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Abstract—Topic models have been proposed to model a col- (LDA) [5]. We refer the reader to [6] for review on more recent
lection of data such as text documents and images in which developed topic models.
each object (e.g., a document) contains a set of instances (e.g The number of topics (dimension of the latent space) has a

words). In many topic models, the dimension of the latent topic . .. . . :
space (the number of topics) is assumed to be a deterministic un- significant effect on the quality of the model and interpbéta

known. The number of topics significantly affects the prediction ity of the estimated topics [5]. Heuristically, this proble
performance and interpretability of the estimated topics. In this is addressed in the literature by scanning through a range
paper, we propose a confidence-constrained rank minimization of numbers of topics and comparing performance measures
(CRM) to recover the exact number of topics in topic models g0y 45 perplexity on a held-out dataset or classification
with theoretical guarantees on recovery probability and mean . .
squared error of the estimation. We provide a computationally- accuracy across_the range [4], [3], [7] “_" [8], it is mentdn .
efficient optimization algorithm for the problem to further the ~ that overestimating the number of topics can be remedied
applicability of the proposed framework to large real world by ranking the topics and removing those which are not
datasets. NL_lr_nericaI ev_aluations are USQd to_\_/erify our theoretad related to the theme of the data. Bayesian nonparametric
results. Additionally, to illustrate the applicability of the proposed topic models [9]-[11] provide a solution using Hierarchica
frame_v_vorl_< to practical problems, we provide results in image Dirichlet Processes (HDP). The associated Bayesian intere
classification for two real world datasets and text classification ’ .
for three real world datasets. is often regarded as a computationally complex approach [12

Index Terms—Topic models, Low-rank matrix recovery, Nu- A CrO.SS valldathn approach.for selectlr_lg th_e humber ofdspi
clear norm minimization, Confidence constraints, Rank estima- N tOPiC models is proposed in [13]. While this approach seems
tion. to be efficient in number of topics selection, different desi
of held-out patterns and sizes have significant impact on the
results. Term-by-document matrix is commonly used for data
o ) ) representation in topic models. The number of topics is the

In many applications of machine learning, such as text, of such a matrix. Our interest is in devising a provable a
classification, image processing, and web Class'f'cat'on'cé‘mputationally efficient method to jointly determine tiagk
multi-instance representation of objects is commonly y$&d ang recover the term-by-document probability matrix fragn i
[2]. In multi-instance datasets, an object is represenseal set noisy observation.
of instances or bag of instances instead of a single instancecqnstrained rank recovery of an unknown matrix has been
For example, in a corpus of documents, a docuntebfec) gy gied vastly in the literature in the communities of signa
comprises of Words(lnstance_; Often, distributions can be processing, control system, and machine learning [L4]H[L6
considered to represent multi-instance data. For exarmpe, oplems such as matrix completion [17] and matrix decompo-
multi-instance discrete dataset such as documents, the bggon, [18]. While for simple cases singular value decomposi
of-words is a representation of a histogram over a givefy, (SvD) has been a common tool, in the constrained setting
vocabulary. Due to the high dimensional nature of objecf§nk minimization presents additional challenges. Onehef t
in multi-instance datasets (e.g., a usual vocabulary $iz& i nain challenges is the non-convex nature of the rank operato
corpus of documents can be abat, 000), it is beneficial Rank minimization is heuristically replaced with a nuclear
to simplify the rep_resentatl_on of objects in multi-instancq-m minimization [19]-[23]. Nuclear norm minimization
datasets by exploring the inner structure of such datasl§y pe formulated as a semidefinite programming (SDP) and
The framework of topic models introduces a low dimensiongled via general SDP solvers such as SDPT3 and SeDuMi.
structure by associating documents with a low dimensionglihough the convergence of these solvers is guarantee, th
distributions over a small set of topics. In the generative,, not be applied for a large scale problem due to the
approach to topic models, a subset of topics is first sel@ield 1igh computational complexity of Newton direction [24]6]2
the document is generated based on selecting words from Hi& to the problem of computational complexity of SDP,
assigned topics. Some of the early well-known topic modelg,era| economical approaches have been developed. Most
are latent semantic indexing (LSI) [3], probabilistic fatte ¢ ihese approaches are based on the idea of proximal point
semantic indexing (pLSI) [4], and latent Dirichlet alloicat approximation (Moreau-Yosida regularization [27]) rég

This work was partially supported by the Air Force Office ofiedific in a closed-form solution for nuclear norm minimization |24
Research grant number FA9550-09-1-0471. [27]. An Augmented Lagrange multiplier (ALM) [28] is an
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alternative which proposes to minimize the nuclear norm tfie generative process associated with the probabilisgic t
the low-rank component plus norm of the sparse componenimodel and then proceed with the formulation of identifyihg t
with augmented Lagrange approach. These methods have bhaember of topics in topic models. The theoretical framework
promising in terms of computational complexity. For exaeapl for exact rank recovery proposed in this paper can be apied
in [28] robust PCA is implemented using only 20 iterationtopic models with the following propertiesi) The generative
of a highly economical version of SVD. The conditiongrocess involves a multinomial sampling from a probability
under which the low-rank matrix with missing entries can beatrix and (i:) the probability matrix can be decomposed
estimated with high probability are proposed in [18], [21]as a product of two probability matrices. We carry out our
These methods have been applied to video surveillance afativation on the well-known LDA model.

image recovery. We are interested in using rank recovery

methods to determine the number of topics in topic models. Probabilistic topic models

However, we are faced with the following challenges. First
the observed term-by-document matrix is contaminated by,
multinomial sampling noise as opposed to Gaussian noige [2
[30] or sparse noise [18]. Our problem includes a specific
of constraints such as positivity and sum-to-one whickhrist
the search space in the optimization problem.

' Probabilistic topic models are generative models. Topic
fobabilities provide an explicit representation of doewmts

probabilistic topic models. The sampling process frois th
$hbdel can be explained as follows (for a list of notation, we
refer the reader to Table ).

In this paper, we present a framework and algorithms for N TABLE |
a provable rank recovery in topic models. Specifically, our OTATION USED IN THIS PAPER
contributions in this paper are as follows) We propose W | Term-by-document matrix

fficient diti f t K in topi ot \'4 Sample term-by-document matrix
sufficient conditions for exact rank recovery in topic m ¥, | Rank minimizing term-by-document matrix
a rank minimization problen®) We provide a new framework M | Number of documents
of parameter free confidence-constrained convex optimiza- L | Vocabulary size
i It ti i k minimizati bl hich T Number of topics (Rank¥))
ion as an alternative to rank minimization problem, whic ng | Number of words in document
can overcome the issues of Bayesian inferences such as or | Smallest non-zero singular value ®f
computational complexity associated with sampling meshod fpd ?E;ﬂ;’iﬁ;ﬂﬁ;“ topic proportion
i1) approximation assgmated with vgrlatlona_l Bayes approach z4; | Per-word per-document topic assignment
[31], andiii) computational complexity associated with hyper- a | Dirichlet prior parameter for topic proportion
parameter tuning [32B) We provide an analytical evaluation B | Dirichlet prior for Topics matrix

f th fficient diti f t f th b A Lagrangian multiplier
of the sufficient conditions for exact recovery of the number n | min(ng),d=1,....M

of topics in topic models. Moreover, we provide a bound on
the sum of squared errors in terms of the model parameters . . . .
such as number of documents, vocabulary size, and numbeF@ch document is drawn in an ii.d. fashion. For dia

of words in each documentl) We provide an accelerateddocumem'df {L,...,M}, a randc_>m distribution of topics
algorithm to solve the proposed convex optimization proble 2?4 = 10) = 0a(t), t € {1,..., T} is drawn. In LDA, 64 ~

We reformulate the problem in the dual form. By evaluatingf (¢)- Then, forjth word in document, j = {1,...,na}, @
the duality gap, we are able to provide accuracy guarantd@RIC assignmenty; is drawn, based on the topic distribution
for the algorithm.5) We evaluate our theoretical results of¢(f)- Finally, word wg; is drawn based on the conditional
synthetic datasetsi) Finally, we apply the proposed methoddiStribution p(wg; = llzg; = ¢,®) = @yl = {1,..., L}.

on two image datasets and three real world text datasetsl\l(Bt_e that® is a topics matrix where columns corresponds to

illustrate how the method can be applied to perform dimensi¢PPics {1, .-, T} and rows correspond to vocabulary words.
reduction. The graphical representation of LDA is shown in Fig. 1 and the

The rest of the paper is organized as follows. In Section Rrecise sampling process for LDA is described in Algorithm 1

the exact rank recovery in topic models is formulated. Sef- K&y observation in topic models is that the probability
tion Il introduces the method of confidence-constrainatkra

recovery in topic models. Section IV provides the theoreti-
cal guarantees for the proposed confidence-constraindd ran @— e
minimization. In Section V, an accelerated gradient pribjec

method for solving the dual form of confidence-constrained
nuclear norm minimization is proposed. In Section VI, the
evaluation of our theoretical results against the simaofati
W g

is presented. Section VIl illustrates how our method can be
applied to image and text datasets. Finally, we summarige th M
paper in Section VIII along with the ideas for the future work

Il. PROBLEM FORMULATION ' .
. ) o Fig. 1. The graphical model for LDA [33].
In this section, we present the problem of determining the

number of topics in probabilistic topic models. We starthwitdistribution of wordwg; can be obtained by marginalizing

M
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the joint word-topic distribution over the topic: into the product of two probability matrice® and 6. While
T the connection is obvious, the problem of decomposing the
wo — 110.,) = wai = Uzg = t,®)p(za; = t104). (1 estimated low-rank¥ into the products of two probability
plwa 6a) ;p( @ 2 Pz 6a). (D) matrices presents additional challenges which we resenve f

N . . : uture work.
To simplify the notation, we represent (1) in a matrix formaI

U = ®f, 2) 1. CONFIDENCE-CONSTRAINED RANK RECOVERY

where Uy 2 p(wg; = Ul6a), ¥ € RP*M & € RPXT, and In this section, we introduce the framework of confidence-

0 € RT*M _|n other words, the vocabulary term-by-documerﬁonStrained rank recovery. We start by describing the maxi-
matrix U can be decomp,osed into the product &fand ¢ mum likelihood (ML) solution for estimating matri from its

whered is the vocabulary probability per topic (topic matrix)nOisy observationl. Then, we introduce thg regularized ML
and 6 is the topic proportion per document. Note that thi® address the problem of rank recovery. Finally, we corelud
model in (2) is also applicable to pLSI. Columns of thes@is section with the introduction of confidence-consteain
matrices are probability vectors satisfying non-neggtignd 2Nk minimization approach.

sum-to-one property. The introduction of latent topic &blées

allows for reduced dimension representation of the term-bf. Unconstrained maximum likelihood

document matrixt?. The rank of the matrixl' is the number  The log-likelihood for the probabilistic topic model in (1)
of topics 7. We define the sample term-by-document matrixan be written as follows [4]:

- n M L
Algorithm 1 Generative process for LDA
L= log ¥y4. 4
for t=1to 7T do = Hhd 108 T @
Draw ®; ~ Dirichlet(5) I
end for Using the fact thaty; = ngV;4, We can rewrite the negative
for d=1to M do log-likelihood function as follows:
Draw 6, ~ Dirichlet(c) M
for j =1tony do anDkl(\Il.d”\I/.d):f‘c{»T’ (5)
Draw z4; ~ Discrete,) d=1
Draw wy; ~ Discretef., . . .
waj 6=0)) where T = ZM: ng ZL: Uqlog W, is a constant and
end for d=1 =1 .
end for Dyi(pllg) = >, prlog o=. Hence, the unconstrained ML
estimate ofl' can be obtained using the following optimization
¥ as follows: R XM L
| na Uy = arg min anDkz(‘I’-dH‘I’-d),
Uig=—Y I(wg =1). 3) =l N
nd 75 subject to v >0,
170 =1. (6)

Therefore,n V.4 ~ rqultinomial(\l/.d,nd) which for nota-
tional ease we denot& ~ norm-multinomia{¥,n), where Since the ML formulation does not incorporate information

n=[ny,...,ng. on rank of the matrix¥, its solution is the triviall,,;, =
¥ solution. In other words, even though the nonnegative

M = = .z B

B. Topics number recovery Sieq naD (V.4 ¥.4) can be made zero by setting = W,

Assume an unknown low-rank term-by-document mairix the rank differ_en(_:e#RanI(\If) » RanK\If)| may be large. The

is obtained through the process explained in Section Il-& \/\ML ap_proach In its unco_ns:[ramed form_ulatlon advocates the

observe matrixi norm-multinomia{, n) Since could. potenyally full rank matrix¥ as an estimate fo@. In thg_
e following, we show how the ML approach can be modified

be full-rank du_e to the presence o-f noIse In -the samphqg account for rank constraints using a regularizatiorgjtgn
process, a straightforward examination of its singulauesl term

may not provide an immediate indication on the rankdof

Furthermore, even if rank of the matrik is available, identi- ) . o

fying a low-rank matrix¥ which is similar to¥’ is a nontrivial B- Penalized Maximum Likelihood

problem. Specifically, we are interested in: Estimating the  In this section, we introduce regularized ML, constrained
term-by-document matriy from its noisy observations matrix ML, and model order selection (MOS) that potentially can be
0. 2) Quantifying the accuracy of the estimator & in used to address the problem of rank recovery associated with
two aspects:(i) Understanding the conditions under whictML solution. For each framework, we start with the formula-
the exact rank of the true matri¥ can be recoveredii) tion and then proceed with the corresponding challenges. In
Characterizing the estimation error of the matfixassociated contrast to confidence-constrained rank minimization agagin
with the matrix reconstruction. Note that we propose theghich we introduce in the following section, there are no
estimation of the matrixr rather than the decomposition f guarantees for exact rank recovery in topic models using
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penalized ML. Analogous to the use éf-regularizer for  DiscussionOne of the challenges associated with the reg-
sparsity, we consider the use of the nuclear norm to enfbiee tlarized and constrained ML is the choice of the regular-
rank constraint in the matrix setting. The heuristic reptaent ization parameterspy(and v, respectively). Often, a criterion
of rank with nuclear norm has been proposed in the literatui@ selecting a value for the regularization parameters tha
for matrix completion [20], [29], collaborative filtering3f}], guarantees exact rank recovery of matiixis unavailable.

and multi-task learning [35]. For the problem of low-rank matrix estimation in the noisy
In regularized ML, a regularized nuclear norm is added &etting, asymptotic relationship between the regulddnat

the objective function in (6) yielding: parameter and estimation accuracy is proposed in [41], [42]

M Such results cannot be applied directly to our problem for

minimize anDkz(‘if-dII\if-d)+77H\i’|\*, the following reason. Counter to the sampling process in

Section lI-A, the sampling process proposed in [42] follams
i.3.d. model without the positivity and sum-to-one. In MOS
e approach, solving the sequence of an optimization problem
=1 (") with rank constraint and evaluating the cost function for

The regularization parametej weighs the nuclear norm. different value of rank«( = 1,2, ..., min(L, M)) is compu-

The regularized ML can be viewed as maximum a posteri(}ﬁtionany complex. While _in the un.constrained sgtting SV,D
(MAP) criterion using a prior distribution over matri of Provides a one-shot solution [37], in the constrained rgtli
the form Ce—I"Il. This is similar to the interpretation df- rank minimization is NP-hard [43]. The heuristic replacemne

regularization for sparse recovery as MAP with a Laplacia(Hc rank with nuclegr norm in MOS proposed in [39], [40]
prior. Since one can apply the Lagrange multipliers frammawo>U99ests a regularlzatlon parameter framev_vork. However, n
to replace a constraint with a regularization term, (7) can pecipe 1S provided for selecting the regulgnzaﬂon pareme
formulated as constrained ML. The constrained ML formulp guarantee rank recovery. In the following, we define the

considers incorporating the nuclear norm as an additiorfﬁnflden_ce-constramed rank minimization an_d show how our
constraint to (6): ormulation of the problem can address the issues assdciate

with parameter tuning in regularized ML and constrained ML

d=1
subjectto U >0,

o M .. and exhaustive rank search for MOS stated in this section.
minimize Z naDir (V.41 4),
subject to TEH < C. Confidence-constrained rank minimization
2 . i .
¥ >0 We consider the concept of the confidence-constrained rank

s minimization for rank recovery in topic models. Using the

re=1, (8) statistical formulation of the problem proposed in Sectipn

an in-probability bound on the objective function in (6)

(8) there is a value of in (7) which produces the sameSan be obtalned._The probqblhty bound on d_ata fit crlter!on
allows us to define a confidence set. Confidence set is a

solution [36]. As an alternative to (7) and (8), MOS can bg. . : o ) .
applied to rank estimation of a matrix [37], [38]. MOS ofrersﬁ|gh—d|men3|onal generalization of the confidence inteaval

a way to evaluate the classical trade-off between good rfessreostrlcts the search space of the problem. Search inside the

fit and model complexity. For — 1,2,...,min (L, M), a confidence set guarantees a low-rank solution. Hence, én thi

sequence of optimization problems in the form of (6) subje%PproaCh the roles_ of ML obj_egtlv_e a_nd ranlg constramed_ are
to rank= r is solved to obtaink*("). Then for each rank, a replaced. We consider rank minimization subject to ML objec

cost function including negative log-likelihood &t“(") plus a tive isggstt)ra}lnt. The confidence-constrained rank minitioza
penalty term pefr) is evaluated. The penalty term correspondg 9 y:

wherer > 0 is a tuning parameter. For each valuerpfn

to the complexity of the model and is measured based on minimize Ranl@)

an information criterion such as Akaike Information Criber M

(AIC) or Minimal Description Length (MDL) [37], [38]. Note subject to anDKL(\ifd.H\i/d_) < €(9),
that in AIC the penalty term corresponds to the number of d=1

free parameters in the model. In MDL, each model candidate T >0,

is assigned with a code length and minimum code length is
used for model selection. In some implementations of MDL,
each model is assigned with a prior probability and the modeheree(d) is an in-probability bound for the estimation error.
that yields the maximum posterior probability is selecfBlde Note in this formulation the tuning parametefs) can be
use of rank minimization for model order selection in systemwbtained by boundingjfiwz1 ndDKL(\i/d.H\i/di). Intuitively the
identification is proposed in [39], [40]. Furthermore in [39 KL confidence-constrained set in (9) includes the matiix
the authors proposed the heuristic replacement of the réithk wand hence it is guaranteed (w.p— ¢) that the rank of the
the nuclear norm and showed that it makes the selection ofsoiution to (9) is less than or equal to the rank of matbix
appropriate model order easier. In the following discussiee The main problem with KL divergence between two matrices
illustrate some of the challenges associated with reqddri is that there is no straightforward way of translating it e t
ML, constrained ML, and MOS proposed in this section. distance between their singular values. Since singularegal

170 =1, 9)
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are related to the rank of a matrix, it is hard to provide the Theorem 1:Let ¥ be a~-distinct rank7' matrix and¥ ~

theoretical guarantees for rank recovery in the KL versiamorm-multinomial{¥, n). Assumey > 2¢, ande = ¢* defined
of the confidence-constrained set. While the KL confidencey (11). Then, with probability at least— §x, ¥, the solution
constrained formulation is difficult to handle, the Froheni to (10) satisfies:

norm confidence-constrained formulation provides a conve-1) ¥, e 2¢-neighborhood of?,

nient framework for proving rank recovery in topic models. 2) Rank¥,) = T.

The problem of parameter tuning is elegantly addressedsn th,aorem 1 characterize®, the solution to CRM in (10).
framework by obtaining a model based in-probability unifor First, W, is at most2¢ away from the true matrixy. The-

bound on the confidence set. Moreover, the approach does 1 is formulated with specifie in (11) which comes
require a scan through a range of rank values. In the follgwiny o the statistical model presented in Section II. Witin

we shqw that .in the Frobenius-norm confidence—constrain(apl)’ the Frobenius norm of the estimation erfdr, — ¥)
rank minimization exact rank recovery can be guaranteed. jg O(,/M/n). The second property asserts that under the
hypothesis of the Theorem 1, it is guaranteed that with
probability 1 —§ ¥, has the same rank as the rank of the true
In this part, we introduce Frobenius-norm confidencemknown matrix®¥. In other words, the exact rank of the true
constrained rank recovery and provide the theoretical -guanatrix U can be recovered by solving the CRM optimization
antees for exact rank recovery in topic models. The Klproblem in (10). We now proceed with the proof of Theorem 1.
divergence confidence-constrained rank recovery in (9) F®r this, first we provide a detail framework as follows:
replaced with Frobenius norm confidence-constrained rankDefinition 2: ¥’ is a v-distinct rankr matrix if o (¥’) >
recovery since the theoretical results can be shown for the(¥') > ... > 0. (V') > v > 0,1 (V) = ... = o1 (V) =
Frobenius-norm case while such results are unavailable fgrwhereo; is theit" largest singular value of matri¥’.
the KL-divergence. In other words, ¥’ is ~y-distinct if all of its non zero singular
values are greater than
A. Frobenius-norm confidence-constrained rank minimazati  Définition 3: Matrix ¥ is in the (-neighborhood of matrix
(CRM) Vi |U -V p <. _ o .
For the problem defined in Section 1I-B, we propose the Lemma A;:\.N'p'. L — 0 matrix & satisfies| ¥ — W|lr < e
following confidence-constrained rank minimization: Wheree = ¢" is given by (11).

IV. EXACT RANK RECOVERY. THEORETICAL GUARANTEES

- Proof: See Appendix B. [ ]
(CRM): minimize  RankV) Lemma 4 guarantees that wlp--4 the confidence-constrained
subject to || U — ¥z < €(6k), setS(W,e*) = {T' | |¥ — ¥'||r < €} contains the true low-
¥>0 rank matrix 0.
e ’ Lemma 5:Let Q be v-distinct rankr matrix. Then there
=1 (10)  exists no matrix in they-neighborhood of2, with the rank
where To <T. . _ .
Proof: SupposedQ)’ in the y-neighborhood with rank
1 M 3
6(5k)=e*(5k)é\/<M—|—k (1+))’ ro < r, therefore
n 2 n ,
. S [y ol 2
0k = T3+ (11) > min  [|Q—Q|p. 12
e > et 22l (12)

whereng = n for all d. In Appendix B,e* is developed for
the general case where documeénhasn, words. Here for - ' - ST
simplicity, we present the case wherg = n. The parameter © ¢! in the Frobenius norm i§} = UX*V", where 2 =
1 . - UxVT and ¥* = diag(oy,...,0.,,0,...,0). For such(,
k =4/0, - — lis the number of standard deviation away from - ) - 5 - 5
. o 5 1Q-QlE=>_, o7 Thus,y > /> 07> 0.().
the mean, e.g., fat = 3, with probabilityl—1/(1+%) = 0.9, i=rotl e ) t=ro+l i
o By contradiction to the assumption that(2) > ~, there
U — Ul p < €(d3) wheree(ds) = 1/ 2(M +34/2(1+ 2)). exists no such) in y-neighborhood with rank lower than
Note that (10) is free of tuning parameters for the following o _ u
reason. Since the samples are governed by a multinonfi@sed on Lemma 5, thedistinct property of matrixi assures
distribution, an in-probability bound on the estimatiomoer that all the matrices inside the-neighborhood of matrix¥
of the form | ¥ — ¥||x < €(d;) W.p. 1 — & can be obtained. hav_e a rank greater than or equal to rank of mairix Using _
Moreover, since the true low-rank matri¥ satisfies the Definitions 2 and 3 and Lemmas 4 and 5, we proceed with
Frobenius norm inequality constraint w.p— 4, then¥, the the proof of Theorem 1. _ _
solution to (10) is of equal or lower rank to that & While Proof: 1) Using the triangle inequality, we have
this result is straightforward, the following theorem slsow o -
. L Uy — U < ||Ye—W U — Ul p. 13
that in fact the CRM solutionly has the same rank ab. %o le =1%o e+ 1 e (13)
Moreover, theorem provides a bound on the estimation erfdote that the first term on the RHS of (13) is less than
[44]. with probability 1, since ¥ the solution to (10) satisfies the

By Eckart-Young theorem [45] the close§t with rank r
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confidence-constraint. Thudi, € e-neighborhood ofl. The alternative to (10):
second term on the RHS of (13) is a random quantity which ) L ~
can be bounded by with probability 1 — § by Lemma 4. (CNM): minimize |7,

Therefore| Wy — V|| < 2¢ with probability 1 — §. n subject to ||~‘i’ ~U|r <e
Proof: 2) SinceV is in the 2e-neighborhood ofl and v >0,
2¢ < =, then ¥y is also in they-neighborhood of'. Hence, 17§ = 1. (14)

based on Lemma 5 Rafk,) > Rank¥). On the other .
hand, sincel' € e-neighborhood of w.p. 1 — 85, and ¥, We denote the solution to (14) by*. Since the nuclear
is the minimum rank solution matrix ie-neighborhood oft, horm is a convex function, and the set of the inequality and
then Rank¥,) < Rank V). The inequalities can hold only if equality constraints construct a convex set, (14) is a conve
Rank¥,) = Rank¥) = 7. m optimization problem. This formulation targets the prable
Discussion The basic idea of Theorem 1 relies on tw®f exact rank recovery for probability matrices under the
main principles.1) ~-distinct property of matrix® which Sampling process described in Section II-A.
corresponds to the robustnessioto the sampling noise. H
is large, the matrix¥ is robust enough to be rank recoverable V. CONFIDENCE CONSTRAINED NUCLEAR NORM
given a small sampling noise (for illustration see Fig. 2). MINIMIZATION ALGORITHM (CNMA)
The second principle associates with the magnitude of theThe nuclear norm minimization problem can be reformu-
sampling noise which controls the size of the confidenctated as an SDP [19]. Off-the-shelf SDP solvers such as
constrained set. Since the statistics of the sampling neiseSDPT3 and SeDuMi are used to solve this problem. Such
known, it provides the theoretical guarantees for recogerisoftware packages use the interior point method with Newton
the exact rank of the matri. direction which is computationally expensive [24]-[26Thel
oo SDP problem of CNM hasM + L) x (M + L) semidefi-
’ nite constraints andM L + M + 1) equality and inequality
constraints. The computational complexity@$min{M, L})°
and the memory requirement @(min{M, L})*. So while
the reformulation is theoretically appealing, computadio
challenges remain. In the following, we provide an accédsla
> 71 projection gradient algorithm to solve the dual formulatio
of CNM. We start with the dual formulation of CNM and
then solve it with the gradient projection approach [48]. We
Fig. 2. This figure shows two sets) e-neighborhood of matrixy ~Propose an accelerated version of our algorithm using two

(confidence-constrained set) which is defined{@g|[¥ — ¥||r < ¢} and point approximation [49] and a highly economical SVD-based
1) vy-neighborhood of matrixt which is defined a§ ¥’ |||¥ — ¥'||r < ~v}. implementation.

In this figure, matrix¥ is  distinct andy > 2¢;. Thus, the assumptions of

Theorem 1 hold. As a resulfyo will have the same rank as matrik.

A. Dual formulation background

We solve (14) through formulating the dual problem. Gen-
B. Confidence-constrained nuclear norm minimization (CNMyally, the dual formulation of a problem in the form of

In general, rank minimization problems are NP hard [46]. minimize  fo(x)
Various algorithms have been proposed to solve the general Subject to f1(z) <0
rank minimization problem locally (e.g., see [43], [47]). A -
heuristic replacement of the rank minimization with a nacle h(z) =0,

norm minimization is commonly proposed [19], [20]. Thecan be obtained first by constructing the Lagrangian

nuclear norm of a matrix is defined dsX|. = > ;0 £(2, A, )\,) as follows:
where o; > 0 are the singular values of matriX. The

. — () e T F () N (o
nuclear norm is a special class of Schatten norm. The Schatte ~ £(%: A1 A2) = fo(x) + A1 f1(2) + Az h(x),

norm for matrix X is defined as|X|, = (32, 07)7. When where A, > 0 and A, are the Lagrange multipliers for
p = 1,[|X[|, is equal to the nuclear norm, which is the sunhe set of inequality and equality constraints, respelgtive
of the singular values of matrixX. Similar to the use of The Lagrangian incorporates the constraints into the tisgec
l;-regularization for sparsity, nuclear norm regularizatis fynction using the Lagrange multipliers;, and \,. The
used to enforce low-rank in the matrix Setting. To solve tr@cond Step is to minimize the Lagrangiﬁ(m’)\l, )\2) with

rank minimization problem proposed in (10), we propose th@spect to the primal objective variahte Define z* (A1, A2)
widely used approach of replacing the rank minimizatiorhwitgg:

the tractable convex optimization problem of nuclear norm . _
minimization. In Section VI, we provide the evaluation of 2" (A1s A2) :argmjnﬁ(xv)‘h)ﬂ)-
CNM only, due to the prohibitive computation complexity, N . . . )
associated with CRM. In the following, confidence-consteali By replacingz” (A1, A>) in the Lagrangian, we obtain the dual
nuclear norm minimization (CNM) is proposed as a convex g(A1, A2) = L(z" (A1, A2), A1, A2).
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The dual formulation is given by the following optimization maximizing the concave dual function, we proceed with the
convex minimization of the negative duaf(Ai,A,, A3) =

maximize  g(A1, \2) —F(A1, Ay, Ag).

Subjectto Ay > 0.
The dual formulation of the optimization problem has severk- Gradient projection algorithm for CNM

advantages. First, it provides a lower bound for the primal The CNM optimization problem is expressed as follows:
problem. One can show for any feasible poiftin the ;

primal problem,g(\1,\2) < f(Z). If the primal problem minimize F(A1, 25, As)

is convex and the set of inequalities is strictly satisfied fo subjectto A, >0

some point inside the feasibility set, then based on Skter’ As >0, a7
condition the strong duality holds [50]. Hence, the dualjap ~ N . 17 Aavi2
£(Z) — g(A1, \s) provides means of assessing convergenld'€re f(A, 29, A3) = D2 (¥ + & + $HlE —

of the optimization algorithm. Furthermore, the posi;’rvit%”\if”%7 — A1+ %e? We consider the gradient projec-

constraint in the dual formulation can be handled usingt@n method to solve (17). The gradient projection method
simple projection onto the positive orthant. Note that ie thfor minimizing a continuous convex function over a closed
primal formulation the projection onto the set of equalihda convex set was proposed in [52]. The modified backtracking

inequality constraints could be more complex.

B. Dual formulation of CNM

We follow the steps explained in Section V-A. First, we
construct the Lagrangian of (14) to obtain the dual formatat
[51]. The LagrangiarC(¥, A1, A, A3) for problem in (14) can

be written as
- - Moo= o
LV, A1, Ag, Ag) = 9]+ (1 — Ulf% —€) +
A5 (1= 971) —tr(AT W), (15)

where A\; € R, A, € RM*! and A5 € RADXM ¢

U*(A1, Ay, A3). We start by rewriting (15) as follows:

- - A~
L0, A1, 29, Ag) = [[¥]]. + ([ @ = ¥

+C(A1, Ay, A3), (16)
2%4

whered’ = W+ =
1

%’ andc(/\hAQ,Ag) = _%H\IJ/HQF_'_

A[|¥[1% + A3 1 — 3% The solution to the minimization of

(16) w.rt. U is

\Ij*()\17A27 A3) = D% (\Ij/)7

1

approach for the gradient projection method was defined in
[48]. Application of the gradient projection method to our
problem consists of the following iterations:

AT = M =tV (A, A9, As)]
A5 = A =PV (A, A, As)
ASTL = [N =5V (A, Mg, As)]
where [z]; = z for = > 0, and otherwise is zero,

V fx, (A1, X2, Ag) is the gradient with respect ty;, A,, As,
and t* is the step size. Note that since the positivity Jaf
and A; can be enforced coordinatewise, the projection is
trivial. The gradient off(g) with respect to\1, A,, and Az is

we minimize £(¥, A1, Ay, As) with respect to¥, we obtain respectively,

- 1 1
Vin (s 29, A3) = S ID L (W)]F + XHDﬁ(‘I’/)H*

1 -
— 302+ 80)TD () = SN +
V(M Az, Ag) = D (W) -1,

Vias A1y Ay, Ag) = Dﬁ(‘l’/)

The derivative of f with respect to \; is given by

&(%HDﬁ(\II’)H%) — LWz + <. The derivation of the

whereD, (X) is the soft thresholding operator on the singulderm rfl(%HDﬁ(‘I")H%) which leads to the explicit expres-

value of matrixX (for proof see [24]) defined by, (X) =
US —7I), VT, whereX = USVT is the SVD of X. To

obtain the dual, we substitut&* (A1, \,, As) back into (16),

simplify and obtain

A Al s
FOw A0, 88) = = ZHID L (W)F + FIT[5 + A3

Thus the dual formulation of the CNM problem in (14) is

maximize  f(A1, Ay, Az)
subjectto A\; >0
A3 Z Oa

where \; € R, A\, € RM™*1 and A3 € RE*M. Note

that the positivity for matrixAs is elementwise. Rather than

sion of VfAl()\l,AQ,Ag) is provided in Appendix A. Upon
convergence of the Lagrange multipligps , A,, As], one can
compute the primal objective parameters using- D% (T +

T
%f + ﬁ—f). In the following, we first show how to choose

the step size for the gradient method using the backtracking
approach. Then, we provide the accelerated gradient piajec
method.

1) Step size:To choose the step sizé&, we use the back-
tracking approach for gradient projection [48]. The baakikr
ing line search for gradient projection requires the snstlle
nonnegative integei,;, such that

7 (A’f(t’“>,A’;<t‘“>,A’;<t’“>)< FOME Ak A)

- (vﬁlm’f LV AN (VT AA§>>,
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where ANF = X — \E(tF), ANE = A5 — \5(#%), AAE = proposed acceleration improves the convergence iy k)

AE — AE(tF), tk =m0, 4 € (0,0.5), t° > 0, andn € (0,1). to O(1/k?), we present a plot of the duality gap vs. the number
The proposed backtracking approach in (18) finds a step sifeiterations for the original CNMA and accelerated CNMA
t* which reduces the objective function sufficiently. Howevein Fig. 3. The evaluation of the SVD in each iteration is
to avoid making a small step in each iteration, we start with

a large enough step siz€ which satisfies the following 10°

condition: -- Accelerated CNMA
---CNMA

i (A’f(t°>,x’5<t°>,A§<t°>)> FOME, A% %)

—y (vﬁl AN} + VI AN +tr(V f{gAA’g)) .

Duality gap

Algorithm 2 Accelerated CNMA for exact rank recovery ool
ChooseXd = Al > 0,A) = \; = 0,A3 = AL =0, a0 =

ar=1,7€(0,1), 7€ (0,0.5), p>1,1 >0, K, v 0 1000 2000 3000 4000 5000
for k=1to K do i, No. of iteration
M= M+ SE= =), A = A3+ 25— - @
k=1y Ak _ Ak 4 @k—1—1 pk k—1 ;
A7), A __Aqé’) + fcai (A3 - As ){Acceleratior} Fig. 3. Comparison of duality gap fdd = 50, L = 80, T = 10, n = 1000,
Uk = § 4+ 1%\% + [/—t—}é a = 0.1, and3 = 0.01 for CNMA vs. accelerated CNMA
1 1
G{Jﬁ’ vT) = SVd(\Ij:“) . _ expensive and i©)(min{M, L}®). As in [24]-[26], we use
UEH =U(S = 1/A1)4+ V" {Soft thresholding the PROPACK package to compute a partial SVD. Because
while f )\’f(to)7g’§(t0)7A’§(t°) < f(X'f,XS, AE) — PROPACK can not automatically calculate the singular &lue
which are greater than specific valugwe use the following
~y folAj\]f + foT Ag’; + tr(VfggA/_&’g) do proceQure. To facilitate the computation of singular vafue
0 L o at a time, we seby = 5 and updaté,;; for  =0,1,... as
t? = p"+ty {line search (wolf condition}) follows:
end while Rank i) if Rank(#4+1) < b
while f{ Xb(£9), AE(£0), AB(#%) ) > Ok, AN AK) — - anx TRank® ) <%
f( 1( ),72( )7 3( ) f( IRFAVE 3) bl+1 RanK\Pk+1)+5 i Rank(\Ilk“) Zbk
W(VfAIAS\'f + VfngX; + tr(foaAA’g)) do This procedure stops wheén,, = b;. Partial SVD calculation

reduces the cost of the computation significantly, espgdial

tF = nm*¢9 {line search (backtracking conditi _ ; .
! { ( g an) the low-rank setting. The pseudo code for calculating SVD is

end while . i
NP = [N = 9O, AT = 35 - 9V (), " Algonm S
k+1 _ (xk _ 1k A/ A o o =
AsT =[5 VS (As )]y Algorithm 3 SVD calculation using PROPACK

ar+1 = (1 +/4a? +1)/2, andt® = t*. {updating the

dual variable$ Chooserg = 0, andi =5

if Duality-Gap< v then ;)n itepl )
break rép—e;f_1 +
end if - N
end for [USV]y, = SVD(¥'%)
by=0b+1

until s§ _, < ¢

2) Acceleration: The general convergence rate for gradient _ 1
7 = max{j : 57 > ﬁ}

approach is(?(%), wherek is the iteration number. In [49],
it is proved that the extrapolation step makes the convesgen W' = 377" (sk — Jo)ubok
faster as much a®(7;). We define the extrapolated solution -
A\F as follows:

Eed

M= AF + ak%}gl(xf - A, VI. EXPERIMENTAL RESULTS
<k ko Ok—1—1, 1 b1 We evaluate both theoretical and computational aspects of
A =2+ ag (A2 =22 ), the confidence-constrained rank minimization problem. For
I 1 AE Ak the theoretical part, we provide the followings): Sensitivity
3= A3+ ar (A5 —A37) analysis of rank recovery accuracy as a functiors,cind 2)
e Phase diagram analysis applied t_o a synthetic da_ltaset vm sho
where a;, = —Y="~—. For the pseudo code for thethat the exact rank recovery obtained by CNMA is consistent

proposed CNMA see Algorithm 2. To illustrate that thevith the sufficient conditions proposed by Theorem 1. For the
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computational part, we provide a runtime comparison betwean increase in variation from the true rankeat ¢* (11). This
CNMA and HDP and show the applicability of CNM for largesuggests that including the probability constraints caprove
datasets. For HDP, we use an efficient implementation of ttiee rank recovery accuracy.

algorithm in Matlab® provided by the authors of [9]. Note

that in all of our experiments, we fixed the confidence value 25 ‘ ‘ ‘ ‘

1 — 6, = 0.9 and consequently sét= 3.
—— True rank

20r

A. Sensitivity with respect to

We would like to illustrate the effect of on rank recovery.
Theorem 1 suggests that by selecting= ¢* (11), rank
minimization guarantees exact rank recovery with prolitgbil
1 — 4. To examine the effect of varying on rank recovery
accuracy, we consider the following setup. We consider gaan
of values fore = [e*/16,¢"/8,¢"/4,€"/2,€",2¢*, 4e*, 8€¢* 3
,16¢*]. The value ofe* based on (11) is equal t0.2550.
We generate matrix@ with M = 50, L = 50, T" = 10, T S 2" de* Be* 16¢*
a = 0.1, and 8 = 0.01 following the model in Section II-A o
and sampleil 10 times. For each value of we solve CNM (@
in (14) for each of the ten realization df using CVX and
CNMA and evaluate the rank of the recovered maix. 25 == - CNMA (200 terations)
The rank evaluation is done by counting the number of singula o+ CNMA (500 iteration)
value of matrix¥* exceeding a threshold to avoid miscounting 200 1 .7 CriA (1000 fterationsy
due to numerical errors. The threshold is defined based on T — True rank
the empirical distribution of the smallest nonzero singula
values of the true matri@ (i.e., mean minus three times
the standard deviation). We compute meaf and standard
deviation ¢) of the recovered rank for matri% and plot the
error bar ([mean-std, mean+std]) for balvX and CNMA. N
Rank estimates as a function effor CVX and for CNMA \
are shown in Figures 4(a) and 4(b), respectively. Figura3 4( }E
and 4(b) support Theorem 1 by indicating that the choice TC e &+ 96t de” 8¢ 16¢
of ¢ = ¢* (11) leads to exact rank recovery, since for only €
e = ¢* the exact rank is recovered fao out of 10 leading (b)
top =10 ando = 0. In _Other words, as we deviate fromFig. 4. This figure shows the sensitivity of rank recoveryhe value ofe.
€ the true rank of matrix¥ can no longer be recovered.we scan through a range of valuescénd plot the mean of the recovered
We provide the following explanation. When we increase rank including the confidence intervals for (a) CVX and (b) @A
the confidence-constrained set may include low-rank mesric
which are not in they-neighborhood of matrixy. Hence, rank
minimization inside the confidence-constrained set mag leg  pnhase diagram analysis
to a recovery of a low-rank matrix. On the other hand, as we . . .
decrease the confidence-constrained set may not include theWe use the ”0“9.” of phase diagram as propqsed in [53]
true matrix U. Therefore, the rank of the recovered matri>%0 evalu_ate probability of _exact ran!< recovery using CNMA
& may be higher than the rank of matri. By comparing or a wide range of matrices of different dlmen5|o_ns (i.e.,
Figures 4(a) and 4(b), we can see that the performanceV81‘:"’lbul"Jlry size terms number.of (.jocuments_) .and d|ﬁergnt
CNMA is comparable to that o€VX. To assess the effect Ofnumber of topics and compare it with thg sufficient condgion
the number of CNMA iterations on accuracy, we terminate trPé"p‘.’?ed by Theofem 1. We would like to ShO\.N that the
algorithm after200, 500, and 1000 iterations and present theCondltlon propo_se_d n The_:orem 1tor raf"‘ FECOVETY 1S St'“d/".’l .
rank recovery results in Figures 4(b). Comparing the grapW en_rank minimization is re'p‘laced \_Nlth_ nuclear norm mini-
in Fig. 4(b), we observe that with an increased number H}'Zat'pn' we gener-aty — .50 z.z.dreghzatlons of using the
iterations the results approach that@fX. Moreover, CNMA sampling process in Section II-A with! = 500, n = 1000,

with a smaller number of iterations correctly recovers dakr o= 0'2}165 :.0.001,dove'r ? grl?hOf'(€7TQD\6VITO(i] rangcljnTg
ate = €*. This hints at the potential reduction in computationzir1r0ug equispaced points in the interyabo, | an

complexity that CNMA can provide by reducing the numberramg_ing througr4 e_quis_paceo! points in the intervl, 120]. .
n Fig. 5(a), each pixel intensity corresponds to the erogiri

of iterations. For the relaxed CNMA graph in Fig. 4(b), we ; , N (i) h
removed the positivity and sum to one constraints to ashess §Stimate ofP(ar > 2e), i.e., >, I(og" > 2¢)/N, where

importance of the probability matrix constraints. We obser 77 is the smallest non-zero singular value. To evaluate cbrrec
rank recovery probability, for each pixel in phase diagrasn w

Ihttp://www.gatsby.ucl.ac.uk/ ywteh/research/softwtatrel produce20 realization of the pai(W, \il) We run CNMA for

15¢

10

Recovered rank

|m

=
o

15¢

N

Recovered rank

[un
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each of the20 realizations ofl' and compared the rank of thethe value of hyperparameters, the wider area for exact rank
recovered matrixl* with the true rank of matrixt. The rank recovery can be covered by CNMA in phase diagram. The
of matrix U* is computed following the procedure describechiddle and left hand side graphs show the singular valuescre
in Section VI-A. In Fig. 5(a), the white area correspondplot of matrix ¥ for the point indicated by darker and lighter
to success regién(the region where the rank recovery igointer on the phase diagram, respectively. The scree plots
guaranteed with high probability based on Theorem 1). Ihustrate the fact that as we decreasand, ¥ becomes more

Fig. 5.

2
4
6
8
10

0

. .
0 .
0 .

12 0
1000 ZOI?O 3000 4000

@

1000 20LOO 3000 4000 0

(b)

(@) P (o > 2¢) for M = 1000, n = 1000, « = 0.01, and

B8 = 0.001 (b) P (exact rank recovejyobtained by CNMA.

distinct, i.e., the gap between the smallest non zero simgul
value and the following one is more distinguished. Hene, it
rank is easier to recover. Moreover, by comparing the scree
plots in the middle and left hand columns, it is clear that whe
the exact rank cannot be recovered by CNMA, the gap in the
singular values of matrix cannot be found easily. We would
like to emphasize that although the scree plot can be use to
study the rank of a matrix, it does not provide a complete
solution to the problem, i.e., it fails to suggest an adrhissi
estimate for¥. Without probability constraints, an SVD can
be use to obtain a low-rank estimate fér However, in the
presence of probability constraint the problem is NP-h48].[

C. Computational complexity comparison

We compare the CPU runtime of CNMA with HDP. We
consider(M, L) = [(80,60) (100,90) (150,120) (200, 150)
(300, 200) (600,500)]. We compute the CPU runtime using
a MATLAB built in function {cputime}. CNMA and HDP
algorithm run on a standard desktop computer With GHz
CPU (dual core) and GB of memory. Figure 7(a) shows the
CPU runtime comparison for CNMA vs. HDP. In Fig. 7(a), the
x-axis shows the dimension of the matiix M and they-axis
shows the elapsed CPU time in seconds. Figure 7(a) shows that
the runtime of HDP is longer than that of CNMA by at least
an order of magnitude. Note that we compared the runtime
of CVX (using SDPT3 as an SDP solver) with that of CNMA
and observed that the runtime of CVX is longer than that of
CNMA by over two orders of magnitude. This suggests that
CNMA, i.e., our proposed algorithmic implementing of CNM,
provides a fast and feasible solution to practical size lprob

Fig. 5(b), the white area corresponds to exact rank recovelyy giminishes the computational limitations associatétt w
obtained by CNMA. Since the area for exact rank recovea/eneriC solvers

probability obtained by CNMA covers the success region, the
sufficient condition proposed by Theorem 1 appear to hold
for the heuristic replacement of nuclear norm minimization
Comparing Figures 5(a), and 5(b) suggests that the sufficien
condition for exact rank recovery proposed in Theorem 1
can be further improved. This could be attributed to the fact
that the proposed sufficient conditions for exact rank recpv
involve several bounds.

The LDA model in Section Il depends on two hyperparame-
tersa and 5. Whena is small the effective number of topics
per document is small. Similarly, whehis small the effective
number of words per topic is small. Intuitively, with small
and S the model is simpler (i.e., fewer topics and fewer words
per topic). We are interested in evaluating the impact aind
(8 on the rank recovery rate. In Fig. 6, the left hand column

shows the phase diagram for exact rank recovery obtained

by CNMA for different values ofx, and 5. As we decrease

2This notation is used in [53]

Fig. 7.

v CNMA, No. topics = 10

HDP, No. topics=10
10° —e— CNMA, No. topics = 20|
—o—HDP, No. topics=20

CPU elapsed time

Runtime comparison between CNMA and HDP.
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Fig. 6. This figure shows the effect of the value of the hyperpeetersx and3 on rank recovery rate. The first column is the phase diagrai @fr > 2¢)

as a function of the number of topics and the vocabulary siaehEow corresponds to a different setup of the hyperparasmetands. () a=1,8=1

(d) « = 0.5, and3 = 0.1 (g) « = 0.1, and 3 = 0.01. The second column is the plot of the singular values for tiigngeindicated by black arrows. The
last column is the plot of the singular values indicated bytevlairrows. Note that the black arrow in the phase diagranmespands to the success region
proposed by Theorem 1 and the white arrow corresponds tcatheegjion.

VII. APPLICATIONS sky’, 'bike, building’, 'sign’, 'water, boat’, 'aeroplanegrass,
As the previous section suggests, the proposégé ' d.:ff)ad’ t)wlldlng reéultlrrfogoa} datasgt tWImt4 0 lmt;%egs
computationally-efficient algorithmic implementation offl © dilferent classes. L.ore image dataset con

CNM can be used to solve problem of realistic dimension@."’lg%S '?1? dlfferfabnt_lgl_asst,as,beach ,'n,(]fIIUdéQO, |r'n'Tlgehs. VtVe
In this section, we would like to illustrate that the low-kan CONSIJ€r? CIaSSES-bulldings’, 'BUSES', Towers,, ‘elephants,

solution obtained by CNMA provides competitive resultéhorses” food” and ’mountamsin our.S|mt_JIat|on. Ngte that
to that of LDA, HDP, and the optimal low-rank SVD "€ excluded the classes which contained images with differe

approximation of matrixi in terms of classification accuracyformat (_)f RGE rlepresent.ls;pon;éov_\/e rand_or;lyl sampleéd
on two real image datasets and three real text datasets. Images in each class resulling Images In7 classes.

To obtain matrix¥, we take the approach of representing
A. Image datasets each image as a collection of blocks and mapping each block

We consider two image datasets MSR&wehd Corel100h to a discrete index associated with the closest dictionary
MSRCV2 image dataset contaii®1 images in23 object €MPlate. We separate each image to sevégak 10 x 3

classes. We perform a multiclass classification for MSRC\OCKS. To construct the dictionary, we runmeans on the
using the8 row classes’book’, ‘grass, cow’, ‘tree, grass collection of blocks from all images to obtaid cluster
’ ' ' ’ " centroids. The. centroids are used as the dictionary templates

3nttp://research.microsoft.com/en-us/projects/objastrecognition/default. @R d €ach block is mapped to the index of the Closes_t diCl}'Ohar
“http://wang.ist.psu.edu/docs/related/ template. We run CNMA, LDA, and HDP to obtain matrix
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Ut nvaras Vi pa, andUs o, respectively. To find the optimal Bayes on LDA in [55] is69%, which is 5% percent below
low-rank approximation ofl’, we project the columns of the results obtained by CNMA. We have to emphasize that
¥ into its top d-largest left singular vectors whewé scans since CNM is an unsupervised approach for dimension re-
through the dimension of matri%. We use multi class SVM duction, its classification accuracy can be further impdove
with Gaussian kernel for classification [54]. Parametérand by introducing class label information to CNM. We also
~ of SVM model are learned b¥-fold cross validation where ran similar simulations using the SIFT representation &f th
k=5. features proposed by [56] instead of blocks. The sparsity of
matrix ¥ obtained by SIFT representation is lower than the
T sparsity of obtained using a block representation. The theory
JEISELE ITTI1IIT11 ] we present in this paper and the numerical evaluations in
g i £ { Section VI-B suggest that when and § are large (lower
sparsity), the rank recovery success region is diminishbis
is consistent with the decrease in performance we observed.
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In Flgures 8 and 9, the classification accuracies obtained 2 50 100 150 200
by running SVM on¥¢ a5 Vi pas and ¥, 5 p as well as No.of dimensions
on different low-rank SVD-based approximations of matrix (b)

¥ are shown. The classification accuracy provided by matrix
\j,éNMA is Competitive with that of the others. Since CNMAFig- 9. Multiclass classification accuracy for Corel100€adat with number
and HDP determine the number of topics in an automatgfdCIUSterS (2200 (b) 500.
fashion, the accuracy for each was computed without the
need to scan through the different number of topics. TI«E§

. : . . Text datasets
number of dimensions is only relevant for the LDA and SVD o
approaches, in which the number of topics is an additional Ve evaluate the_classmcatlon accuracy of the proposed
input to the algorithm. In both Figures 8 and 9, the verticzQNM'g‘ approach with HDP, LDA and SVD approaches on
line shows the rank of the recovered matix. We observe 1012, Rleuteré, and 20NewsgroJ_pdataset.s. The TDT?2 cor-
that the classification accuracy for the SVD based dimensiBHS consists of data collected during the first half of 1998 an
reduced¥ remains stable for ranks greater than Ranjy( t@ken from & sources including 2 newswires (APW, NYT), 2
This suggests that the number of rank proposed by CNMA c&#flio programs (VOA, PRI), and 2 television programs (CNN,
be considered for dimension reduction of matiixMoreover, ABC), total 11201 documents in 96 different categories. The

(ILIEVNMA perUCQS Competitive performance results to that gp NeWSgl’OUpS dataset is a collection of approximately(m),o

* *
Uipa andVy pp. Shttp://www.nist.gov/speech/tests/tdt/tdt98/indemht
In [55], supervised LDA was run on MSRCv2 dataset. The sp:/www.daviddlewis.com/resources/testcollectiomsters21578/

highest classification accuracy obtained by running Viarat http://people.csail. mit.edu/jrennie/20Newsgroups/
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newsgroup documents, partitioned (nearly) evenly acr@ss 2 10 : . :
different newsgroups. Reuters-21578 corpus contains 2157 :
documents in 135 categories. We use here the ModApte ver- o5/ gﬁﬁ
sion of the Reuters dataset. Documents with multiple cayego '
labels are discarded leaving 8293 documents in 65 categorie , ]
In our experiments we removed documents with low number
of words. Table Il shows the summary of each dataset that
we use in our analysis. We compare CNMA with HDP, LDA,
TABLE II 80
TEXT DATASET SUMMARY

TDT2 | 20Newsgroup| Reuters 75 y L .

No. of docurr_lents 3807 | 4342 3228 0 50 No.of c}i(r)r?ensions 150 200
Vocabulary size 4350 4612 3071

No. of category 30 20 10 (@

Minimum no. of words per| 180 150 50
document f4)

90

Accuracy %

I
1

I

1

I

I

1

85 ]
1

I

1

I

1

I

1

and low-rank SVD approximation of matrik. We use multi-
class liblinear SVM, which is well suited for document
classification. We usé-fold cross validation to optimize the
parameterC' of the SVM algorithm. Figure 10 shows the
results of classification for different datasets. We ordittiee
legend of Fig. 10(a) and Fig. 10(b) which are identical to the
legend of Fig. 10(c). By comparing the results in Fig. 10, we
observe that the performance of CNMA is competitive with

Accuracy %

HDP, LDA, and SVD. Moreover, the number of topics found 49 50 100 150 200
by both CNMA and HDP algorithms is quite similar. This No.of dimensions
suggests that the dimension of the latent space discovgred b (b)

HDP can be recovered by CNMA as well.
101

VIIl. CONCLUSION

In this paper, we provided the framework of confidence-
constrained rank minimization to recover the true number of
topics (rank of the term-by-document matrix) in topic madel
and defined the problem as a parameter free convex opti-
mization. We proposed the conditions under which the exact
rank of the probability matrixl can be recovered . Moreover,
we showed that the reconstruction errolé,/M /n), where
M /n is the ratio of the number of document to the number 80F
of words per document. We devised a fast and accurate
algorithms to solve CNM which enhances the applicability 75 ‘ ‘ ‘
0 50 100 150 200
of CNM for a large real datasets. No.of dimensions

As future research direction, one can consider the follgwin ©
The rank minimization problem was replaced heuristically
with the nuclear norm minimization. Obtaining the condigo Fig. 10. Classification accuracy for (a) TDT2, b) 20Newsgroand (c)
for which both rank and nuclear norm provide the sanféuters
results can be considered. Our approach is an unsupervised
technique in dimension reduction. Developing a new model 1 2 T /
which accounts for the useful discriminative informatiam i _)\Ttr((u? +As) Dﬁ(\p ) (18)
the dataset is another future research direction.

951

90r

—

Vipa

Accuracy %

85¢

——Uypp
—s—Uconma
Rank(¥cnara)

- —Rmzk(\ilH,]P)

Proof:
APPENDIXA Using the product rule, the derivative égHDﬁ(\I”)H%
DERIVATIVE OF 34(|D 1 (¥')||3, WITH RESPECT TOM, with respect to\; can be expressed as:
1
The derivative of3-(|D_. (9")[|3. with respect to, is DL (W) o A D (W)
' —— =5 D (W)F + - (19)
dﬂ D U')|2 dA\q 2 A1 2 dAy
21D (W)E g 1 )
oy aPEWIE TIPS sincen (1) = U(S— £1), V7, we havel Dy ()]} =

8http://www.csie.ntu.edu.tw/cjlin/liblinear/ tr (DL(‘II’)TDﬁ(\I/’D =tr ((S -1 )i). Therefore, the

A1
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second term on the RHS of (19) is We compute the second term on the RHS of (24) as follows:
Ao d 2\ Aod 1 5 1 Qe 2 T 9
(10 ) = 3 gt (- 312 ) Bl( 3t wa) |B[( 23t = )
L i=1 =1
= Agtr M(s _ i])Jr _ V(= %a)  Pia(l — Yia)
dM\; A g Nnd
ds 1 1 . .
=Mtr [ (S — —1)y |+ —tr{ (S — 71) For the first term on the RHS of (24), we have:
d)\l /\1 /\1 >\1
ds 1 1 2
= \tr ——I — || D (¥]],. 20 — i — — im — U =
(s 30 ) + s @l @ B (0> n wu)(mggg Vi) |
. / 1
Since tr(j—i(s - %11)+) = ((%)Tpﬁ(qﬂ)) - <Z D IPIN Klu - \Ifzd) (Ijl - ‘Ifm>
d\7;
[57], we have \tr (j—i(S—%lI)Jr) = —Ailtr((lgg + kRt
A3)"D o (7)) and consequently (Ikm - ‘I’md) (Im - \I’md)D
A 4D (U] 1 . . , To evaluate E[(Iy — U10) (Lji — Uia) (Txm — Uima) (Lo —
95 dh = *)\Ttr((l& +As) Dﬁ(‘l’ ) U,.4)], we consider all the alternatives ofj, k,! as fol-
1 , lows (the enumeration of each alternative is specified in the
+)\*1||Dﬁ(‘1’ M- (21)  pracket):

- . . 1) [ng] i=j=k=t
Substituting (21) into (19), we obtain (18).

(I — 14)° = I (1 — 2034) + U3,

APPENDIX B BEl(Li (1 = 2W39) 4+ U3y) (Lim (1 = 2Wpg) +
PROOF OF PROBABILITY BOUND FOR ESTIMATION ERROR 2 ] = 8 W1 (1 — 230)% + Uy (1 — 203,)
2 2 2 2
To prove the probability bound for the estimation error of Vg + Vi W (1 — 2Wpnq) + V3,00,
rank recovery in CRM, we defined two random quantities . . .
S aQa and @ = YN Qu, where @ = 2 Mnana— D] (=g =k#ti=j=tFki=k=t

£ = k=t 1)
B [(Tn = 01)* (im = ina) (T = Yna)| = 0
1
P (X > B(X) + k\/Var(X)) < (22) 3y (s 1)) it

Zlel(\I/ld — Uy4)2. We use the one-tailed Chebyshev’s in-
equality for random variabl& as following:

To compute the Chebyshev bound, we need to evaluate mean 2 2
and vafiance of randyom quantitQ,. First we start with E {(I“ = Yia) }E [(Ij’” = ¥ma) } -
calculation of the expected value of random variaBle Yia(1 = W1a)  Wima(l = Yna)
Nq Nq
L
E(Qq) = ZE(\i/ld — Uyy)? = Var(lyy) = 4) 2ng(ng—1)] (i=k#j=ti=t#j=k)

L \Ifld 1— W) 1 L 2B (I — Wia) (Ljm — Upna)]” = 2[00m V1a —

Z = nd Z \Ij (23) \I/ld\I/md - \Illdlpmd + \I/ld\Ijmd]Q

=t =t = 2 (G U1q — Vg Una)? = 2(6m T2, (1 — 20,,)
Note that Vaf¥,) = Zali=t1a) +02,02 )

1) Var(Qq): The variance of@Q, can be calculated as

follows (for notational ease we defig; = I(X; = j)): 5) [bna(na — )(ng — 2)] (¢ = j # k # ¢t

and all the combinations of 3 out of) 4

L L ng 2
Var(Qa) =Y Y ( Knld 211-; - \Ifzd) <nld Bl — %10)> (Im — Wna) (I —

IR 2 Yma)] =0
;;”m‘Wmo} [nggh“”ho}x 6) [na(na —1)(na —2)(na —3)] i#j#k#t

1 & ? E[(Liy — Y1q) (L1 — Y1) (Tkm — Yima) Lem —
(S - we) ]) @ b =0
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By adding all the alternatives from one to six and organizinge computed as the sum of variance@f.

them, we get the following expression fotar(Q,):
(Oum U7y (1 = 2W3q) + V3,02 )

5lm‘1’1d (1—2W0)° + Uy (1 — 20y,) U2

2(5zm‘If?d(1 —2U,.4) +

ma)
2 = 2 2 ]. = 3
M63422wm+2%a%@@2%d
= =1 =1

lz:% —QZ\IJ )

The first component on RHS of (25) can be bounded us-
ing Cauchy-Schwartz agy> WLAw05)° < $° 08,57 Wy,
Hence, (3, \Ilfd)2 <>, 3. Thus,

M M 31
_ 2
VaT(Q) - anvar(Qd) < 7 + 5 Z n7d
d=1 d=1
M Mo Mo g
/
Var(Q) =) Var(Qa) <Y o5+ 5
d=1 d=1""d g=17"d

md  Using the one-tailed Chebyshev inequality, we have the fol-
lowing probability bound forQ and Q':

M 1
>
P(QM+k 5 ( 1+3/MZ )HkQ,

1
+22n >_1+k2

M

Z

o=

(25) Alternatively, we say w.pl - Ok Ok = 15z, We haveQ =
Zfi\; Zf:l ng (‘i'ld - ‘I’ld) < €2(d1,), where
M
M 1
2 _ %2 o M 1
e0k)=€¢"(0r) =M+k 5 <1+3/Md§_1nd),

2
andQ' = 224:1 ZZL:1 (\i’ld - ‘I’ld> < 6/2(5k)v where

L L
2 M
> - ZW2+Qﬁm) 250y o !
= €7 (0p) = €* (o) =
(l 1 1=1 1=1 (3%) (3%) dZ:l Nng Z:2 2 and
L
2
=2 (Z v - (v > REFERENCES
=1 =1
9 9 1 [1] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Suppoecter
=S(t—t ) 7(1/4 (t — 1/2) ) < machines for multiple-instance learning,” Rroceedings of Conference
?l 3 2 on Advances in Neural Information Processing Syst&83, pp. 561—

2]
wheret = 5"/ | U2, For the second component term on RHS
of (25) since}", ¥}, < >, U, we have

3
1 L L L ]
SO SR SUTIEEED D7) ER
d =1 =1 =1
6 L L
—~ (Z Vi - () %)2) 5]
d Nj=1 =1
, 3 (6]
- < —.
(/4= (=127 < 5 o
The mean of@ and @’ can be bounded as follows 8]
M M L [9]
BE(Q) = anE(Qd) —M—ZZ\IJ <M
d=1 d=11=1
M Mo M L Mo [10]
E(Q') = ZE(Qd) = an —ZZ‘Pzzd < Z;v
d=1 d=1"% 4=11=1 da=1"% 1y
. [12]
since — Zd 12 1\1/ < 0. Note thatQy, d = 1,.... M

arei.:.d. random variables, thus the variance@fnd@’ can

568.

Z.J. Zha, X.S. Hua, T. Mei, J. Wang, G.J. Qi, and Z. Wan@jrid multi-
label multi-instance learning for image classification,” Rmoceedings
of IEEE International Conference on Computer Vision andtéiat
Recognition 2008, pp. 1-8.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauset,R. Harsh-
man, “Indexing by latent semantic analysigdurnal of the American
society for information scienceol. 41, no. 6, pp. 391-407, 1990.

T. Hofmann, “Probabilistic latent semantic indexing,” Rroceedings
of the 22nd International Conference on Research and Dpustnt in
Information Retrieval ACM, 1999, pp. 50-57.

D.M. Blei, AY. Ng, and M.I. Jordan, “Latent Dirichlet Adcation,”
Journal of Machine Learning Researciol. 3, pp. 993-1022, 2003.
D.M. Blei, “Introduction to probabilistic topic modefs Available from
http://www.cs.princeton.edu/ blei/paper@011.

M. Welling, C. Chemudugunta, and N. Sutter, “Determimiskatent
variable models and their pitfalls,” ifProceedings of International
Conference on Data Mining2008.

L. AlSumait, D. Barbaa, J. Gentle, and C. Domeniconi, “Topic
significance ranking of LDA generative modelsjJournal of Machine
Learning and Knowledge Discovery in Databaspp. 67—-82, 2009.
Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei, “Hierdnical Dirichlet
processes,”Journal of the American Statistical Associatjorol. 101,
no. 476, pp. 1566-1581, 2006.

D.M. Blei, T.L. Griffiths, and M.l. Jordan, “The nestechibese restau-
rant process and Bayesian nonparametric inference of togiarbhies,”
Journal of the ACMvol. 57, no. 2, pp. 7, 2010.

Z. Ghahramani, P. Sollich, and T. L. Griffiths, “Bayesiaonparametric
latent feature models,Bayesian Statistic2007.

A. Asuncion, M. Welling, P. Smyth, and Y.W. Teh, “On smoioitp and
inference for topic models,” ifProceedings of the 25th Conference on
Uncertainty in Artificial Intelligence AUAI Press, 2009, pp. 27-34.



16

(13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32

(33]

[34]

[35]

(36]

[37]

(38]

B. Kanagal and V. Sindhwani, “Rank selection in lowkamatrix
approximations: A study of cross-validation for NMFs,” Rroceedings
of Conference on Advances in Neural Information ProcesSiystems
2010, vol. 1, pp. 10-15.

P. Chen and D. Suter, “Recovering the missing components large
noisy low-rank matrix: Application to SFM,”IEEE Transactions on
Pattern Analysis and Machine Intelligenceol. 26, no. 8, pp. 1051—
1063, 2004.

T.T. Do, Y. Chen, N. Nguyen, L. Gan, and T.D. Tran, “A famtd
efficient heuristic nuclear-norm algorithm for affine ranknimiization,”
in Proceedings of IEEE International Conference on Acousteech
and Signal Processin®2009, pp. 3393-3396, IEEE.

J.H. Manton, R. Mahony, and Y. Hua, “The geometry of wegghlow-
rank approximations,JEEE Transactions on Signal Processjngl. 51,
no. 2, pp. 500-514, 2003.

G. Tang and A. Nehorai, “Lower bounds on the mean-squareor
of low-rank matrix reconstruction,” IEEE Transactions on Signal
Processing, no. 99, pp. 1-1, 2011.

E.J. Candes, X. Li, Y. Ma, and J. Wright, “Robust prindipamponent
analysis,” Journal of ACM vol. 58, no. 1, pp. 1-37, 2009.

M. Fazel, Matrix rank minimization with applications Ph.D. thesis,
Stanford University, 2002.

B. Recht, M. Fazel, and P.A. Parrilo, “Guaranteed mininmmamk
solutions of linear matrix equations via nuclear norm minirticg
2007,” SIAM Reviewvol. 52, pp. 471-501, 2010.

E.J. Cands and B. Recht, “Exact matrix completion via convex48]
optimization,” Foundations of Computational Mathematia®l. 9, no.
6, pp. 717-772, 2009.

B. Recht, W. Xu, and B. Hassibi, “Necessary and sufficeanditions
for success of the nuclear norm heuristic for rank minimizgtioin
Proceedings of 47th IEEE Conference on Decision and CantE#E,
2008, pp. 3065-3070. [50]
K. Konishi and T. Furukawa, “A nuclear norm heuristic papach
to fractionally spaced blind channel equalizatiorSignal Processing
Letters vol. 18, no. 1, pp. 59-62, 2011.

J.F. Cai, E.J. Candes, and Z. Shen, “A singular valuestholding
algorithm for matrix completion,'Journal on Optimizationvol. 20, pp.
615-640, 2008.

K.C. Toh and S. Yun, “An accelerated proximal gradiemgogithm for
nuclear norm regularized linear least squares probleRegific Journal
of Optimization vol. 6, pp. 615-640, 2010.

Y.J. Liu, D. Sun, and K.C. Toh, “An implementable proximabimt
algorithmic framework for nuclear norm minimizationMathematical
Programming pp. 1-38, 2009.

C. Lemaéchal and C. Sagaséibal, “Practical aspects of the Moreau-
Yosida regularization |: theoretical propertiefiRapport de Recherche- [55]
Institut National de Recherche en Informatique et en Aut@ue, 1994.

Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(49]

(51]

(52]

(53]

(54]

multiplier method for exact recovery of corrupted low-rank ricas,” [56]
Mathematical Programming2009.

E.J. Candes and Y. Plan, “Matrix completion with noisBfoceedings

of the IEEE vol. 98, no. 6, pp. 925-936, 2010. [57]

R.H. Keshavan, A. Montanari, and S. Oh, “Matrix completifrom
noisy entries,” Journal of Machine Learning Researckiol. 99, pp.
2057-2078, 2010.

H. Attias, “Inferring parameters and structure of ldteariable models
by variational Bayes,” iflProceedings of 15th Conference on Uncertainty
in Artificial Intelligence 1999, vol. 2.

H. Wallach, D. Mimno, and A. McCallum, “Rethinking LDA: Why
priors matter,” inProceedings of Conference on Advances in Neural
Information Processing Systen009, vol. 22, pp. 1973-1981.

M. Steyvers and T. Griffiths, “Probabilistic topic modeHandbook of
Latent Semantic Analysigp. 1-15, 2007.

N. Srebro, J.D.M. Rennie, and T. Jaakkola, “Maximum-mangiatrix
factorization,” in Proceedings of Conference on Advances in Neur:
Information Processing Systen2005, vol. 17, pp. 1329-1336.

T.K. Pong, P. Tseng, S. Ji, and J. Ye, “Trace norm regadéon:
Reformulations, algorithms, and multi-task learningyibmitted to SIAM
Journal on Optimization2009.

P.E. Gill, W. Murray, and M.H. WrightPractical optimization vol. 1,
Academic press, 1981.

M. Wax and T. Kailath, “Detection of signals by informati theoretic

SUBMITTED TO THE IEEE TRANSACTION ON SIGNAL PROCESSING

Z. Liu and L. Vandenberghe, “Semidefinite programming mdthtor
system realization and identification,” Proceedings of the 48th IEEE
Conference on Decision and ContréEEE, 2009, pp. 4676—4681.

K. Mohan and M. Fazel, “Reweighted nuclear norm minimatwith
application to system identification,” iRroceedings of Conference on
American Contral IEEE, 2010, pp. 2953—-2959.

F.R. Bach, “Consistency of trace norm minimizationJournal of
Machine Learning Researchol. 9, pp. 1019-1048, 2008.

S. Negahban and M.J. Wainwright, “Estimation of (neavdrank
matrices with noise and high-dimensional scalingsubmitted to the
Annals of Statistics2009.

R. Meka, P. Jain, and I.S. Dhillon, “Guaranteed rank mization via
singular value projection,” iProceedings of Conference on Advances
in Neural Information Processing Systen2910.

B. Behmardi and R. Raich, “On provable exact low-rankokesy
in topic models,” inProceedings of IEEE International Workshop on
Statistical Signal Processin@011, pp. 265 —268.

G.W. Stewart, “On the early history of the singular \@ldecomposi-
tion,” SIAM review pp. 551-566, 1993.

R. Meka, P. Jain, C. Caramanis, and |.S. Dhillon, “Rankimigation
via online learning,” ifProceedings of the 25th International Conference
on Machine learningACM, 2008, pp. 656—663.

J.P. Haldar and D. Hernando, “Rank-constrained smhstito linear
matrix equations using powerfactorizatior§ignal Processing Letters
vol. 16, no. 7, pp. 584-587, 2009.

D. Bertsekas, “On the Goldstein-Levitin-Polyak grali projection
method,” IEEE Transactions on Automatic Contralol. 21, no. 2, pp.
174-184, 1976.

Y. Nesterov, “A method of solving a convex programming peob with
convergence rate O (1/k2)Soviet Mathematics Dokladyol. 27, pp.
372-376, 1983.

S.P. Boyd and L. VandenbergheConvex optimization Cambridge
University Press, 2004.

B. Behmardi and R. Raich, “Convex optimization for exautk recovery
in topic models,” inProceedings of IEEE International Workshop on
Machine Learning for Signal Processing011, pp. 1-6.

A.A. Goldstein, “Convex programming in Hilbert spaceAmerican
Mathematics Sociefyol. 70, no. 5, pp. 709-710, 1964.

D.L. Donoho, I. Drori, Y. Tsaig, and J.L. Starck, “Sparsolution
of underdetermined linear equations by stagewise orthdgoathing
pursuit,” Citeseer 2006.

Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A libraryorf
support vector machines,” ACM Transactions on Intelligent Sys-
tems and Technologwol. 2, pp. 1-27, 2011, Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

B. Lakshminarayanan and R. Raich, “Inference in supedilatent
Dirichlet allocation,” inProceedings of IEEE International Workshop
on Machine Learning for Signal ProcessingEE, 2011.

D.G. Lowe, “Object recognition from local scale-iniamt features,”
in Proceedings of the 7th IEEE International Conference on Quter
Vision IEEE, 1999, vol. 2, pp. 1150-1157.

T. Papadopoulo and M. Lourakis, “Estimating the jacobiaf the
singular value decomposition: Theory and applicationsComputer
Vision-ECCV 2000pp. 554-570, 2000.

Behrouz Behmardi (S'10-11) received his B.S. de-
gree in Industrial Engineering from Amir Kabir Uni-
versity of Technology (Tehran Polytechnic), Tehran,
Iran, in 2002. He received his M.S. degree in Indus-
trial Engineering from Khaje Nasir Toosi University
of Technology, Tehran, Iran, in 2005. He received his
M.S. in Industrial Engineering from Oregon State
University in 2008 and is currently pursuing his
Ph.D. in Electrical Engineering at the School of
Electrical Engineering and Computer Science, Ore-
gon State University, Corvallis. Behrouz Behmardi's

research interests are in machine learning and signal miogewith specific

criteria,” IEEE Transactions on Acoustics, Speech and Signal Procedseus on statistical manifold learning and rank recovens hiain interest is

ing, vol. 33, no. 2, pp. 387-392, 1985.
P.O. Perry and P.J. Wolfe,
tracking,” IEEE Journal of Selected Topics in Signal Processird. 4,
no. 3, pp. 504-513, 2010.

in probabilistic latent space discovery with applicatibmsext processing and
“Minimax rank estimation forbspace computer vision.



BEHMARDI AND RAICH: ON CONFIDENCE-CONSTRAINED RANK RECOVERY IN DPIC MODELS

Raviv Raich (S'98-M’'04) received the B.Sc. and
M.Sc. degrees from Tel Aviv University, Tel-Aviv,
Israel, in 1994 and 1998, respectively, and the Ph.D.
degree from Georgia Institute of Technology, At-
lanta, in 2004, all in electrical engineering. Between
1999 and 2000, he was a Researcher with the
Communications Team, Industrial Research, Ltd.,
Wellington, New Zealand. From 2004 to 2007, he
was a Postdoctoral Fellow with the University of
Michigan, Ann Arbor. Since fall 2007, he has been
an Assistant Professor in the School of Electrical
Engineering and Computer Science, Oregon State Unive@ityallis. Raviv
Raichs research interests are in statistical signal pstogsand machine
learning. He has particular interest in applications comiog structure dis-
covery in high dimensions. Raviv Raich serves as an Assoé&iditor for
the IEEE Transactions on Signal Processing. He is a membeedflithine
Learning for Signal Processing (MLSP) Technical Committeehef IEEE
Signal Processing Society.

17



