to the input stimuli
∆. We use an HPM to model this system. Let us begin by defining processes:

Definition. A processh is a tuple〈W,Θ,Ω, d〉. d is a scalar called thedurationof
h, which specifies the length of the interval during whichh is active.W is ad×V
matrix called theresponse signatureof h, which specifies the influence ofh on the
observed data at each ofd time points, in each of theV observed time series.Θ is
a vector of parameters that defines the distribution over a discrete-valued random
variable which governs the timing ofh, and which takes on values fromΩ. The set
of all processes is denoted byH.

We will use the notationΩ(h) to refer to theΩ for a particular processh. More
generally, we adopt the convention thatf(x) refers to the parameterf affiliated
with entityx.

Each process represents a general procedure which may be instantiated multi-
ple times over the time series. For example, in the sentence/picture fMRI study de-
scribed above, we hypothesize general cognitive processes such as ReadSentence,
ViewPicture, and Decide, each of which is instantiated once for each trial. The
instantiation of a process at a particular time is called aprocess instance, defined
as follows:

Definition. A process instanceπ is a tuple〈h, λ,O〉, whereh identifies aprocess
as defined above,λ is a known scalar called atiming landmark, andO is an integer
random variable called theoffset time, which takes on values inΩ(h). The time at
which process instanceπ begins is defined to beλ + O. The multinomial distribu-
tion governingO is defined byΘ(h). The duration ofπ is given byd(h), and the
response signature isW (h).

The timing landmarkλ is defined by a particular input in∆ (e.g., the timing
landmark for a ReadSentence process instance may be the time at which the sen-
tence stimulus is presented to the subject), whereas the values for the offset time
O and/or the processh of the process instance may in general be unknown. We
model the distribution overO as a property of the process, and its particular value
as a property of the instance; that is, while there may be slight variation in the
offset times of ReadSentence instances, we assume that in general the amount of
time between a sentence stimulus and the beginning of the ReadSentence cogni-
tive process follows the same distribution for each instance of the ReadSentence
process.
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The latent variables in an HPM areh andO for each of the process instances.
We refer to each possible set of process instances as aconfiguration.

Definition. A configurationc is a set of fully-specified process instances{π1 . . . πL}.

Given a configurationc = {π1 . . . πL} the probability distribution over each
observed data pointytv in the observed dataY is defined by the Normal distribu-
tion:

ytv ∼ N (µtv(c), σv) (1)

whereσv is the standard deviation characterizing the time-independent noise dis-
tribution associated with thevth time series, and where

µtv(c) =
∑
π∈c

d(h(π))∑
τ=0

δ(λ(π) + O(π) = t− τ) wτv(h(π)) (2)

Hereδ(·) is an indicator function whose value is 1 if its argument is true, and 0

otherwise. w
h(π)
tv is the element of the response signatureW(h(π)) associated

with processh(π), for data seriesv, and for theτ th time step in the interval during
whichπ is instantiated.

Equation (2) says that the mean of the Normal distribution governing observed
data pointytv is the sum of single contributions from each process instance whose
interval of activation includes timet. In particular, theδ(·) expression is non-zero
only when the start time (λ(π)+O(π)) of process instanceπ is exactlyτ time steps
beforet, in which case we add the element of the response signatureW(h(π))
at the appropriate delay (τ ) to the mean at timet. This expression captures a
linear system assumption that if multiple processes are simultaneously active, their
contributions to the data sum linearly. To some extent, this assumption holds for
fMRI data [5] and is widely used in fMRI data analysis.

We can now define Hidden Process Models:

Definition. A Hidden Process Model, HPM, is a tuple〈H,Φ, C, 〈σ1 . . . σV 〉〉, where
H is a set of processes,Φ is a vector of parameters defining the prior probabilities
over the processes inH, C is a set of candidateconfigurations, andσv is the stan-
dard deviation characterizing the noise in thevth time series ofY.

Note that the set of configurationsC is defined as part of the HPM. Each con-
figuration is an assignment of timings and process types to some number of pro-
cess instances. This restricts the hypothesis space of the model, and facilitates the
incorporation of timing constraints as mentioned above (e.g. if none of the config-
urations allow process instancen to be of type ReadSentence and/or start att = 4,
then that possibility is not considered by the HPM).
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An HPM defines a probability distribution over the observed dataY, given
input stimuli∆, as follows:

P (Y|HPM,∆) =
∑
c∈C

P (Y|HPM, C = c)P (C = c|HPM,∆) (3)

whereC is the set of candidate configurations associated with theHPM, andC is a
random variable defined overC. Notice the termP (Y|HPM, C = c) is defined by
equations (1) and (2) above. The second term is

P (C = c|HPM,∆) =
∏

π∈c P (h(π)|HPM)P (O(π)|h(π), HPM,∆)∑
c′∈C

∏
π′∈c′ P (h(π′)|HPM)P (O(π′)|h(π′), HPM,∆)

(4)
whereP (h(π)|HPM) is the prior probability of processh(π) as defined by the
parameter vectorΦ of theHPM. Similarly, P (O(π)|h(π), HPM,∆) is the multi-
nomial distribution defined byΘ(h(π)).

Thus, the generative model for anHPM involves first choosing a configuration
c ∈ C, using the distribution given by equation (4), then generating values for each
time series point using the configurationc of process instances and the distribution
for P (Y|HPM, C = c) given by equations (1) and (2).

4.2 Inference with HPMs

The basic inference problem in HPMs is to infer the posterior distribution over the
candidate configurationsC of process instances, given theHPM, input stimuli∆,
and observed dataY. By Bayes theorem we have

P (C = c|Y,∆, HPM) =
P (Y|C = c, HPM)P (C = c|∆, HPM)∑

c′∈C P (Y|C = c′, HPM)P (C = c′|∆, HPM)
(5)

where the terms in this expression can be obtained using equations (1), (2), and (4).

4.3 Learning HPM Parameters

The learning problem in HPMs is: given an observed data sequenceY, an observed
stimulus sequence∆, and a set of candidate configurations including landmarks
for each process instance, we wish to learn maximum likelihood estimates of the
HPM parameters. The setΨ of parameters to be learned includeΘ(h) andW(h)
for each processh ∈ H, Φ, andσv for each time seriesv.
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4.3.1 Learning from fully observed data

First consider the case in which the configuration of process instances is fully
observed in advance (i.e., all process instances, including their offset times and
processes, are known). For example, in our sentence-picture brain imaging ex-
periment, if we assume there are only two cognitive processes, ReadSentence and
ViewPicture, then we can reasonably assume a ReadSentence process instance be-
gins at exactly the time when the sentence is presented to the subject, and View-
Picture begins exactly when the picture is presented.

In such fully observable settings the problem of learningΦ and theΘ(h) re-
duces to a simple maximum likelihood estimate of multinomial parameters from
observed data. The problem of learning the response signaturesW(h) is more
complex, because theW(h) terms from multiple process instances jointly influ-
ence the observed data at each time point (see equation (2)). Solving forW(h)
reduces to solving a multiple linear regression problem to find a least squares so-
lution, after which it is easy to find the maximum likelihood solution for theσv.
Our multiple linear regression approach in this case is based on the GLM approach
described in [7]. One complication that arises is that the regression problem can be
ill posed if the training data does not exhibit sufficient diversity in the relative on-
set times of different process instances. For example, if processes A and B always
occur simultaneously with the same onset times, then it is impossible to distin-
guish their relative contributions to the observed data. In cases where the problem
involves such singularities, we use the Moore-Penrose pseudoinverse to solve the
regression problem.

4.3.2 Learning from partially observed data

In the more general case, the configuration of process instances may not be fully
observed, and we face a problem of learning from incomplete data. In this section
we consider the case where the offset times of process instances are unobserved,
however the number of process instances is known, along with the process asso-
ciated with each. For example, in the sentence-picture brain imaging experiment,
if we assume there are three cognitive processes, ReadSentence, ViewPicture, and
Decide, then while it is reasonable to assume known offset times for ReadSentence
and ViewPicture, we must treat the offset time for Decide as unobserved.

In this case, we use an EM algorithm to obtain locally maximum likelihood
estimates of the parameters, based on the followingQ function. Here we useC
to denote the collection of unobserved variables in the configuration of process
instances, and we suppress mention of∆ to simplify notation.

Q(Ψ,Ψold) = EC|Y,Ψold [P (Y, C|Ψ)]
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The EM algorithm finds parametersΨ that locally maximize theQ function by
iterating the following steps until convergence:

E step: Solve for the probability distribution over the unobserved features of
configurations of process instances. The solution to this is given by equation (5).

M step: Use the distribution over configurations from the E step to obtain
parameter estimates that maximize the expected log likelihood of the full (observed
and unobserved) data.

The update toW is the solution to a weighted least squares problem minimiz-
ing the objective function

V∑
v=1

T∑
t=1

∑
c∈C
−P (C = c|Y,Ψold)

2σ2
v

(ytv − µtv(c))
2 (6)

whereµtv(c) is defined in terms ofW as given in equation (2).
The updates to the remaining parameters are given by

σv ←−

√√√√ 1
T

T∑
t=1

(
y2

tv − 2ytvEC|Y,Ψold [µtv(C)] + EC|Y,Ψold [µ2
tv(C)]

)

θh,O=o ←−
∑

c∈C
∑

π∈c δ(h(π) = h)δ(O(π) = o)P (C = c|Y,Ψold)∑
c∈C

∑
π∈c δ(h(π) = h)

∑
o′∈Ω(h(π)) δ(O(π) = o′)P (C = c|Y,Ψold)

4.3.3 Model selection

In cases where the exact number of processes or the identities of the processes are
not known in advance, we can use cross-validated likelihood to choose the most
appropriate model from a set of candidate HPMs.

4.4 Experimental Results

To test the effectiveness of the HPM learning and inference algorithms, we applied
them to both synthetic data and to fMRI data obtained from human subjects. Ex-
periments with fMRI data were used to elucidate the hidden cognitive processes in
human subjects, and test HPMs on problems of realistic complexity. Experiments
with synthetic data allowed us to measure the effect of noise, number of training
examples and data dimensionality on the ability to accurately learn HPMs.
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4.4.1 Results on fMRI Data

We experimented with three different HPMs to analyze the fMRI data described
above:

1. HPM-2: An HPM with two processes, ReadSentence and ViewPicture, each
with a specified duration of 11 seconds (to account for the hemodynamic
response), and where the onset of each process is specified in advance to
coincide exactly with the appearance of the corresponding stimulus. Thus,
the timing is fully specified, and the only HPM parameters to be learned are
the response signatures for the two processes.

2. GNB: An HPM with two processes, identical to HPM-2 except that durations
of both processes were set to 8 seconds (the time between stimuli) instead
of 11. This models the ReadSentence and ViewPicture processes without
overlap. The generative model learned by this HPM is equivalent to the gen-
erative model learned by a Gaussian Naive Bayes (GNB) classifier where the
classes are ReadSentence and ViewPicture, and the examples to be classified
are 8-second windows of fMRI observations.

3. HPM-3: An HPM with three processes: ReadSentence, ViewPicture, and
Decide, each with a duration of 11 seconds. The timings for ReadSentence
and ViewPicture were fully specified, but the onset of the Decide process was
not. Instead, we assigned a uniform prior to start times in the interval begin-
ning with the second stimulus and ending 5 seconds later. The model was
constrained to assume that the onset of the Decide process, while unknown,
was at the same point in each of the 40 trials.

For each of five human subjects, we trained and evaluated these three HPMs,
using a 40-fold leave-one-trial-out cross validation method. Data likelihood was
measured over the left-out trials. While the training process allowed some varia-
tion in process instance timings as mentioned above, the instances’ process types
were known. We also measured the accuracy of the HPMs in classifying the iden-
tities of the first and second process instances in each left-out trial (i.e., classifying
ReadSentence versus ViewPicture). The classification was performed by choos-
ing the process with highest posterior probability given the observed data and the
learned HPM, marginalizing over the possible process identities for the remaining
process.

The results are summarized in Table 1. Note first that both HPM-2 and HPM-3
outperformed GNB in both data log likelihood and classification accuracy. The
comparison between GNB and HPM-2 is especially noteworthy because the only
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difference between these two models is the 8 second duration (resulting in non-
overlapping processes) versus 11 seconds. Essentially, HPM-2 classifies the data
interval by simultaneously deconvolving the contributions of the two overlapping
processes, and assigning the classes (process identities), whereas the standard GNB
classifier is unable to model the overlap. HPM-3 goes even further than HPM-2, by
assuming the existence of a third process with unknown onset time, and simultane-
ously estimating the contributions of each of these three, together with assigning
process identities. We take these results as a promising sign of the superiority of
HPMs over earlier classifier methods (e.g.,[18]) for modeling cognitive processes.

Second, notice that HPM-3 outperforms HPM-2. This indicates that HPMs
provide a viable approach to modeling truly hidden cognitive processes (e.g., the
Decide process) with unknown timing. The fact that the 3-process model has
greater cross-validated data log likelihood supports the hypothesis that subjects
are invoking three processes rather than two when performing this task. While
the existence of the Decide process may be intuitively obvious, the point is that
HPMs offer a principled basis for resolving questions about the number and nature
of hidden and overlapping cognitive processes. The learned response signatures of
HPM-3 for one subject are shown in Figure 2.

Finally, we applied HPMs to a second fMRI study in which subjects were pre-
sented a sequence of 120 words, one every 3-4 seconds, and pressed a button to
indicate whether the word was a noun or verb. In this study, images were obtained
once per second (i.e., TR = 1 sec). We trained a two-process HPM, with processes
ReadNoun and ReadVerb, each with duration 15 seconds. This implies overlapping
contributions from up to 5 distinct process instances in the observed fMRI data at
any given time, making it unrealistic to apply classifiers like GNB to this data. We
applied learned HPMs to classify which process instances were ReadNoun versus
ReadVerb. Despite the overlapped responses, we found cross-validated classifica-
tion accuracies significantly (p-value< 0.1) better than random classification in 4
of 6 human subjects, with the accuracy for the best subject reaching .67 (random
classification yields accuracy of .5). This further supports our claim that HPMs
provide an effective approach to analyzing overlapping cognitive processes in re-
alistic fMRI experimental datasets.

4.4.2 Results on Synthetic Data

The synthetic data shown in Figure 3 is for one voxel generated by an HPM con-
taining three processes. The timing of the processes was selected to mimic the
real dataset described above. Roughly, the triangle-shaped process corresponds
to the ReadSentence process, the square-shaped process is View Picture, and the
parabola-shaped process is Decide. We can generate synthetic datasets (in which
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Figure 2: Learned HPM-3 process responses for one subject: fMRI data. The
top plot shows two trials. The bottom plots are learned response signatures for
ReadSentence (S), ViewPicture (P), and Decide (D). Each line represents data from
one of the 7 brain regions.

we know ground truth about the processes underlying the data) in which we vary
the number of voxels, amount of noise, the number of training trials, and the pro-
portion of voxels containing relevant signal.

We trained HPMs on these datasets with constraints on process IDs and timings
that would be reasonable assumptions for corresponding real data. For instance,
the first two process instances in a trial were ReadSentence or View Picture in
either order, but repetitions like ReadSentence followed by ReadSentence were not
allowed. Timings were constrained to be close to the stimuli with offsets of only
0 or 1 . The third process instance in each trial was known to be Decide, but the
offset from the second stimulus varied from 0 to 5. Each HPM was used to choose
process IDs and timings on an independent test set with the same number of voxels
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Table 1: fMRI study: leave-one-trial-out cross validation results for GNB, HPM-2,
and HPM-3 on the five subjects (A through E) exhibiting the highest accuracies
(acc) and data log likelihoods (loglik) out of 13 total subjects. The accuracies are
for predicting the identities of the first and the second stimuli (up to 80 correct
answers, 0.5 for purely random classification scheme).

A B C D E
GNB acc 0.725 0.750 0.725 0.637 0.750
HPM-2 acc 0.750 0.875 0.700 0.675 0.787
HPM-3 acc 0.775 0.875 0.738 0.637 0.812
GNB loglik -896 -786 -941 -783 -476
HPM-2 loglik -876 -751 -912 -768 -466
HPM-3 loglik -864 -713 -898 -753 -447

and amount of noise as the training set.
We can use these synthetic datasets to investigate many questions about HPMs.

For example, we can ask how inference scales with the numbers of voxels and
training trials. To answer this question, we generated synthetic data as described
above, withσv = 1 for all voxels. We used the HPM that generated the data to do
inference over test sets of 40, 80, 120, and 160 trials, and let the number of voxels
range from 500 to 10,000. The results are shown in Figure 4, and indicate that
inference scales linearly with the number of voxels and the number of trials. Each
trial had the same structure, with 48 possible configurations fitting the assumptions
described above, but the HPM does not exploit this structure, so these results should
generalize to experiments with more varied trial types.

5 Proposed Work

While HPMs have already shown promise in fMRI analyses, there is room for im-
provement. Recall that the goal of HPMs is to improve the cognitive modeling
process by connecting hypotheses of cognitive behavior to empirical fMRI data
in a principled way. Toward this goal, we would like HPMs to handle larger and
more complex problems, to support commonly used assumptions in the fMRI data
analysis community, and to be as efficient as possible. We see three main research
thrusts that work toward these aims: the parameterization of the model, dealing
with timing constraints, and learning under different kinds of uncertainty. We dis-
cuss these areas in more detail below.
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Figure 3: Learned versus true process responses: synthetic data. Plots on the right
show learned response signatures (blue lines) for three processes superimposed
on the true response signatures (green lines). This HPM was learned from the
synthesized data shown on the left, in red; the green line indicates the synthesized
data before noise was added.

In addition to improving the HPM formalism and algorithms, we would like to
identify an open question in the field of cognitive science on which HPMs can shed
new light. As we have discussed, HPMs provide an opportunity to ask a new kind
of question about fMRI data: What does the hemodynamic response of a hidden
process (i.e. not perfectly correlated with stimuli) look like? We are currently
engaged in a literature search to find the right domain to illustrate the power of
HPMs. Such a domain should have processes with a temporal resolution of several
seconds; simple stimuli like flashing checkerboards are processed too quickly to be
interesting for HPMs. Additionally, the domain should involve some task that does
not directly correspond to understanding stimuli so that some set of one or more
hidden processes is a reasonable modeling assumption. Some of the domains we
are considering are language processing, decision making, emotion, and pain.

5.1 Model Parameterization

One area of HPMs that merits further investigation is the way in which we param-
eterize the model. Our main goals in improving the parameterization of HPMs are
to reduce the sample complexity of the learning problem and to support commonly
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Figure 4: Empirical analysis of scaling properties of inference in HPMs. Inference
appears to scale linearly with the number of voxels and the number of trials.

used assumptions in the fMRI data analysis community. Specifically, we want to
look into sharing model parameters, using parametric forms and/or smoothing for
the process response signatures, and allowing characteristics of the stimuli to affect
response signatures.

5.1.1 Parameter Sharing

Sharing HPM parameters could potentially reduce the sample complexity of our
learning problem, allowing us to make better use of the sparse data we have. In
[20], Niculescu implemented one form of parameter sharing for HPMs in which
voxels share the shape of their response signatures. In that work, the response
signatures are modeled with a set of parameters (nonparametric weights, as in the
current version of HPMs) describing a canonical signature for a region of the brain,
along with scaling parameters for each voxel in that region. In the given region,
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this reduces the number of parameters used to model a response signature from
duration(process) ∗ V to duration(process) + V . This framework was im-
plemented under the assumption that the process instances timings were fully ob-
served; we would like to extend this work to the case where the timings are only
partially observed. To extend this work to the case of unknown timings, we must
reformulate the objective function (Equation 6) of the reweighted least squares op-
timization problem from the M step in terms of the new parameters (the scaling
factors and canonical response). We are currently studying convex optimization to
learn how to do this [4].

5.1.2 Parametric Response Signatures

The current version of Hidden Process Models takes a nonparametric approach to
the shape of the process response signatures by modeling them withd weights,
whered is the duration of the process. This allows the response to have any shape,
and effectively samples that shape at the temporal resolution of the experiment.
This approach has worked well so far, and will continue to be a good choice in
some situations. In other situations, we may wish to parameterize the response
signatures differently. The benefits of supporting parametric response signatures
in HPMs are threefold: we may be able to reduce the number of parameters to be
estimated in learning HPMs, we may be able to use prior knowledge about response
shapes to better fit the data, and we can support a variety of modeling assumptions
made in fMRI data analysis, making HPMs more widely applicable.

In [5], Boynton uses a parametric form for the impulse response function,
which is the response to a short, simple stimulus (flashing checkerboards). In that
work, a gamma function with 2 free parameters is used to model the impulse re-
sponse function, and the estimated response is used to investigate the linear sys-
tems approach to fMRI analysis. While hemodynamic responses to more complex
stimuli could deviate significantly from impulse responses to short simple stimuli,
it would be interesting to see whether a gamma-shaped hemodynamic response
could be used to model more complex cognitive tasks. We expect there to be a
bias-variance trade-off between a simple but biased response shape with few pa-
rameters versus a nonparametric unbiased response shape with many parameters
(like the current model). Another point on the spectrum of this bias-variance trade-
off might be the spline models discussed in [10]. The first technical challenge to
incorporating either parametric form into HPMs is to figure out how to deconvolve
the responses and estimate their parameters, first for known timing and then for
unknown.

Another way to model the hemodynamic response function would be to use
hemodynamic basis functions as mentioned in [7]. This approach is quite similar
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to the reweighted least squares procedure we currently use to estimate the non-
parametric form of the response signatures, except that the responses are projected
into a lower-dimensional subspace so that we may estimate fewer parameters. Dale
gives equations for doing maximum likelihood estimation in this case. One signif-
icant challenge to this approach is choosing the right subspace (and corresponding
basis functions). We are also studying basis function regression in [2] for the de-
tails of learning in this setting.

5.1.3 Smoothed Response Signatures

In cases where we choose not to commit to a particular parameterization of the
hemodynamic response, we might still want to impose a smoothness constraint on
the learned weights. Smoothing might help us deal with noise on the data, and may
yield more accurate, biologically plausible response estimates. Intuitively, a simple
constraint might be that the difference between adjacent weights is upper-bounded
by some parameter∆. This constraint could be implemented as a regularizer added
to the objective function of the reweighted least squares procedure in the M step.
The strength of the regularizer could be moderated by a smoothing parameter, cho-
sen by cross-validation. Again, we are studying convex optimization for the details
[4].

We could also use insight from the fMRI literature to derive a smoothing con-
straint for the weight parameters. For instance, previous work [5] suggests that the
hemodynamic response is made up of a sequence of impulse responses to short
stimuli. These impulse responses are more commonly accepted to be gamma-
shaped than longer, more complex hemodynamic responses to higher-level cogni-
tive events. Thus, while we might not want to commit to a gamma-shaped response
signature, perhaps we could bound the decay of the hemodynamic response based
on the decay of a gamma-shaped impulse response and use this in our regularizer
instead.

5.1.4 Stimulus-Dependent Response Signatures

Another way in which we would like to extend the HPM parameterization is to
allow characteristics of the stimuli to affect the process response signatures. For
instance, in experiments where subjects are reading sentences, we might want the
length, type, or truth value of the sentence to affect the response in some way. More
complex sentences might elicit additional brain activity.

Note that another way to capture some of the effects of stimuli on process
responses would be to split the process into two separate processes (e.g. ReadSim-
pleSentence and ReadComplexSentence). There are a few reasons why it might
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be advantageous to use something like a scaling parameter instead. One is that we
may have prior knowledge about the relationship between the two responses, which
can inform our model. Another is that we may be able to model the two responses
with fewer parameters if the relationship between them is simple. Of course, if the
effect of a stimulus parameter is so complex that it requires more parameters to
describe it than to estimate a whole second process response signature, we should
model the second response separately.

5.2 Inference and Learning Under Timing Constraints

Perhaps the biggest weakness of the current version of HPMs is the way that tim-
ing constraints (like “process instances of typeA begin at somet offset in {0 1
2} seconds after their corresponding stimulusλ”) are incorporated into the model.
While we believe the timing constraints to be an important tool for analyzing fMRI
data, the way that we currently specify them is inefficient. Right now, the HPM
itself includes a set of process configurations that describe the allowable timings of
the process instances. Timing constraints are observed by simply not putting any
configurations into the model that violate the constraints, essentially limiting the
hypothesis space of the model to be consistent with the timing constraints. This
makes the inference procedure easy (try each configuration and pick the one that
maximizes the data likelihood) but it is inefficient to list all possible configurations,
much less to evaluate them all. The enumeration of these configurations also re-
quires a large design matrix to be created for the reweighted least squares M step.
Our goals here are to make our algorithms as efficient as possible so we can handle
larger problems and to make any existing limitations clear to the cognitive mod-
eler in terms of fMRI experiment design so that HPMs can be used to their fullest
advantage.

5.2.1 Current Limitations

We believe that the first step toward improving this aspect of HPMs is to formally
specify the impact of the current scheme on our performance. We would like to
know exactly how enumerating the configurations limits us. Answering this ques-
tion will involve analytical analysis and synthetic data experiments looking into the
number of parameters to estimate, the complexities of the inference and learning
algorithms, and the size of the problems HPMs can deal with. For instance, we
know that the size of the design matrix exceeds Matlab memory limitations in the
sentence/picture dataset for 40 trials and 2000 voxels under the timing constraints
described above, but we would like a more formal specification of the size of this
matrix in terms of the HPM parameters. We saw above that the inference algorithm
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scales linearly with voxels and trials, but we need to look at how it scales with the
number of configurations per trial. We also expect the notion of identifiability to
play a part in this question. Given a rigorous analysis of the current method, we
can use this information in one of two ways.

5.2.2 Possible Solutions for Inefficient Inference

The first way we see to deal with the inefficiencies resulting from enumerating the
configurations is to translate the limitations into the language of fMRI experiment
design. This approach accepts the shortcomings of HPMs and focuses instead on
understanding how to work within the limits of the method. The idea behind this
solution is that even if HPMs are limited to, for instance, a 20-minute fMRI ex-
periment with 4 cognitive processes or fewer (which actually covers many fMRI
experiments), they still represent a novel, useful way to study the brain, and it
would be helpful to provide researchers with guidelines for designing fMRI ex-
periments for HPM analyses. While this approach is not a perfect solution, it still
makes a valuable contribution to the fMRI data analysis community and is almost
certainly possible to complete as part of this thesis.

The second solution we see is to develop more efficient exact and/or approxi-
mate algorithms for HPMs. This approach is desirable in that it is likely to make
HPMs applicable to more problems, but it is much more difficult and uncertain than
the first solution. We have many questions about how we might attempt this, but
few answers. Some of the research areas we will look to for insight on this problem
include Markov Chain Monte Carlo sampling methods [17] and DBN algorithms.
One approach would be to implement something like Gibbs sampling over config-
urations, but this would only improve the E step; the memory issue in the M step
would be unchanged. It may be necessary to move away from configurations as a
tool for expressing timing constraints and address the latent variablesO andh of
the process instances in some other way.

5.3 Learning Under Uncertainty

A third direction we see for improving HPMs is to develop learning algorithms
allowing more kinds of uncertainty in the training data. The current algorithms
work for fully observed training data, and for training data in which the process
timings and/or the process IDs are partially observed. However, these algorithms
assume a known number of processes in the model, and known response signature
durations for those processes. Our goals in allowing more types of uncertainty in
learning are to ease the cognitive modeling process by requiring fewer parameters
to be set by the cognitive scientist and to let the data inform the model as much as
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possible.

5.3.1 Uncertainty in Process Durations

One type of uncertainty we want to deal with is the length of the hemodynamic
response. The current model allows different processes to have different durations,
but all the durations are assumed to be known in advance. Instead, we would like to
automatically learn the appropriate duration for each process. A naive, inefficient
approach would be to generate and test several HPMs with varying durations for
the processes. Perhaps an alternative heuristic would be to start with arbitrarily
long durations and set a threshold for the weights. At regular intervals, we could
check whether the last weight in the response is above the threshold; if not, we
remove the last weight from the response and check the next one. The threshold
for lowering the process duration could be based on some estimate of the noise in
the data. For example, if the last weight in a process response has been learned to
be 0.1, and we estimate theσ for that voxel to be 0.5, we decrement the process
duration and model the time points immediately following this process as noise
rather than an effect of the process itself.

Note that in the nonparametric version of HPMs, we do not suffer much by
assuming known durations because the model is free to learn trailing zeros in the
response weights. On the other hand, if we model process response signatures us-
ing hemodynamic basis functions, we can in some sense learn the process durations
for free by using basis functions of varying lengths. Each process response signa-
ture would then consist of weights on the basis functions that would determine the
duration of the process.

5.3.2 Uncertainty in the Number of Processes in the Model

Another type of uncertainty we face is about the number of processes underlying
the system. Right now, we address this uncertainty by doing model selection; for
instance, we have trained HPMs with 2 and 3 processes on the same data, and
used data log-likelihood to choose the more appropriate model. We would like
to investigate the possibility of learning the number of processes underlying the
model from data during training. This problem seems to have some parallels to
nested Chinese Restaurant Processes [3]; perhaps that literature could inspire a
solution. We expect this task to be quite difficult, and we will have to decide how
important it is to our goal of improving cognitive modeling. To compare a small
number of relatively simple models, using cross-validation to do model selection
is feasible and has the advantage of giving a good quality measure for comparison
(the cross-validated accuracy or likelihood). Choosing the number of processes
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automatically becomes more important as the number and complexity of models
increases, but it is not clear whether the fMRI domain will challenge the limits of
the cross-validation scheme yet.

5.4 More Ideas

The three research areas listed above will constitute the main thrusts of this thesis.
The final thesis will delve into some subset (not necessarily all) of the specific
questions in each research area. However, we are not at a loss for research projects
extending HPMs; here are several other research ideas we would be interested in
approaching, time permitting.

While the linear systems approach to fMRI data analysis is widely used, signif-
icant deviations from linearity have also been shown in fMRI [9]. Our model will
suffer from nonlinearities in the fMRI signal. Two significant nonlinear effects are
habituation and saturation. The idea of habituation is that the amplitude of hemo-
dynamic responses to rapidly repeated stimuli decreases as the brain adjusts to the
demands of the task. HPMs assume that the response to each of the rapid stimuli
is the same and do not account for the subject becoming accustomed to doing the
task. The idea of saturation is that the sum of the amplitudes of many simultane-
ously occurring hemodynamic responses is bounded by the vascular structure of
the brain region. HPMs allow an arbitrary number of hemodynamic responses to
be piled atop one another, summing their weights to predict an unrealistically high
fMRI signal. An interesting extension to HPMs would be to model habituation
and/or saturation in some way.

We might like to apply HPMs to another domain. While they have been de-
veloped for fMRI data analysis, we believe the approach could be useful for other
time series domains. Additionally, applying HPMs to different kinds of datasets
will likely inspire more ideas for extensions of the model that arise in response to
the needs of a different domain.

6 Schedule

Below is a rough schedule of the proposed work to be done on this thesis, organized
by publication deadlines.

NeuroImage Journal (Summer 2006): Extended paper reporting progress on
HPMs so far to the neuroscience community. This should include the treatment
of HPMs given in this document, progress on model parameterization, Niculescu’s
work on parameter sharing [20], and a version of the first solution to our inefficient
inference problem (specifying limits in terms of experiment design).
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AAAI/ICML (February 2007): Paper reporting progress on inference and learn-
ing algorithms.

NIPS (June 2007): Paper applying HPMs to an open question in the field of
cognitive science.

Projected completion: December 2007.

7 Conclusion

Hidden Process Models (HPMs) provide a general formalism for representing prob-
ability distributions over time series data. Here we have described the formalism
and associated inference and learning methods, and presented experimental results
showing the ability of these algorithms to learn HPMs characterizing hidden cog-
nitive processes in human subjects while their brain activity is recorded in an fMRI
scanner. We have also outlined an agenda for future research on HPMs, in which
the three main research areas are the parameterization of the model, dealing with
timing constraints, and learning under uncertainty. In relating HPMs to other ap-
proaches, we have found that HPMs provide an intermediate point between GLM
regression and DBNs on the spectrum of expressivity versus learnability.

A HPMs and the GLM

HPMs are related to the General Linear Model (GLM) which is widely used for
fMRI data analysis in the neuroscience community. HPMs provide a key general-
ization of the standard GLM multiple regression methods used for fMRI analysis
because HPMs allow uncertainty regarding the timings of the hidden processes,
whereas standard GLM regression analyses (e.g., [7]) assume the precise timings
of each process are known in advance.

To show the correspondence between HPMs and the GLM more precisely, we
follow the overview of GLMs for fMRI analysis from [7]. Consider the case where
we have just one voxel whose observed discrete time series is given by the column
vectory of dimensionT . The GLM models this time series as

y = X1w1 + X2w2 + . . . + XKwK + n (7)

wherewk is a discrete-time vector of dimensionM representing the hemodynamic
response function (in our terms, the response signature) associated with thekth

process. HereXk is theT ×M dimensional binary matrix which represents the
exact timing of all instantiations of thekth process, where the value ofXk(q, r) is
1 if an instance of processk was initiated at timeq − r + 1, and 0 otherwise. The
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T dimensional vectorn represents a vector of zero mean Gaussian noise which is
temporally uncorrelated.

We can represent equation (7) in matrix form, and also generalize it to the case
where there are multiple voxels, yielding the matrix equation

Y = XW + N (8)

whereY is the horizontal concatenation of the observed time series vectors for the
different voxels,X = [X1 · · ·XK] is the horizontal concatenation of the timing
matrices for theK processes,W is the vertical concatenation of the response ma-
trices for the processes, andN is the horizontal concatenation of the noise vectors
for the different voxels.

Equation (8) corresponds to the special case of an HPM model where the HPM
configuration(i.e., all process timings and process identities) is given in advance.
In this case,Y andX are both known, and we need only solve for the response
signatures of the processes, represented byW. The maximum likelihood solution
for W can be obtained using Ordinary Least Squares methods. HPMs generalize
the problem setting by treating the timing matrixX asunknown; that is, treating
X as a random variable to be estimated (subject to constraints derived from prior
knowledge) simultaneously withW. Given the widespread use and success of
the more restricted GLM regression model in fMRI analysis, the generalization
provided by HPMs has many potential applications in this domain.

B HPMs and DBNs

HPMs correspond to a constrained subclass of Dynamic Bayes Nets that make the
following additional modeling assumptions:

1. Events are modeled at the granularity of process instances with start times
and durations rather than state values at every time point.

2. Parameter sharing is enforced between all instances of the same process.

3. The HPM learning algorithm easily accommodates constraints of the form
“Process A occursn times within the interval [t,t′].”

To see the correspondence between HPMs and DBNs, it is instructive to encode
these three types of constraints using DBNs. A natural starting point is a factorial
Hidden Markov Model (fHMM) [13]. Each hidden Markov chain (i.e., each hidden
state variable in the fHMM) can represent a process, and instances of this process
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Figure 5: Part of a DBN capturing the same assumptions and constraints as HPMs.
The variables in the box must be repeated for each process instance. In this case,
we know that Inst1 occurs once ont=[1,8]. This DBN reflects a timing model in
which the process type probabilistically influences the possible start times for its
instances, so depending on Inst1’s process type, it might start att={1,2,5,6}. When
it starts, Inst1 will go from 0 to its duration and count back down to 0. MEM is
needed to ensure Inst1 occursexactlyonce; if the duration is 3 and the process
starts att=1, Inst1 must not restart att=5 or t=6 even though its value has returned
to 0, and if the process did not start att=1 or t=2 or t=5, it must start att=6.

can be represented by letting the state variable take on integer values from 0 (indi-
cating the process is inactive) up to the maximum duration of the process. The vari-
able can take on its maximum value whenever its process is instantiated, and count
down on each transition, returning to zero when the process instance terminates.
Although this use of fHMMs successfully captures the assumption that a process
occurs over some fixed interval, we cannot represent overlapping instances of the
same process in this fashion. If we try to encode overlapping process instances
by summing the state values each would produce individually, we are unable to
uniquely decompose this sum into the multiple process instance timings that pro-
duced it. To allow overlapping instances of the same process, the Markov chains
in the model must representprocess instancesrather than processes. In this case
each chain can have a static variable to indicate its process type, and we can then
enforce sharing of parameters between the process instances with like types. Note
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if we take this approach, the effective number of parameters needed to fully define
each Markov chain is just two: the time at which the process instance begins, and
the type of process it instantiates. HPMs represent each process instance using
exactly these two parameters. This approach requires that we assume the number
of process instances in the model in advance; this assumption is also made in the
HPM formalism given above.

Property 3 is the most difficult property to embed in the DBN model. The
constraint “Process A is instantiated once during the interval [t,t′]” means that
there is a finite subset of possible start times for this instance of process A. We need
additional variables to keep track of which start times are allowed for instance A,
plus a memory chain to keep track of whether or not the instance has already begun.
This memory is necessary if the possible start times span more than the duration
of the process so that a second instance does not occur on the same interval. A
DBN that is equivalent to an HPM is shown in Figure 5. This DBN has no more
free parameters than its equivalent HPM. Its conditional probability distributions
can be filled in with the HPM parameters discussed above, plus some deterministic
tables for counting and memory.

As this example illustrates, encoding an HPM within the generic DBN frame-
work is possible, but not elegant. Of course in either formalism, encoding the
domain knowledge of Properties 1-3 will reduce the effective number of hidden
parameters to be estimated, and will also improve the learnability of the model.
HPMs provide a convenient, process-oriented formalism to represent and work
within these modeling assumptions.
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