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a b s t r a c t

Dynamic oscillatory shear tests are common in rheology and have been used to investigate
a wide range of soft matter and complex fluids including polymer melts and solutions, block
copolymers, biological macromolecules, polyelectrolytes, surfactants, suspensions, emul-
sions and beyond. More specifically, small amplitude oscillatory shear (SAOS) tests have
become the canonical method for probing the linear viscoelastic properties of these com-
plex fluids because of the firm theoretical background [1–4] and the ease of implementing
suitable test protocols. However, in most processing operations the deformations can be
large and rapid: it is therefore the nonlinear material properties that control the system
response. A full sample characterization thus requires well-defined nonlinear test proto-
cols. Consequently there has been a recent renewal of interest in exploiting large amplitude
oscillatory shear (LAOS) tests to investigate and quantify the nonlinear viscoelastic behavior
of complex fluids. In terms of the experimental input, both LAOS and SAOS require the user
to select appropriate ranges of strain amplitude (�0) and frequency (ω). However, there is
a distinct difference in the analysis of experimental output, i.e. the material response. At
sufficiently large strain amplitude, the material response will become nonlinear in LAOS
tests and the familiar material functions used to quantify the linear behavior in SAOS tests
are no longer sufficient. For example, the definitions of the linear viscoelastic moduli G′(ω)
and G′′(ω) are based inherently on the assumption that the stress response is purely sinu-
soidal (linear). However, a nonlinear stress response is not a perfect sinusoid and therefore
the viscoelastic moduli are not uniquely defined; other methods are needed for quantifying
the nonlinear material response under LAOS deformation. In the present review article, we
first summarize the typical nonlinear responses observed with complex fluids under LAOS

deformations. We then introduce and critically compare several methods that quantify the
nonlinear oscillatory stress response. We illustrate the utility and sensitivity of these proto-
cols by investigating the nonlinear response of various complex fluids over a wide range of
frequency and amplitude of deformation, and show that LAOS characterization is a rigorous
test for rheological model
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1. Introduction

1.1. Dynamic oscillatory shear test

Dynamic oscillatory shear tests are performed by
subjecting a material to a sinusoidal deformation and mea-
suring the resulting mechanical response as a function
of time. Oscillatory shear tests can be divided into two

applied amplitude (of strain or stress) is increased from
small to large at a fixed frequency, a transition between the
linear and nonlinear regimes can appear. Fig. 1 schemati-
cally illustrates an oscillatory strain-sweep test in which
the frequency is fixed and the applied strain amplitude is
varied. In Fig. 1 the viscoelastic response is quantified by
two material measures, namely the elastic storage mod-
ulus G′(ω) and the viscous loss modulus G′′(ω). In the
regimes. One regime evokes a linear viscoelastic response
(small amplitude oscillatory shear, SAOS) and the other
regime is defined by a measurable nonlinear material
response (large amplitude oscillatory shear, LAOS). As the
linear regime the strain amplitude is sufficiently small that

both viscoelastic moduli are independent of strain ampli-
tude and the oscillatory stress response is sinusoidal. The
strain amplitudes used in linear oscillatory shear tests are
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Fig. 1. Schematic illustration of the strain sweep test at a fixed frequency. This sweep test can be used for determining the linear and nonlinear viscoelastic
region. In the linear region, the storage (G′) and loss (G′′) moduli are independent of the applied strain amplitude at a fixed frequency and the resulting
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tress is a sinusoidal wave. However, in the nonlinear region, the storage
t a fixed frequency and the resulting stress waveforms are distorted fro
small amplitude oscillatory shear), and the application of LAOS (large am

enerally very small, often on the order of �0 ≈ 10−2 to
0−1 for homopolymer melts and polymer solutions. For
ome dispersed systems (emulsions and suspensions) [5]
r blockcopolymer solutions [6] the linear regime is limited
o even smaller strain amplitude, �0 < 10−2. With increas-
ng strain amplitude the nonlinear regime can appear
eyond SAOS. In the nonlinear regime, the storage or

oss moduli are a function of the strain amplitude (G′(�0)
nd G′′(�0)) and the resulting periodic stress waveform
ecomes distorted and deviates from a sinusoidal wave (see
ig. 1). This nonlinear regime becomes apparent at larger
train amplitude, therefore the nonlinear dynamic test is
ypically referred to as large amplitude oscillatory shear
LAOS).

A SAOS test assumes that the material response is in

he linear regime within the accuracy of the rheometer
nd therefore the material functions, e.g. G′ and G′′ fully
escribe the material response. Since linear viscoelasticity

s based on a rigorous theoretical foundation [1–4], SAOS
s moduli become a function of the strain amplitude (G′(�0) and G′′(�0))
oidal waves. In the linear region, the oscillatory shear test is called SAOS
oscillatory shear) results in a nonlinear material response.

tests provide very useful and convenient rheological char-
acterization of complex fluids or soft materials.

Although linear viscoelasticity is useful for understand-
ing the relationship between the microstructure and the
rheological properties of complex fluids, it is important
to bear in mind that the linear viscoelasticity theory is
only valid when the total deformation is quite small [4].
However, in most processing operations the deformation
is both large and rapid (therefore in the nonlinear region)
and consequently linear viscoelastic characterization is
not sufficient to fully understand practical polymer pro-
cessing undergoing nonlinear situations. Moreover, since
linear viscoelastic experiments use small strain amplitude
(SAOS test), this measurement has a limited resolution to
distinguish complex fluids with similar micro- and nano-

structure or molecular structures (e.g. linear or branched
polymer topology). Complex fluids with similar linear
viscoelastic properties may show different nonlinear vis-
coelastic properties. This means that even if rheological
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measurements are only being used for material character-
ization or quality control, the linear viscoelastic properties
may often be insufficient. It can be anticipated that
nonlinear viscoelastic characterization will provide much
more insight for distinguishing such structural differences.
Additionally, the coherence between molecular theories,
continuum-level constitutive equations and experiments
will be improved if nonlinear parameters are matched.
Thus, for several reasons, it is necessary to study the non-
linear viscoelastic responses of complex fluids in depth.
Among other nonlinear rheometric tests, the steady shear
viscosity is often measured as a function of shear rate.
The steady-state viscosity can frequently provide the key
information regarding how fast the material can be pro-
cessed or shaped into a product, and this information is very
helpful in polymer processing operations such as injec-
tion molding. However, when processing at high rates of
deformation for short time the material does not reach
steady state. Steady simple shear rate experiments also
have inherent limitations: little information is provided
about microstructure, information about elastic relaxation
time scales is lost since the measurement is made at
steady state, and several materials cannot be measured
including crosslinked materials like rubber or structurally-
sensitive hydrogen-bonded materials. In contrast, LAOS
tests are useful for a broad class of complex fluids and
soft matter because strain amplitude and frequency can be
varied independently allowing a broad spectrum of con-
ditions to be attained [7]. Furthermore, LAOS does not
involve any sudden imposed jumps in speed or position,
and consequently it is a relatively easy flow to generate and
control [8].

1.2. Historical survey of LAOS

The basic concept of large amplitude oscillatory shear
(LAOS) was introduced a number of years ago. From the
1960s to 1970s, early publications [9–19] investigated non-
linear phenomena for various viscoelastic materials under
oscillatory shear and proposed the methods of Fourier
transform analysis and stress waveform analysis. Techni-
cal problems severely hindered further progress at that
time, specifically hardware and software limitations such
as torque transducer resolution and computational power.
Payne [9] observed strain-amplitude dependence of the
dynamic moduli for a natural rubber filled with carbon
black particles; the nonlinear behavior he reported is
often referred to generically as “dynamic stress softening.”
This effect is called the “Payne effect” or the “Fletcher-
Gent” effect [10]. Harris [11] reported the nonlinear stress
behavior of suspensions of undeformable particles (a clay-
water system) at low and high frequency. Philippoff [12]
investigated the influence of the shear strain amplitude
on the nonlinear behavior of polymer solutions up to
strain amplitude �0 ≈ 7. He was able to detect the growth
of third harmonic contributions, and studied the onset
of nonlinearity in several polymer solutions. MacDonald

et al. [13] studied the dependence of the complex vis-
cosity of four viscoelastic fluids (three polymer solutions
and one polymer melt) for large amplitude oscillatory
motion using a Weissenberg Rheogoniometer. Onogi et al.
cience 36 (2011) 1697–1753

[14] investigated the viscoelastic behavior of carbon-black
filled solutions of polystyrene in diethyl phthalate using
a coaxial cylinder viscometer. They observed nonlinear
oscillatory response signals which included odd harmonics
up to the order of 5. Dodge and Krieger [15] investigated
polystyrene latex and also observed the first five harmon-
ics of shear stress at various frequencies. They concluded
that oscillatory shear measurements show promise for the
investigation of nonlinear fluids. Matsumoto et al. [16]
calculated the fundamental stress components at the exci-
tation frequency, G′

1 and G′′
1, and the corresponding third

harmonic components, G′
3 and G′′

3, for particle suspen-
sions in polystyrene solution (see Eq. (9), Section 3.1 for
variable definitions). They found that the ratios of G′

3/G′
1

and G′′
3/G′′

1, respectively, were of the order of 10% at an
applied shear strain amplitude �0 = 0.26. Komatsu et al.
[17] investigated the nonlinear viscoelastic behavior of two
kinds of semisolid emulsions; one was an oil-in-water type
and the other was water-in-oil type (commercial cosmetic
creams). They compared the stress shape as a function of
time including the analysis of higher Fourier components
as proposed by Onogi et al. [14]. Philippoff [13], Onogi
et al. [14], Dodge and Krieger [15], Matsumoto et al. [16],
and Komatsu et al. [17] used Fourier transform analysis
of stress data. Tee and Dealy [18] investigated the nonlin-
ear viscoelastic properties of three polymer melts (HDPE,
LDPE, and PS). In order to characterize molten thermo-
plastics in a simplified way, they used closed loop plots
(Lissajous curves) of the measured stress vs. strain or stress
vs. strain-rate. They concluded that the stress vs. strain-rate
loops were more distinctive than the stress–strain loops
for these materials. They suggested at the time that only
the first Fourier component can be determined with pre-
cision because of experimental difficulties. Furthermore,
they emphasized that the higher Fourier components have
no direct relationship with traditional material functions
that are commonly measured. Walters and Jones [19] con-
cluded in 1970 that, at that time, harmonic analysis was
not a useful tool in viscoelasticity studies. Precise and accu-
rate experimental equipment was yet to be developed, such
as high fidelity monochromatic sinusoidal excitation, dras-
tically improved torque transducers, “high performance”
ADC cards, and cheap and powerful computers to perform
advanced signal processing techniques such as data over-
sampling. Before such developments, the stress and strain
data were typically detected by a differential transformer
and recorded by a two-pen recorder [16]. Tee and Dealy
[18] obtained the stress vs. strain and stress vs. strain-
rate loops by means of a storage oscilloscope, equipped
with a Polaroid camera. Experiments were limited by the
dynamic range of the torque transducer in the rheometers
commonly used at this time, nonetheless, various analy-
sis methods were already suggested at this early stage,
especially stress shape analysis and Fourier transform anal-
ysis. Pearson and Rocherfort [20] and Helfand and Pearson
[21] calculated nonlinear parameters under LAOS utiliz-
ing the Doi-Edwards model for polymer dynamics. They

investigated the limits of linear viscoelastic behavior of
concentrated polystyrene solutions.

During the 1990s, book chapters by Dealy and Wiss-
brun [4] and Giacomin and Dealy [8] described LAOS test
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ig. 2. (a) Cross-section showing the essential elements of a sliding plate
oving plate (7) shear stress transducer. (b) The schematic sample shap

tress transducer is located at the center of the sample, errors induced by
opyright (1998) of the Society of Rheology.

rotocols and provided rich sources of information on
he LAOS experiments and analysis at the time. Dealy
nd Giacomin [4,7,8,22–27] investigated the LAOS behav-
or of various polymer melts with a unique sliding plate
heometer (SPR, see Fig. 2). Their results under LAOS
ow were investigated via waveform analysis (closed-loop
lots), Fourier transform analysis of the stress response,
nd constitutive equation modeling. In most sliding-plate
heometers, the shear stress is inferred from a total force
easurement and thus may include error due to flow het-

rogeneities at the sample edges. To avoid this problem,
hey invented a shear-stress transducer that could be flush-

ounted in the stationary plate [28] (see Fig. 2). Hence,
he shear stress could be measured locally in a region of
niform deformation, away from the free surface bound-
ries, and they were able to conduct LAOS tests of highly
iscous polymer melts to strain amplitudes �0 > 10. With
uch large imposed deformations, very large nonlineari-
ies could be generated that could be easily detected with
he state-of-the-art software and hardware at that time.
his unique custom setup was used for investigating high
ensity polyethylene (HDPE) [22], polyurethane [23], low
ensity polyethylene (LDPE) and HDPE [24], and linear

ow density polyethylene (LLDPE) [25]. They also studied
all slip of HDPE [23] and determined model parame-

ers for various nonlinear constitutive equations under
AOS, including the Liu, Mewis-Denn, Mewis-De Cleyn,
nd PTT model [26,27], the Wagner integral equation [24],
nd the revised Berkeley kinetic network model [7]. These
ioneering studies directly connecting LAOS experiments
nd simulations were primarily focused on polymer melts
ecause the sliding plate rheometer (SPR) is optimized
or measuring such highly viscous systems. The SPR also
as some disadvantages, as it cannot measure low viscos-

ty systems, e.g. polymer solutions or dispersed systems,

t has a limited signal-to-noise range, and it was never

idely commercially available. Sliding-plate devices con-
inue to be custom-built and used to study complex fluid
heology [29].
eter incorporating an elastic type shear stress transducer: (1) sample (2)
LAOS is shown with flow heterogeneity at the sample edge, because the
ects are avoided. Reproduced by permission of Dealy and Jeyaseelan [28],

Wilhelm et al. [30–33] developed the methodol-
ogy for high sensitivity Fourier transform (FT) rheology
by transferring techniques from NMR spectroscopy to
oscillatory rheometery on commercial rheometers. Their
work is distinguished by the development and use of
extremely sensitive detection methods, especially the
use of “oversampling” with high performance Analog-to-
Digital Converter (ADC) cards, electrical and mechanical
shielding, and a special FT algorithm [30,34]. These con-
tributions lead to an improvement of about 2–3 decades in
the signal/noise ratio compared to former work, with a final
signal to noise ratio S/N ≈ 105. Some of these contributions
are discussed in detail in Section 4.1, “FT-Rheology.” With
these developments, it was possible to obtain high reso-
lution torque signals from commercial rheometers and to
obtain Fourier transform spectra for complex fluids with
very low viscosities. The simple and easy setup using a
commercial rheometer was clearly beneficial for broader
adoption of the technique.

FT-Rheology was used for various complex fluids, such
as polymer melts [35–43], polymer solutions [44,45],
polymer blends [46–48], block copolymers [6,49,50] and
dispersed systems [5,33,46,51]. Leblanc et al. [52–61] sys-
tematically investigated various industrial elastomers and
rubber materials with FT-Rheology, including EPDM rub-
ber(ethylene propylene diene M-class rubber) [52–54],
poly(vinyl chloride) (PVC)/green coconut fiber (GCF)
composites [55], carbon black filled rubber compounds
[53,56–59], natural rubber [60], polybutadiene rubber
(BR) and styrene-butadiene rubber (SBR) [54,57], and
thermoplastic vulcanizates (TPVs). TPVs are blends of
a crystalline thermoplastic polymer (e.g. polypropylene)
and a vulcanizable rubber composition. For these multi-
phase and heterogeneous polymer materials Leblanc [61]
shows that LAOS experiments can be used to elucidate

the structure of industrially important polymer blends.
Such rubbery samples usually display a very high torque
value and can exhibit elastic instability under LAOS flow
due to the polymer network structures. In order to over-
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come these drawbacks, they used the Rubber Process
Analyzer RPA 2000 with a closed cavity geometry, in com-
bination with “high performance” ADC cards [62]. The
normalized intensity of the third harmonic obtained from
FT-Rheology was used to investigate systematically the
effect of filler and long chain branching in these elastomer
materials.

As already noted, the storage modulus (G′) and the
loss modulus (G′′) at large strain lose their precise physi-
cal meaning when stress is no longer perfectly sinusoidal.
However, useful calculations can still be made. Section 4.5
addresses the various options for calculating nonlinear vis-
coelastic moduli and the interpretation associated with
each choice. At present the commonly output moduli from
commercial rheometers are the first-harmonic moduli G′

1
and G′′

1, see Eq. (9), Section 3.1. Ahn et al. [63–65] classified
complex fluids according to the strain-amplitude depen-
dence of the first-harmonic viscoelastic moduli G′(�0) and
G′′(�0) for experiments and simulations. (In this article the
generic notation G′ and G′′ will refer to the first-harmonic
Fourier moduli G′

1 and G′′
1 unless otherwise stated.) Ahn

et al. observed that the LAOS behavior of complex flu-
ids could be classified into four primary categories, but
acknowledged that other types which look like a varia-
tion or combination of these four types may also exist as
indicated by a literature survey [63]. It was also reported
that network theory simulations suggest the existence of
four generic types of LAOS responses [64,65]. The investi-
gation of G′(�0) and G′′(�0) at a fixed frequency under LAOS
is the simplest method to classify complex fluids without
obtaining raw stress data, and is directly available on any
commercial rheometer.

For LAOS tests, however, the stress output is not purely
sinusoidal and the behavior can no longer be fully described
in terms of a storage modulus (G′) and loss modulus (G′′),
due to the presence of higher harmonic contributions (see
Section 3 for more detail). The viscoelastic nonlinearity can
be quantified in a simple way by using the Fourier trans-
form method [33]. Recently, other methods to quantify
nonlinearity under LAOS have also been proposed. Cho et al.
[66] suggested a nonlinear “stress decomposition” (SD)
method. The SD method decomposes the generic nonlinear
stress response into a superposition of “elastic” and “vis-
cous” contributions. The SD method provides a very useful
step toward a physical interpretation of nonlinear stress
response. Klein et al. [5,67] use sets of simplified charac-
teristic functions, specifically sine, rectangular, triangular,
and saw tooth waves to describe the prototypical nonlinear
responses. These selected waveforms may be thought of as
a set of “basis functions” used to represent a superposition
of different physical phenomena; however they are neither
orthogonal (in a mathematical way) nor unique selections.
Ewoldt et al. [68,69] quantified the nonlinear viscoelas-
tic material functions on the basis of the SD method by
using a set of orthogonal Chebyshev polynomials of the first
kind. They also suggested meaningful viscoelastic moduli
in the nonlinear regime, e.g. minimum-strain and large-

strain elastic modulus and minimum-rate and large-rate
dynamic viscosity. With these concepts, they could effi-
ciently and uniquely define strain stiffening/softening and
shear thickening/thinning. One of the goals of this arti-
cience 36 (2011) 1697–1753

cle is to review and compare these different quantitative
methods.

1.3. Scope of the present article

Oscillatory shear tests investigate and quantify vis-
coelastic properties of complex fluids or soft matter. If the
strain amplitude is kept small the results can be discussed
within the framework of linear viscoelasticity, therefore
SAOS (small amplitude oscillatory shear) tests have been
extensively studied both theoretically and experimentally.
However, if the strain amplitude is increased, interesting
nonlinear effects occur. There have already been extensive
articles on specific nonlinear oscillatory shear tests [4,8,33].
Since the latest published review article [33], there has
been much progress on quantitative methods for analyz-
ing and interpreting LAOS tests, and applications of these
methods. However, until now there has been no system-
atic review of the recent developments in the field of
nonlinear oscillatory shear tests. In this article we review
and compare several quantitative methods which have
been proposed for analyzing nonlinear stress responses
to deformation-controlled oscillatory shear. These meth-
ods are given context through the LAOS characterization of
several classes of materials.

Section 2 introduces the experimental methods used
to obtain raw stress data under LAOS loading. Section 3
introduces several generic nonlinear behaviors observed
in various complex fluids under LAOS including the lead-
ing order quantitative description using G′(�0) and G′′(�0),
and the oscillatory waveforms shapes of nonlinear shear
stress and the nonlinear normal stress difference. Section
4 summarizes and compares several quantitative meth-
ods proposed by researchers for analyzing non-sinusoidal
stress waveforms. In Section 5 we introduce several exper-
imental findings under LAOS for various complex fluids,
e.g. polymer melts, solutions, block copolymers, disper-
sions and others. In Section 6 we review experimental
configurations which combine rheometry and morphology
characterization to investigate the influence of LAOS flow
on the structural change of complex fluids. Finally, Section
7 offers concluding remarks and an outlook on the future
use and development of LAOS techniques.

2. Experimental methods and setup

Commercially available strain-controlled rheometers
are typically used for performing LAOS tests. It is most
desirable to obtain raw oscillatory waveforms for proper
analysis (as reviewed in Section 4), which may require
modifications to the factory-purchased instrument setup.
The most common experimental modification is based on
a commercial strain-controlled rheometer with separated
motor and transducer technology, e.g. the RMS 800, ARES,
or ARES-G2 instruments from TA Instruments, in which
raw signals of torque, normal force, and motor displace-
ment are available as analog voltage outputs. In order to

convert these analog signals into digital signals, shielded
BNC-type cables are connected between the instrument
output and an analog-to-digital converter (ADC) card. The
two important points of selecting the ADC card are the
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ig. 3. Experimental setup for common LAOS experiments. The displace
heometer is controlled via a second PC with the standard instrument sof

igital input resolution (dynamic range) and the maxi-
um sampling rate. Typically a 16-bit (input resolution)

nalog-to-digital converter (ADC) card with sampling rates
p to 100–333 kHz for one channel or 50–150 kHz for
wo channels is used. Measurement and on-the-fly boxcar
veraging (oversampling) of the raw signals can increase
he effective dynamic range of the transducer and allow
or lower torques to be detected (see below). The ADC
ard (e.g. National Instruments, Austin, TX, USA) can be
nstalled on a stand-alone PC equipped with home-written
abView software (National Instruments). In this way the
actory-provided rheometer control software is fully inde-
endent. This modified rheometer setup, which provides
igh-resolution raw oscillatory waveform data, is dis-
layed in Fig. 3.

For rheological measurements – and in general for any
pectroscopic technique – there is a clear need for the
ost sensitive detection possible. This can be realized

y developing more sensitive detection devices, shield-
ng spurious signals, or processing and acquiring data with
efined methods. Dusschoten and Wilhelm [34] proposed
hat torque transducer sensitivity could be increased by
sing appropriate data processing techniques. The basic

dea is to acquire the oscillatory shear data at the highest
ossible acquisition rate as allowed by a high performance
DC card, i.e. – the raw data is oversampled. The sam-
ling rate may exceed 50 kHz with this method even for
Hz mechanical excitation. In a second step the raw time
ata is truncated on the fly by means of a so-called boxcar
verage at a fixed time interval, e.g. several hundreds or
housands of raw data points [70] are averaged into a sin-
le time data point. The application of the boxcar average to
he raw time data results in a new “down-sampled” time
omain data set with a strongly reduced number of data
oints and drastically reduced random noise for each new

ata point. Here, the oversampling can be considered as an
djustable low pass filter in the frequency domain. In Fig. 4,
he torque response as a function of time is shown for a data
et together with the applied oversampling number. Over-
train), torque and normal forces are digitized via a stand-alone PC. The

sampling number (No.) means that “No.” data points are
averaged and collapsed into a single oversampled new data
point. As expected, the random noise decreases as the over-
sampling number (No.) increases (Fig. 4), provided that the
oversampling number is not so large as to lose information
from the raw signal (not shown).

3. Fundamental LAOS behavior

In this section we discuss the most basic methods used
for interpreting LAOS tests. We begin with a review of
mathematical descriptions of the LAOS stress responses.
The common outputs from commercial rheometers are
torque (or forces) and displacements. Intrinsic rheo-
logical parameters are then calculated using geometric
parameters and appropriate analysis, e.g. stresses, strains,
compliances, and viscoelastic moduli. For strain-controlled
LAOS tests, the stress response is analyzed in terms of
strain-dependent viscoelastic moduli, which we discuss in
some detail in Sections 3.1 and 3.2. This is followed by visual
analysis of nonlinear oscillatory stress waveforms (specif-
ically the shear stress in Section 3.3 and the first normal
stress difference in Section 3.4). Advanced analysis tech-
niques are left to be reviewed in detail in Section 4.

3.1. Basic mathematical descriptions of LAOS

Applying an oscillatory shear flow, the strain and strain-
rate inputs can be described as follows

�(t) = �0 sin ωt, �̇(t) = ω�0 cos ωt (1)

The stress response to this input deformation can be

analytically represented in various ways. In the dynamic
steady state, the shear stress of viscoelastic materials can be
considered as an instantaneous function of the input strain
and strain-rate. Thus we can expand the shear stress in the
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Fig. 4. The torque as a function of time for Xanthan gum 4% aqueous so
800 that can detect a torque within the range 2–2000 mN m. The torque
reduces the noise while the absolute torque amplitude remains the same

nonlinear regime by a polynomial or Taylor expansion with
respect to the strain and strain-rate:

�(t) =
∑
i=0

∑
j=0

Cij�
i(t)�̇ j(t) (2)

where Cij are mathematical constants for the expansion
of nonlinear stress as a function of strain and strain rate.
The values of Cij are related to material functions in the
linear and nonlinear regime. A similar expansion is used
to describe nonlinear optics [71]. The stress response of
viscoelastic materials is typically independent of the shear
direction, and it is assumed that the sign of the shear stress
changes as the sign of shearing changes, and therefore
the shear stress must be an odd function with respect to
the direction of shearing deformations. Therefore, we can
obtain criteria for the symmetry of the shear stress as fol-
lows (see Appendix A):

�[−�(t), −�̇(t)] = −�[�(t), �̇(t)] (3)

Considering the symmetry criteria of Eq. (3), we can
rewrite Eq. (2) as follows:

�(t) =
∑
i=1

∑
j=1

[C2i−1,2(j−1)�
2i−1(t)�̇2(j−1)(t)

+ C2(i−1),2j−1�2(i−1)(t)�̇2j−1(t)] (4)

Inserting Eq. (1) into Eq. (4) results in the following
expression for the shear stress,

�(t) =
∑
i=1

∑
j=1

�2i+2j−3
0 ω2j−1

[
C2i−1,2(j−1)

ω

2i+2j−3∑
m=1,odd

am sin mωt

]

+C2(i−1),2j−1

2i+2j−3∑
n=1,odd

bn cos nωt (5)

Therefore, we may write the shear stress as a function
of the odd higher-order terms in the nonlinear regime as
t fixed strain amplitude, �0 = 0.03 with strain controlled rheometer RMS
d vertically for ease of comparison. Increasing the oversampling number

follows (see Appendix B for more detail):

�(t) =
∑
p,odd

p∑
q,odd

�q
0 [apq sin qωt + bpq cos qωt] (6)

Expanding this expression explicity gives

�(t) = �0[a11 sin ωt + b11 cos ωt] + �3
0 [a31 sin ωt

+b31 cos ωt + a33 sin 3ωt + b33 cos 3ωt] + O(�5
0 ) + · · ·

a11 = C10|�0→0 = G′(ω),

a31 = 1
2

(C10 + C12ω2),

a33 = 1
4

(−C30 + C12ω2),

a51 = 1
2

C32ω2,

a53 = 1
4

(C14ω4 − C50),

.

.

.

b11 = C01|�0→0 = G′′(ω),

b31 = 1
4

(−C21ω + 3C03ω3),

b33 = 1
4

(−C21ω + C03ω3),

b51 = 1
4

(3C23ω3 − 2C41ω),

b53 = 1
16

(−3C41ω − C23ω3 + 5C05ω5),

.

.

.

(7)

where a11 = G′(ω) and b11 = G′′(ω) in the linear regime. With
the given assumptions, it is seen that the shear stress
waveform contains only odd higher harmonic contribu-
tions for LAOS deformations. Eq. (6) is the same result
as obtained by Pearson and Rochefort [20]. The higher
order terms in Eq. (6) result from the assumption that
shear stress must be an odd function of shear deforma-
tions (Eq. (3)). By contrast, the normal stress differences
do not change sign if the shearing direction changes, but
remain independent of shear direction. This means that
the normal stress differences must be exclusively even
functions of shear deformations (i.e. N1,2[−�(t), −�̇(t)] =
N1,2[�(t), �̇(t)], where N1,2 denotes either the first or sec-
ond normal stress difference). Thus, the normal stress
differences measured under LAOS deformations have only
even higher terms [1,43,72] of the excitation frequency.
The mathematical assumptions above can be violated
for several reasons, first, as a result of inhomogeneous
flow in the measuring geometries, e.g. wall slip [73,74],
elastic instability [75,76], secondary flows in the parallel
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lates [77], or shear banding [78], and second, by imper-
ect (anharmonic) mechanical excitation, back-lash in the
orsional actuator imposing the deformation and so on. It

ight further be possible to generate even terms of shear
tress via microstructural anisotropy. Such non-idealized
ituations may therefore cause the presence of even har-
onic terms in the shear stress or odd harmonic terms in

he normal stress differences, however these features are
enerally of lower intensity. Even harmonic contributions
f shear stress will be reviewed in more detail in Section
.1.4.

Following from Eq. (6), a different notation is also possi-
le for the nonlinear stress, written in terms of amplitude
nd phase [8,33]. The total nonlinear viscoelastic stress can
e expanded as a linear viscoelastic stress characterized
y a stress amplitude and phase shift plus the odd higher
armonic contributions (higher stress amplitude and phase
hift). Consequently, the stress can be represented as:

(t) =
∑

n=1,odd

�n sin(nωt + ın) (8)

here the harmonic magnitude �n(ω, �0) and the phase
ngle ın(ω, �0) depend on both the strain amplitude �0 and
he excitation frequency ω. This Eq. (8) clarifies the start-
ng point of “Fourier transform” rheology (FT-Rheology: see
lso Section 4.1). Note that Eq. (6) and Eq. (8) describe the
ame nonlinear phenomena using different mathematical
escriptions. Giacomin and Dealy [8] referred to Eq. (6) as a
ower series and Eq. (8) as a Fourier series. One can re-write
ach Fourier component from Eq. (8) as components which
re in-phase and out-of-phase with the strain input, and
actoring out strain amplitude (�0) define a set of nonlinear
iscoelastic moduli [8]:

(t) = �0

∑
n,odd

[G′
n(ω, �0) sin(nωt) + G′′

n(ω, �0) cos(nωt)]

(9)

Eq. (6) can be rewritten as

(t) =
∑
n,odd

n∑
m,odd

�n
0 [G′

nm(ω) sin(mωt) + G′′
nm(ω) cos(mωt)]

(10)

hich nicely separates the strain dependence from the fre-
uency dependence, therefore being distinct from Eq. (9).
iacomin and Dealy [8] reported that the terms of this
ower series are not simply related to those of the Fourier
eries. However, either mathematical description can be
sed to argue for a leading order nonlinear coefficient (see
ection 4.1.2). The complex mathematics is one of the rea-
ons why there are many ways to interpret the complex
onlinear response under dynamic oscillatory shear.

.2. G′(�0) and G′′(�0)
As mentioned in the introduction, LAOS tests are typi-
ally applied as a strain amplitude sweep at fixed frequency
see Fig. 1). The storage modulus G′ and the loss modu-
us G′′ are strictly defined only in the linear viscoelastic
ience 36 (2011) 1697–1753 1705

regime, and therefore their values at large strain ampli-
tude may have ambiguous physical meaning. However,
if care is taken, the measurements of G′(�0) and G′′(�0)
at a fixed frequency can provide meaningful information.
Section 4.5 addresses the various options for calculating
nonlinear viscoelastic moduli and the interpretation asso-
ciated with each choice. We re-emphasize here that in this
review the generic notation G′ and G′′ will refer to the first-
harmonic moduli G′

1 and G′′
1 (Eq. (9)) which is the most

common option for calculating viscoelastic moduli from a
non-sinusoidal response and is the typical output of com-
mercial rheometer software.

Before quantifying the non-sinusoidal waveforms of
LAOS stress responses, we first discuss the interpretation
of the amplitude-dependent leading order description of
a nonlinear response, i.e. G′(�0) and G′′(�0). Typical LAOS
studies include the results of G′(�0) and G′′(�0) since this
information can be obtained from commercial rheometers
even when raw oscillatory data is unavailable. The higher
harmonic contributions describing the extent of distortion
away from a linear sinusoidal stress response are nor-
mally not large if compared with the amplitude of the first
harmonic (typically <20%). Therefore, the moduli obtained
from the first harmonic via Fourier transform analysis are
relevant for a leading order description of the viscoelas-
tic properties. Hyun et al. [63] observed that the leading
order LAOS behavior (G′(�0) and G′′(�0)) of complex fluids
could be classified by at least four types of strain-amplitude
dependence: type I, strain thinning (G′ and G′′ decreas-
ing); type II, strain hardening (G′ and G′′ increasing); type
III, weak strain overshoot (G′ decreasing, G′′ increasing fol-
lowed by decreasing); type IV, strong strain overshoot (G′

and G′′ increasing followed by decreasing). The four types of
LAOS behavior are schematically shown in Fig. 5 and Hyun
et al. [63] documented each class of LAOS behavior from
different complex fluids with different microstructure.

Equating the representation of Fourier series (Eq. (9))
and power series (Eq. (10)), the 1st harmonic contribution
can be calculated as:

1st term = [G′
11�0 + G′

31�3
0 + O(�5

0 ) + · · ·] sin ωt

+ [G′′
11�0 + G′′

31�3
0 + O(�5

0 ) + · · ·] cos ωt = G′
1(ω, �0) sin ωt

+ G′′
1(ω, �0) cos ωt (11)

which shows that G′
1(ω, �0) and G′′

1(ω, �0) consist of odd
polynomials of the strain amplitude (�0) with nonlinear
coefficients of frequency (ω). Therefore, we can observe the
LAOS behavior of the 1st term as a function of strain ampli-
tude. The nonlinear coefficients from the power series (e.g.
G′

11(ω), G′
31(ω), . . . and G′′

11(ω), G′′
31(ω), . . .) in Eq. (11) deter-

mine the leading-order amplitude dependence of G′
1(�0)

and G′′
1(�0). The relaxation processes which represent the

viscoelasticity of the materials are connected with the non-
linear coefficients that are only a function of frequency for
the elastic part (G′

11(ω), G′
31(ω), . . .) and for the viscous part

(G′′ (ω), G′′ (ω), . . .).
11 31
For example, Heymann et al. [79] investigated the

nonlinear behavior of medium- and highly-concentrated
suspensions of spherical and quasimonodisperse particles
by analyzing G′

1(�0) and G′′
1(�0) at a fixed frequency. They
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63]; (a)
(2002)
Fig. 5. The four archetypes of LAOS behavior as outlined by Hyun et al. [
strain overshoot. Reproduced by permission of Hyun et al. [63], copyright

also investigated the effect of changing the imposed oscil-
latory frequency. From this result, they concluded that
concentrated suspension have a Hookean response at low
strain amplitude, and with increasing strain amplitude
go through a nonlinear transition region to a Newtonian
flow range at high strain amplitude. They also pointed
out that G′

1(�0) and G′′
1(�0) are acceptable measures of

the viscoelastic response because the deviation of the
response signal from a pure harmonic wave does not
exceed 15%, in terms of the proportion of higher har-
monics. Wyss et al. [80] introduced a technique called
strain-rate frequency superposition (SRFS) for probing the
nonlinear structural relaxation of metastable soft mate-
rials. For materials exhibiting a relaxation time which
depends solely on the applied strain-rate amplitude, one
may conduct a series of LAOS tests which maintain a
constant strain-rate amplitude and therefore isolate the
structural relaxation dependence. This new experimental
technique (SRFS) is different from a typical strain ampli-
tude sweep test. Wyss et al. reported values of G′′

1(ω, �0)
and G′′

1(ω, �0) from a commercial rheometer under LAOS
flow. Both Heymann et al. [79] and Wyss et al. [80] effec-
tively employ first order nonlinear harmonic information,
i.e. G′′

1(ω, �0) and G′′
1(ω, �0) in order to investigate the non-

linear rheology of complex fluids.
Sim et al. [65] investigated possible mechanisms of com-

plex LAOS behavior using a network model composed of

segments and junctions. A segment is considered a part of a
macromolecular chain or a microstructure joining two suc-
cessive junctions, and the junctions are the points where
the intra- or intermolecular interactions are localized. A
strain thinning (b) strain hardening (c) weak strain overshoot (d) strong
of Elsevier.

junction may be regarded as a crosslinking point, but basi-
cally it is a phantom element defined in the network model
for convenience. Segments are lost and created during the
flow, and the network consists of junctions with a distribu-
tion of ages. Although there are many families of network
models, they share the common feature that the distribu-
tion of network junctions is determined by their creation
f(t) and loss rates g(t). The main difference between models
is the functional form of the creation and loss rates of net-
work junctions. For the case of a single mode, the evolution
of the state of stress in the network model can be written in
terms of the creation and loss functions as follows [65,81],

d�11

dt
= 2ˇ�12 − g(t)�11 + f (t) − g(t) (12)

d�12

dt
= ˇ�22 − g(t)�12 + ˇ (13)

d�22

dt
= −g(t)�22 + f (t) − g(t) (14)

d�33

dt
= −g(t)�33 + f (t) − g(t) (15)

where � is the stress scaled by the plateau modulus G0
N , t

is the time scaled by the relaxation time �0, and ˇ = �0�̇ is
the dimensionless shear rate. Sim et al. [65] used empirical
functional relationships such that f(t) and g(t) are repre-
sented as exponential functions of the shear stress �12(t)

as follows

f (t) = exp(a|�12(t)|) (16)

g(t) = exp(b|�12(t)|) (17)
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here the constants a and b are model parameters defining
he creation and loss rates, respectively. This approxima-
ion is overly simplistic and will not be adequate for a
uantitative analysis of real material systems. However, it
ualitatively predicts the various classes of experimentally
bserved LAOS behaviors of complex fluids determined
rom G′(�0) and G′′(�0), and rationalizes the responses in
erms of the model parameters, i.e. the creation and loss
ate of network junctions.

Based upon both experimental and simulation results
63,65], a broad descriptive overview of the four typical
AOS types can be given as follows.

.2.1. Type I (strain thinning)
This type of behavior is the most commonly observed

n polymer solutions and melts. The origin of strain thin-
ing is similar to that leading to shear thinning in steady
hear flow. Shear thinning in the viscosity may be the
ost dominant rheological property of systems such as

olymer melts, suspensions, and solutions, and originates
rom chain orientation or alignment of microstructures
long the flow direction, thus reducing the local viscous
rag on material elements. As the shear rate is further

ncreased, the flow alignment becomes more complete, and
he shear viscosity decreases further [82]. A recent exam-
le of polymer melt flow-alignment in LAOS was reported
y Höfl et al. [83]. They investigated anionically synthe-
ized 1,4-cis-polyisoprene (PI), a monodisperse polymer
elt that showed shear thinning behavior. With a sensitive

n situ rheo-dielectric setup, they observed a decrease in
he dielectric strength at large strain amplitude, and inter-
reted this as slight orientation of the end-to-end vector
polymer chain alignment) in the shear direction.

Within the network model, type I behavior results when
he creation rate parameter is negative (a < 0) and the
oss rate parameter is positive (b > 0). With this parame-
er combination, the LAOS behavior shows strain thinning
egardless of the excitation frequency. When the strain
mplitude is large, the network segments align with the
ow field, or the network junctions are easily lost and
angling chain segments have little chance to rejoin the
etwork structure. The model parameters specify that the
reation rate decreases while the loss rate increases with
ncreasing strain amplitude.

.2.2. Type II (strain hardening)
Strain hardening directly contrasts strain thinning. In

his case strong interactions exist between some seg-
ents of the complex fluid and therefore flow alignment

s resisted undergoing shearing deformation. It is believed
hat strain hardening or strain stiffening is associated with
he formation of complex microstructures and nonlinear
lastic network elements. PVA (polyvinyl alcohol)/Borax
olutions show strain hardening and it is reported that
eformation leads to formation of a chemical complex
etween hydroxyl groups and borate anions, which plays
role analogous to temporary crosslink among the PVA
hains [84]. Many biological gels, e.g. F-actin, fibrin, col-
agen, also show strain hardening behavior [85]. Strain
ardening is associated inherently with strain-stiffening
etwork components, or shear-induced network forma-
ience 36 (2011) 1697–1753 1707

tion. From the viewpoint of the basic network model, the
creation rate of new network junctions should be much
larger than the loss rate for a shear-induced network. As a
result, LAOS type II behavior is found when the creation rate
parameter is positive (a > 0) and greater than 2b (a > 2b), see
Eq. (16) and (17). At large strain amplitude, the governing
equations of the network model become numerically stiff
due to the large positive exponents. Experimentally, it is
also difficult to obtain rheological properties at very large
strain amplitude due to the sudden increase in the torque.
This effect can also lead to elastic instability at large strain
amplitude (�0 > 5).

3.2.3. Type III (weak strain overshoot)
The distinctive feature of type III behavior is a pro-

nounced local maximum in the loss modulus. This response
is a remarkably robust feature of soft glassy materials,
e.g. concentrated emulsions [86,87], suspensions [5,88,89],
pastes [90], soft hydrogel spheres dispersed in water [80],
and electrorheological (ER) fluids [91]. It is also observed
in polymer solution systems, e.g. blockcopolymer solu-
tions [6,49], associative polymer solutions [92–94], or
Xanthan gum solutions [63,95]. For the network model
(Eqs. (12)–(17)), type III is found when both the creation
and loss rate parameters are positive (a > 0, b > 0) but the
creation rate parameter is smaller than the loss rate param-
eter (a < b). This range of parameters results in both the
creation and loss terms increasing with the strain ampli-
tude, with the destruction rate growing faster than that
of creation. The positive creation rate exponent (a) is suf-
ficient to provide increased connectivity of the network
(or other microstructure arising from interactions) lead-
ing to increased dissipation, while the loss term becomes
dominant at larger strain amplitude leading to the ultimate
overall decrease of both G′ and G′′. Thus, the overshoot (i.e.
local maximum of G′′) may be regarded as arising from
the balance between the formation and the destruction
of the network junctions. Specifically, the maximum of G′′

depends more on the creation rate parameter a than the
loss rate parameter b of the network model.

The structural cause of the strain overshoot behav-
ior in G′′ is not universal. Depending on the class of
soft material, the explanation for the local maximum of
G′′ is different. Tirtaatmadja et al. [92,93] suggested that
the overshoot behavior of G′′ could be attributed to the
increase of the effective volume of temporal network struc-
tures. From the viewpoint of associative polymer solutions,
Raghavan and Khan [96] explained the strain overshoot
in terms of the change of flock size during the oscilla-
tory shear deformation. They suggested that the flock size
increases when weak strain overshoot behavior appears.
Parthasarathy et al. [97] reported that the overshoot in G′′

occurs because of viscous dissipation due to slight rear-
rangement of unstable clusters under shear, and that the
decrease at large strain is associated with larger scale struc-
tural rearrangements. Through structural analysis using
numerical simulation for ER fluids, Sim et al. [91] explained

that the increase of G′′ is partly related to the destruction
of microstructures developed during the imposed oscilla-
tion, and the overshoot behavior is due to the reformation
process of the clusters. These differing explanations for
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Fig. 6. The viscoelastic moduli G′(�0) and G′′(�0) at ω = 1 rad/s and T = 180 ◦C for two different Polypropylene (PP) samples are shown, (a) linear PP and
(b) branched PP. Both linear PP and branched PP display LAOS type I behavior (strain thinning). However the stress waveform shapes of the linear PP and

branch
espond
veform
branched PP samples are different. (c) The oscillatory stress for linear and
a single sinusoidal shape. (d) Magnified view of the stress data: linear PP r
“backward tilted stress” shape [95]. This difference in the shape of the wa
structure [38].

the cause of loss modulus overshoot arise because the
specific flow-induced microstructure depends on the par-
ticular material under investigation. This indicates that the
leading-order descriptions of nonlinear viscoelasticity (i.e.
the first-harmonic viscoelastic moduli) are not sufficient
to explain the flow-induced microstructure. It is therefore
necessary to investigate the higher harmonic contributions
to the nonlinear stress response (quantitative methods for
analyzing these differences are discussed in Section 4). In
Fig. 6 below, we will present some examples of complex flu-
ids that display the same leading-order LAOS type behavior
but involve different distortions (higher harmonics) of the
shear stress waveform under LAOS.
3.2.4. Type IV (strong strain overshoot)
For some material systems, e.g. associative polymer

solutions, both G′ and G′′ may exhibit an overshoot at inter-
mediate strain amplitude [93]. For associative polymer
ed PP at strain amplitude, �0 = 7.19. Both stress shapes are distorted from
s with a “forward tilted stress” shape whereas the branched PP displays a
corresponds to different polymer topology, i.e. linear vs. branched chain

solutions this LAOS type IV behavior seems to be related
to the strength of the intermolecular interaction energy
which is weaker than the case of type II (strain harden-
ing), but stronger than the case of type III in which only
G′′ shows overshoot. Such interactions may exist between
hydrophobic groups or large micellar cluster microstruc-
tures. This type IV behavior is observed when both the
creation and loss rate parameter are positive (a > 0, b > 0)
and the creation rate, a, is limited to values of b < a < 2b. As
the nonlinear creation rate parameter a increases, the max-
imum in G′ and G′′ becomes more pronounced. This type IV
response is observed less often than type III.

These four generic types of leading order LAOS behav-
ior have also been suggested by network theory [64,65].

We note that other classes of behavior have also been
observed which look like a variation or combination of
these four types, e.g. a local minimum of G′ and G′′ fol-
lowed by strain hardening of both moduli [98–100], or a
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ocal minimum of G′ and G′′ followed by a local maximum
f G′ and G′′ [6,79,101]. Ahn et al. [63–65] concluded that
he LAOS behavior of each class of fluid is closely related
o its microstructure. Factors that influence the nonlin-
ar response include molecular interactions and polymer
opology. LAOS tests can help classify complex fluids and
lso provide information on the nonlinear evolution of fluid
icrostructure which may be unavailable with conven-

ional rheological measurements.

.3. Nonlinear shear stress waveforms

The viscoelastic moduli G′(�0) and G′′(�0) provide only
leading order characterization of a material (i.e. the first
armonic contribution). Higher-order contributions, and
onlinear stress waveforms, can be used to further dis-
inguish and investigate viscoelastic materials. Oscillatory
tress waveforms are often (and in our opinion, should
lways be) available from commercial rheometers. In this
ection we demonstrate that even qualitative visual com-
arison of stress waveforms can be used to help distinguish
aterials (Figs. 6 and 7). We also present a survey of vari-

us waveform shapes which can be observed in LAOS tests
Figs. 8–13). The nonlinear waveforms represented visually
n this section can also be thoroughly quantified with the

ethods discussed in Section 4.
Fig. 6 shows an example of how the raw oscilla-

ory stress waveforms can distinguish two commercial
olypropylene (PP) melts, one with a linear polymer chain
opology and the other consisting of branched polymer
hains [38]. Both linear and branched PP display strain
hinning behavior when represented simply in terms of
train-amplitude-dependent moduli G′(�0) and G′′(�0),
.e. LAOS type I (Fig. 6a and b). However, the nonlinear
tress waveforms of the molten linear PP and branched
P samples are different (Fig. 6c and d). The linear PP
elt displays a “forward tilted stress” shape whereas the

ranched PP melt displays a “backward tilted stress” shape
38,95]. The “forward tilted stress” shape was observed
n the case of polymer melts and solutions with a lin-
ar chain structure whereas the “backward tilted stress”
hape was observed for suspensions and polymer melts
ith branched chains [95]. Future studies of numerical sim-
lations for branched structures (e.g. using the pom-pom
onstitutive model) are needed to fully understand this
ehavior.

Consideration of nonlinear stress waveforms can also
e used to understand the difference between 4 wt%
queous solution of Xanthan gum (XG) and the hard
el formed by a poly(ethylene oxide)–poly(propylene
xide)–poly(ethylene oxide) (PEO–PPO–PEO) 20 wt% solu-
ion. These materials show the same generic LAOS type III
ehavior of weak strain overshoot (Fig. 7a and b), however
he stress waveforms take distinctively different shapes
Fig. 7c and d). The molecular structure of Xanthan is
ased on a linear 1,4-�-d-glucose backbone with charged
risaccharide side chains on every second residue [63].

n aqueous solution at 25 ◦C, the backbone of Xanthan
s disordered but highly extended, as a result of electro-
tatic repulsion from the similarly charged groups on the
ide chains. Because of this highly extended structure, the
ience 36 (2011) 1697–1753 1709

molecules may align even at low concentration and asso-
ciate (partly due to hydrogen bonding and charges) to
form a weakly structured gel-like material [102]. In con-
trast, the microdomain of a hard gel for PEO–PPO–PEO is
a close-packed (cubic) array of micelles. The “rectangu-
lar” stress waveform shapes for the PEO–PPO–PEO solution
(Fig. 7d) can be related to the microstructure reversibly
“sticking and slipping” where the “stick” comes from the
short range interaction potential between hard spheres
and “slip” occurs when layers slide over one another and
destroy the stacking sequence [6]. Even though the two
complex fluids display the same LAOS type III behavior,
i.e. the same leading-order nonlinear features, LAOS defor-
mation results in different flow-induced microstructure
evolution that can be distinguished by the higher-order
nonlinearities and different shapes of the nonlinear stress
waveforms.

From these two simple examples, it is clear that ana-
lyzing the shape of the nonlinear stress response provides
more structural insight than simply considering the leading
order characterization G′(�0) and G′′(�0). This is because
the moduli G′(�0) and G′′(�0) reflect only the 1st harmonic
contribution from Eq. (9) and (10). Of course, a wide array
of waveform shapes can be observed with LAOS. What fol-
lows is a selection of some canonical shapes observed in
nonlinear shear stress waveforms.

From the mathematical descriptions of LAOS, e.g. Eq. (8),
it is clear that higher harmonic contributions induce non-
sinusoidal stress waveform shapes. The 3rd harmonic is
the predominant determining factor controlling the stress
shape, since subsequent higher order terms typically decay
rapidly. Here we illustrate various distortions of the shear
stress signal which result from varying the 3rd harmonic
phase angle, neglecting all higher harmonic contributions
(see also Fig. 26 and Section 4.4 for a related discussion on
interpreting the phase angle of the 3rd harmonic, which
is enabled by the Chebyshev polynomial representation of
decomposed stress).

From Eq. (8), both the intensity and the phase angle of
the 3rd harmonic contribution can be quantified. Neidhöfer
et al. [103] analyzed the stress signal by a shift in time,
substituting time t by t = t′ − ı1/ω, so that higher harmon-
ics of stress were referenced to the first-harmonic stress
response, rather than the input strain. Within this frame-
work Eq. (8) is reformulated as follows,

�(t′) = �1 sin(ωt′) + �3 sin(3ωt′ + ı′
3)

+ �5 sin(5ωt′ + ı′
5) + · · ·,

� = �0 sin(ωt) = �0 sin(ωt′ − ı1)
(18)

where ı′
n = ın − nı1 is the nth relative phase angle and

ı1 is the 1st phase angle (0◦ ≤ ı1 ≤ 90◦) which determines
the stress response as elastic (ı1 = 0◦), viscoelastic, or vis-
cous (ı1 = 90◦). For purposes of self-consistent notation, we
use a “sine” notation in Eq. (18) rather than the “cosine”
notation from Neidhöfer et al. [103], however the princi-

ple is same. For illustrative purposes let us assume that
the 3rd harmonic contribution is exactly 10% of the 1st
harmonic contribution (�3/�1 = I3/I1) and the other har-
monics higher than the third are negligible, then Eq. (18)
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Fig. 7. The viscoelastic moduli G′(�0) and G′′(�0) for (a) Xanthan gum 4 wt% aqueous solution at ω = 1 rad/s and T = 25 ◦C and (b) hard gel of PEO–PPO–PEO
triblock 20 wt% aqueous solution at ω = 1 rad/s and T = 26 ◦C are shown. Both aqueous solutions display LAOS type III (weak strain overshoot) behavior.

fferent.
lock 20%
rmission
However, the shapes of the nonlinear stress waveforms are markedly di
aqueous solution (saw tooth shape) and (d) hard gel of PEO–PPO–PEO trib
waveforms originates from different microstructures. Reproduced by pe
and the Australian Society of Rheology.

becomes

�(t′)
�1

= sin(ωt′) + 0.1 sin(3ωt′ + ı′
3)

� = �0 sin(ωt) = �0 sin(ωt′ − ı1) (19)

By changing the relative third-harmonic phase angle ı′
3

in Eq. (19) from 0◦ to 360◦, we can investigate the effect
of the 3rd harmonic contribution on the stress signal. The
distorted shear stresses are plotted as a function of time at
four different phase angles (ı3 = 0◦, 90◦, 180◦, 270◦) in Fig. 8.
Various canonical shapes in the shear stress are observed,
including rectangular, “backward” tilted, triangular, and
“forward” tilted shapes. Leblanc [59,60] suggested a quan-
tifying method for the “backward” and “forward” tilted
shapes of shear stress by comparing quarter cycle inte-
grations of shear stress data as a function of time. The
first quarter stress signal integration Q1 (e.g. integration
from 0 s to 1.57 s in Fig. 6d) is compared to the second
quarter stress integration Q2 (e.g. integration from 1.57 s

to 3.14 s in Fig. 6d). The ratio Q1/Q2 = 1 for the case of
no tilting, and allows clear distinction between “forward”
tilted (Q1/Q2 > 1) and “backward” tilted (Q1/Q2 < 1) wave-
forms. This method is used to distinguish unfilled polymer
The stress data and Lissajous patterns are shown in (c) Xanthan gum 4%
aqueous solution (rectangular shape). The different shape of these stress
of Hyun et al. [95], copyright (2003) of the Korean Society of Rheology

and filled polymer, e.g. carbon black rubber compounds
[60]. This method will be introduced in more detail in
Section 5.

A graphical representation that is more amenable to
rapid qualitative evaluation is the use of a closed loop plot
(Lissajous curve) of stress vs. strain or stress vs. rate of
strain [4]. For the full reconstruction of a Lissajous curve,
we also calculated strain using three different 1st har-
monic phase angle, ı1 = 0◦ (elastic), 45◦ (viscoelastic), and
90◦ (viscous) in Eq. (19). The Lissajous curves are plot-
ted in Fig. 9. This is a simple example to visualize how
the 3rd harmonic phase angle contributes to the shapes
of the stress waveforms in either the time domain (stress
vs. time) or the deformation domain (Lissajous curves of
stress vs. strain). Even though these equations (Eqs. (18)
and (19)) have no direct information regarding microstruc-
ture in a complex fluid, this plot visually demonstrates
how higher harmonic contributions, especially the 3rd
harmonic, can affect the measured output for a nonlin-
ear viscoelastic material. The variety of theoretical stress
waveforms shown in Figs. 8 and 9 can also be observed

in both experimental measurements and simulations of
various complex fluids. The challenge for the rheologist is
to connect such measurements to changes in the material
microstructure.
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Experimental examples of LAOS shear stress responses
re now described, and shown in Figs. 10–13. Many
lasses of complex fluids exhibit nonlinear and distorted
tress waveforms under LAOS, for example: polymer
elts [38,62], polymer blends [104], polymer solutions

72,95,105], block copolymer solutions [6,49,106], block
opolymer melts [107], suspensions [5,12,14,51,108], ER
aterials [91,109], MR (magnetorheological) fluids [110],

iological materials [111], wormlike micelle solutions [69]
nd food products [100,112], just to mention some promi-
ent examples. In Fig. 10, several distorted, non-sinusoidal
hear stress waveforms are shown as a function of time
or different complex fluids under LAOS including polymer
nd block copolymer solutions and polymer melts. The Lis-
ajous curves (stress vs. strain) of various complex fluids
ubjected to LAOS with a range of strain amplitudes are also
isplayed in Fig. 11. The experimentally measured LAOS
esponse of a micellar solution is shown in Fig. 12, in which
he Lissajous curves are positioned in a Pipkin space defined
y the two parameters which define an oscillatory test: the

mposed strain amplitude �0 (y-axis) and the frequency
(x-axis) [69]. For the case of linear viscoelastic behav-

or the parametric loops of stress vs. strain are ellipses,
ith a minor axis that narrows with increasing frequency,

.e. less energy is dissipated in the high-frequency elastic

egion. Fig. 13 shows the experimentally measured LAOS
esponse of a suspension system, in which the Lissajous
urves are also positioned in a Pipkin space according to the
mposed strain amplitude (y-axis) and frequency (x-axis).
third harmonic from Eq. (19) at a fixed frequency ω = 1 rad/s: (a) ı′
3 = 0◦ ,

e, including rectangular, triangular, backward tilted, and forward tilted
Korean Society of Rheology and the Australian Society of Rheology.

In contrast to the micelle solution (Fig. 12), the Lissajous
curves for the suspension system (Fig. 13) do not flatten,
and the suspension is dissipative even at the highest fre-
quencies shown. The evolution in the shape of the distorted
stress waveforms can be related with systematic changes in
the internal microstructure of the material or the polymer
topologies (linear or branched chain). While visual investi-
gations such as those presented in Figs. 8–13 are helpful to
give an overview of nonlinear viscoelastic response, quan-
titative methods are also necessary for analyzing these
nonlinear shear stress waveforms. Several different quan-
titative methods will be reviewed in Section 4.

3.4. Nonlinear normal stress difference

In addition to a shear stress, viscoelastic normal stresses
can also develop in response to shearing deformations
of large strain amplitude [1]. In this subsection we con-
sider the fundamental features of normal stress waveforms
resulting from oscillatory shear. In oscillatory shear flow
analysis with quasilinear constitutive models such as the
Oldroyd-B equation it can be shown that the normal stress
difference oscillates at twice the imposed frequency (2ω)
around a nonzero mean value that varies quadratically
with strain amplitude �0 [1,2,4,113]. This result would be

expected from symmetry considerations because the nor-
mal stress difference is a nonlinear material response that
is induced by the imposed shear but is independent of the
shear direction, Ni[�(t), �̇(t)] = Ni[−�(t), −�̇(t)], where Ni
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Fig. 9. The normalized Lissajous curve (stress (y axis) vs. strain (x axis)) at different third relative phase angle: (a) ı′ = 0◦ , (b) ı′ = 90◦ , (c) ı′ = 180◦ , (d)
0.1 in Eq
Section
ı′
3 = 270◦ from Eq. (19) at a fixed frequency ω = 1 rad/s with �3/�1 = I3/I1 =

ı1 = 0◦ (Elastic), 45◦ (Viscoelastic), and 90◦ (Viscous) in Eq. (19). (See also
interpretations via Chebyshev polynomials.)

is either the first (i = 1) or second (i = 2) normal stress dif-
ference. The normal stress differences under oscillatory
shearing conditions can be written as the sum of a constant
term and an oscillating term with phase angle (ıi,2). The
oscillatory term can itself be decomposed into two com-
ponents, by analogy with the representation of the storage
and loss moduli (G′, G′′),

Ni = Ni,0 + Ni,2 sin(2ωt + ıi,2) = Ni,0 + N′
i,2 + N′′

i,2

N′
i,2 = Ni,2 cos ıi,2 sin(2ωt)

N′′
i,2 = Ni,2 sin ıi,2 cos(2ωt), i = 1 or 2

(20)
The second normal stress difference (i = 2) in steady
shear flow is typically smaller than the first (i = 1) by
roughly an order of magnitude [1] and is difficult to mea-
sure. Therefore, we only focus on the first normal stress
3 3 3
. (19). For calculation of strain, three different 1st phase angles are used,
4.4 and Fig. 26 which describes alternative third-harmonic phase angle

difference in this review. In the SAOS regime, the first
normal stress difference can be calculated from the shear
properties (G′, G′′) by the phenomenological models as fol-
lows [1,72,114,115]:

N1,0

�2
0

= G′(ω)

N′
1,2

�2
0

= Ni,2

�2
0

cos ıi,2 =
[

G′′(ω) − 1
2

G′′(2ω)
]

N′′
i,2

�2
0

= Ni,2

�2
0

sin ıi,2 =
[
−G′(ω) + 1

2
G′(2ω)

]
(21)
However, the physical meaning of the first normal stress
difference can be complicated and obscured due to the
frequency-doubled terms of shear moduli (G′, G′′). The first
normal stress difference can be much larger in magnitude
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ig. 10. Stress curves (�) and applied strain curves (—) as a function of
a) Xanthan gum 4 wt% aqueous solution at strain amplitude �0 = 10. (b)
EO–PPO–PEO triblock 20 wt% aqueous solution at strain amplitude �0 = 1
0 = 4. (e) Polypropylene (PP) melt at strain amplitude �0 = 10. (f) Polysty

han the shear stress at large strain amplitude [72,77]; con-
ersely, it is not easy to measure at small and intermediate
train amplitudes because the normal forces are quadratic
ith respect to �0. Precise measurement of normal stresses

n oscillatory shear flow recently became feasible and has
nabled investigation of nonlinear normal stress responses
o LAOS.

In the LAOS regime, the normal stress differences oscil-
ate with additional higher harmonics. These are similar in
rinciple to higher harmonics of the shear stress but instead
ontain only even harmonic contributions, because the nor-
al stress difference has no dependence on the imposed

hear direction as mentioned before. This symmetry is in
ontrast to the shear stress behavior (�[−�(t), −�̇(t)] =
�[�(t), �̇(t)], i.e. Eq. (3)). The nonlinear normal stress dif-

erences also can be described using Fourier series, similar
o the treatment of shear stress (compare to Eq. (8)):

i(t) =
∞∑

Ni,2k sin(2kωt + ıi,2k) = Ni,0
k=0

+
∞∑

k=1

Ni,2k sin(2kωt + ıi,2k), i = 1 or 2 (22)
various complex fluids at large strain amplitude and frequency 1 rad/s.
nic acid 1% aqueous solution at strain amplitude �0 = 7.2. (c) soft gel of
rd gel of PEO–PPO–PEO triblock 20% aqueous solution at strain amplitude
) melt at strain amplitude �0 = 10.

The nonlinear normal stress differences can also be
defined as the sum of a constant term and an oscillating
term like Eq. (20). The contribution at zero frequency (Ni,0,
zero harmonic) indicates the non-zero mean value, i.e. the
bias value. Some care must be taken with the nomencla-
ture and the term ‘nonlinear.’ Normal stress differences are
inherently a nonlinear phenomenon even in the limit of
small deformations, e.g. the first normal stress difference
N1(�̇) in steady shear flow reaches proportionality with �̇2

in the limit of small shear rate. In this limit N1(�̇)/�̇2 =
2�2

0Js, with Js the linear recoverable compliance after steady
shear flow and �0 the zero shear viscosity at linear region.
In SAOS (small amplitude oscillatory shear), the appropri-
ately scaled N1(t)/�2

0 is not a function of strain amplitude.
As strain amplitude increases, the higher harmonics appear
in the Normal stress differences. Our interest is this devi-
ation from small deformation behavior, therefore we will
use the term ‘nonlinear’ normal stress difference to refer
specifically to the higher harmonic contributions at 4ω, 6ω,

. . ., in response to LAOS deformation.

Due to experimental difficulties, nonlinear normal
stress differences in LAOS have been studied far less than
the nonlinear shear stress. As a result, the investigation of
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us comp
hyaluro
tion.
Fig. 11. The Lissajous curves (stress (y axis) vs. strain (x axis)) (�) of vario
at a fixed frequency, 1 rad/s: (a) Xanthan gum 4% aqueous solution, (b)
aqueous solution, (d) hard gel of PEO–PPO–PEO triblock 20% aqueous solu
a nonlinear (non-sinusoidal) first normal stress difference
has a shorter history. Vrentas et al. [116] measured the first
normal stress difference in LAOS at various frequencies for
a polystyrene solution and simply compared with results

Fig. 12. Raw LAOS data for a micellar solution, generated from experimental osc
vs. strain �(t). Each trajectory is positioned in a Pipkin space according to the imp
stress �(t)/�max vs. �(t)/�0. The maximum stress �max is indicated above each cu
The Society of Rheology.
lex fluids, arranged from small strain amplitude to large strain amplitude
nic acid 1% aqueous solution, (c) soft gel of PEO–PPO–PEO triblock 20%
obtained in steady shear experiments to check the validity
of the K-BKZ constitutive equation. Oakley and Giacomin
[117] analyzed the higher harmonics of the first normal
stress difference, which were previously not obtainable, in

illatory tests, shown as normalized elastic Lissajous curves of stress �(t)
osed values of strain amplitude �0 and frequency ω. Solid lines are total
rve. Reproduced by permission of Ewoldt et al. [69], copyright (2009) of
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ig. 13. Raw LAOS data for a highly concentrated suspension system (50 w
scillatory tests, shown as normalized elastic Lissajous curves of stress �
mposed values of strain amplitude �0 and frequency ω.

elt flow using a home built sliding plate rheometer (SPR).
talık and Keunings [77] reported that a few odd harmonics
ould be introduced in the first normal stress difference by
uid inertia in LAOS. Even harmonic responses of the nor-
al stress differences under LAOS were critically discussed

sing the predictions of a single mode Giesekus model and
ompared to experimental results [72]. Analysis of the nor-
al stress difference in LAOS can lead to rheological insight

or certain complex fluids or soft matter. For example, the
tructure of highly elastic materials such as gels and foams
an be explained by pronounced oscillatory first normal
tress differences [118,119]. Additionally, the response of
he first normal stress difference for polymer solutions in
AOS has been compared with transient network theory
120], and the non-sinusoidal form of the response in the
rst normal stress difference has been shown to sensitively
eflect the orientation and relaxation of fibers in polymer
elt flow [121].
In Fig. 14 we show the first normal stress difference

nd shear stress waveforms experimentally measured for a
oger fluid undergoing LAOS with increasing strain ampli-
ude at a fixed frequency 1 rad/s. The first normal stress
scillates with twice the imposed frequency (2ω) about
non-zero mean value, whereas the shear stress oscil-
ates with the imposed frequency (ω) about zero mean. A
oger fluid is typically composed of a low concentration
f high molecular-weight flexible polymer dissolved in a
ery viscous Newtonian liquid, such as a low molecular-
A particle (100 nm radius) in paraffin oil), generated from experimental
rain �(t). Each trajectory is positioned in a Pipkin space according to the

weight polymer or oligomer. The Boger fluid investigated
here is composed of 0.5 wt% of Polyisobutylene (PIB) with
a high molecular weight of 6 × 105 g/mol dissolved in poly-
butylene (PB) with a low molecular weight of 920 g/mol.
The viscosity is nearly independent of shear rate, therefore
elastic effects can be separated from viscous effects in vis-
coelastic flows [122]. Fig. 15 compares the LAOS responses
of an elastic Boger fluid with constant viscosity and a
polymer solution with strong shear-thinning viscosity. Dif-
ferent constitutive equations are used for the Boger fluid
and the shear-thinning polymer solution to compare the
two materials. The upper convected Maxwell (UCM) model
(see Appendix C) predicts a quadratic variation of the first
normal stress difference and a constant viscosity, and is
thus mathematically suitable for displaying the material
response of a Boger fluid in LAOS. The Giesekus model with
a single nonlinear coefficient ˛ is an extension of the UCM
model (see Appendix C), and is appropriate for modeling
the shear-thinning polymer solutions [123].

For the Boger fluid (Fig. 15b), no distortion of the shear
stress and the normal stress difference is observed even at
large strain amplitude, because the viscosity of the Boger
fluid (BF) is nearly independent of shear. The first normal
stress difference and the shear stress for the UCM model

(Fig. 15a) also show no distortion behavior at large strain
amplitude due to the absence of nonlinear terms in the con-
stitutive equation. Because of the quasi-linear nature of the
UCM model, the oscillatory first normal stress difference
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Fig. 14. (a) Raw torque and normal force signal of a Boger Fluid (0.5 wt% of PIB in PB, PIB with a molecular weight 6 × 105 g/mol and PB with a molecular
de from
0 = 10. T
∼5◦).
weight 920 g/mol) during the strain sweep test (increasing strain amplitu
(�12) and first normal stress difference (N1) at the strain amplitude of �
rheometer, ARES (100NFRT) with cone-and-plate (radius: 25 mm, angle:

can be uniquely divided into three terms, given by Eq. (20).
On the contrary, the simulation results of Giesekus model

(Fig. 15c) show highly distorted waveforms for the first
and second normal stress differences and the shear stress.
As the nonlinear parameter ˛ increases, shear thinning

Fig. 15. (a) Shear strain (thin solid line) and first normal stress difference (thick s
(frequency), G = 1 (modulus), � = 1 (relaxation time), �0 = 4). The first normal stre
value (dashed dot line) and the other two for the in-phase and out of phase osci
first normal stress difference (open symbols) of a Boger fluid at the frequency 1 ra
decomposed into three parts. (c) Shear strain (thin solid line), shear stress (dashe
stress difference (dashed dot line) from the simulation results of a single mode G
parameters are f = 1, G = 1, � = 1, and ˛ = 0.25 (nonlinear parameter). The shear stre
(dashed line), and first normal stress difference (open symbol) of an aqueous poly
weight 2 × 106 g/mol) [124]. The strain amplitude is �0 = 10 and frequency is 1 rad
�0 = 1.38–10) at fixed frequency of 1 rad/s, and (b) strain (�), shear stress
he rheological measurements were performed using a strain-controlled

becomes pronounced. The concentrated polymer solution
with strong shear thinning behavior also displays distorted,

non-sinusoidal behavior for both the first normal stress
difference and shear stress under LAOS (Fig. 15d). From
this comparison of a constant viscosity elastic liquid (Boger

olid line) as predicted by the UCM model (dimensionless parameters f = 1
ss difference is decomposed into three parts; one for the non-zero mean
llating terms (dashed line and dot line). (b) Shear strain (solid line), and
d/s and strain amplitude �0 = 4.5. The first normal stress difference is also
d line), first normal stress difference (thick solid line), and second normal

iesekus model based on the work of Nam et al. [72]. The related model
ss is magnified by a factor of 10. (d) Shear strain (solid line), shear stress
ethylene oxide (PEO) soulution (concentration of 4 wt% with a molecular
/s.
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Fig. 16. The experimental Lissajous patterns obtained for various polymer solutions; BF (Boger fluid), PEO (polyethylene oxide) and PAA (polyacryl amide)
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olutions at a range of concentrations. (a) The loop for shear stress vs. strai
n a Pipkin space (strain amplitude vs. frequency (De = ω/ωc , ωc is crosso
ata (symbols) are compared with model data (lines). For the Boger fluid

uid and UCM model) and a viscoelastic shear-thinning
uid (polymer solution and Giesekus model), it can be con-
luded that a viscoelastic shear-thinning fluid is more likely
o show nonlinear behavior in the normal stress difference
nd shear stress at moderate Deborah number De = ω/ωc

ωc is crossover frequency at G′ = G′′) compared to an elas-
ic liquid with constant viscosity. In Fig. 16 we show the
issajous curves of the periodic shear stress and first nor-
al stress as a function of De for various entangled polymer

olutions. Results for the Giesekus model are also shown as
function of De and strain amplitude [124,125].

From an experimental point of view, the aim of nonlin-
ar oscillatory experiments is to investigate the progressive
volution of the non-sinusoidal behavior with increas-
ng deformation, and to quantify the nonlinear material
oefficients that characterize the material nonlinearity.
urthermore, it is desirable to correlate these nonlinear
oefficients with physical changes in the microstructure or
olymer topology. The descriptions of G′

1(�0) and G′′
1(�0)

resented so far have focused only on the evolution in the
st harmonic terms and are thus the simplest quantita-
ive method. However, such rankings discard information
bout the nonlinear stress shape which arises from the
igher order odd harmonic terms (Figs. 8 and 9), for exam-
le the 3rd harmonic contribution. Several quantitative
ethods have been proposed for analyzing non-sinusoidal
aveforms of shear and normal stresses. In the next sec-

ion, we will review these techniques and summarize the
elationship between different analytical methods.

. Quantitative methods for analyzing nonlinear
tress waveforms

Oscillatory stress waveforms can be analyzed from the
erspective of two complementary coordinate frames. Tra-
itionally, the most common analytical representation is
he time-domain waveform �(t) (e.g. Figs. 8 and 10), which
an be transformed into a Fourier series, and is discussed

elow in Sections 4.1 and 4.2. Alternatively, the stress
esponse can be represented as a function of the strain
(t) and strain-rate �̇(t), written within the deformation-
omain as �[�(t), �̇(t)] (e.g. the Lissajous curves in Fig. 11
e loop for first normal stress difference vs. strain. The results are arranged
uency at G′ = G′′)). For four aqueous polymer solutions, the experimental

experimental data is shown.

which are a 2D projection of �(t) vs. �(t)). This alternative
representation within the deformation-domain is a fun-
damental aspect of Sections 4.3–4.5. After reviewing the
current analytical methods, Section 4.6 and Table 3 sum-
marize the comparative benefits of these two inter-related
coordinate frame representations.

4.1. Fourier transform (FT)

A Fourier transformation represents a time dependent
signal s(t) with respect to the different frequencies ω/2�,
amplitudes, and phases in a spectrum S(ω). This sec-
tion describes the principles of the Fourier transformation
needed to implement Fourier Transform Rheology (FT-
Rheology). More details are provided in Refs. [30,31,33].

A Fourier transformation represents the inherent peri-
odic contributions to a time dependent signal and displays
the corresponding amplitudes and phases (or real and
imaginary part) as a function of frequency. To implement
FT-Rheology, a half-sided, discrete, complex Fourier trans-
formation is applied to the shear stress signal �(t). To obtain
highly resolved, artifact-free spectra with a low noise level,
the time signal has to be acquired with sufficient care. In
particular, mechanical and electrical shielding are typically
used in combination with data oversampling techniques
[34,126] to increase significantly the quality of the raw
time data (see Section 2). The Fourier transformation (FT)
of any real or complex time signal, s(t), and the correspond-
ing inverse transform of a frequency dependent spectrum
S(ω) are usually defined in the following way:

S(ω) =
∫ ∞

−∞
s(t)e−iωt dt, s(t) = 1

2�

∫ ∞

−∞
S(ω)e+iωt dω

(23)

In general the Fourier transformation is an invertible,
linear, complex transformation over the infinite interval
from −∞ to +∞. The FT is a linear mathematical transfor-

mation defined on any signal s(t) which we use to quantify
mechanical nonlinearities. By supplying a “monochro-
matic” or single input frequency, ω, we ensure that any
output from the system at frequencies other than ω is asso-
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ciated with nonlinearity in the system response. These two
aspects should be clearly separated. Any linear superposi-
tion of different signals in the time domain will also lead
to a linear superposition in the frequency domain since a
Fourier Transformation is a mathematically linear opera-
tion.

The FT is inherently complex; thus even for a real
time-domain data set s(t), this transformation results in
a complex spectrum S(ω) with real R(ω) and imaginary
I(ω) components of the spectrum. The complex spectra
can alternatively be presented as magnitude m(ω) and
phase �(ω) spectra, where the inter-relation is given by
tan � = I/R and m = (R2 + I2)1/2. Applying the Euler relation
(exp(i�) = cos � + i sin �), the basic definition in Eq. (23)
can also be separated into a cosine- and sine transforma-
tion, commonly termed the Fourier cosine and Fourier sine
transformation. A half-sided Fourier transformation corre-
sponding to the case when the integration in Eq. (23) is
only carried out in a semi-infinite domain, specifically from
t = 0 to t = +∞. This transform is most commonly used for
experimental data since acquisition begins at a finite time.

In the case of discrete and digitized sampling, the data
is taken point by point with a fixed increment tdw (the
dwell time, or inverse sampling rate) over a total acqui-
sition time taq = tdwN. Thus, both time and amplitude have
discrete values. Since the peaks in the FT-Rheology spec-
trum are in principle infinitely narrow, a long acquisition
time taq over multiple cycles will decrease the observed
line width and increases the signal-to-noise (S/N) ratio. The
S/N-ratio can be defined as the ratio of the amplitude of
the highest peak (=“signal”) divided by the standard devi-
ation of the noise (=“noise”). The noise level is the average
value measured in a spectral window where no peak is
anticipated. Typically about 5–50 cycles of the fundamental
deformation frequency are acquired at a given strain ampli-
tude, to achieve high S/N ∼ 105. This leads to a number of
acquired time data points N in the range of 1000–10,000. In
most experiments, the time data s(t) is not measured con-
tinuously but discretely after fixed time steps and is then
digitized via a k-bit analog-to-digital converter (ADC) hav-
ing 2k discrete values for representing the measured signal.
Typically a 100–200 kHz, 16-bit ADC prior to oversampling
is used for FT-Rheology experiments (see also Section 2 for
details of the “oversampling” technique).

A fast Fourier transformation (FFT) is a very common
and particularly fast algorithm for discrete Fourier trans-
formation (DFT) but is not suitable for FT-Rheology. While
the more general discrete FT algorithm is formulated for
an arbitrary numbers of points N, the simplest and most
common FFT algorithms, e.g. the butterfly, require N = 2n

data points. This restriction leads to fixed discrete values
for the acquisition time taq and thus for the spectral res-
olution 	
 = 1/taq. As a result, the fundamental frequency

1 = ω1/2� or the odd multiples at (2k + 1)ω1/2� are rarely
located exclusively at a single data point having the precise
frequency corresponding to integer multiples of the fun-
damental excitation within the FT-Rheology spectra. The

application of a butterfly FFT can therefore introduce mis-
leading results for the intensities and phases of the spectral
intensities. For example the intensity of a higher harmonic
cannot be read out at exactly the expected frequency value.
cience 36 (2011) 1697–1753

A maximum error of up to a factor 2 might be introduced
this way. More advanced FFT-algorithms exist that can pro-
vide an FT for arbitrary number of data points, and the most
fundamental discrete Fourier transform (DFT) algorithms
also allow for arbitrary data points. It is therefore important
to report if the applied algorithm does simple zero-filling
to generate artificially 2n temporal data points prior to the
transformation into frequency space.

The experimental setup for a high performance FT-
Rheology experiment is based on the modification and
extension of a commercial strain controlled rheometer (see
Fig. 3). In these parallel configurations, the absolute values
of the rheometer output signals must be calibrated with
respect to the magnitude, phase, and frequency behav-
ior and must also capture the non-linear contributions
introduced by the instrument itself [33]. To avoid such
calibration issues, the signal can be normalized to the fun-
damental frequency, which changes the absolute intensity
(an extensive, additive quantity) to a relative intensity (an
intensive, non-additive quantity). The relative intensity is
much less vulnerable to non-systematic errors. The repro-
ducibility has been tested [31] and reported to be typically
in the range of 0.1% for the intensity of the higher har-
monics relative to the intensity of the response at the
fundamental frequency In/I1. A crucial point is the accu-
racy of the torque transducer at higher frequencies. Torque
transducers are typically specified up to 100 or 600 rad/s
but it is often unknown if internal corrections are applied
within this range. Calibration in the literature results in
80% efficiency of the torque transducer at 70 Hz excita-
tion frequency [33]. In this work, an entire rheometer was
calibrated with respect to the inherent non-linear contri-
butions originating from the instrument itself. The applied
torque, the excitation frequency and the strain amplitude
were varied on a logarithmic scale and the non-linear con-
tributions from the instrument itself ranged from 10−4

to 10−3 at maximum. Obviously the introduction of new
instrumentation will further push these current hardware
limits.

FT-Rheology allows for the averaging of multiple spec-
tra to increase sensitivity, e.g. the magnitude spectra I(ω)
are averaged so that the peaks are all positive and indepen-
dent of the phase of the higher harmonics. The averaging of
phase sensitive spectra needs either mechanical triggering
or phase sensitive averaging. In general, spectral averag-
ing increases the signal to noise (S/N) ratio of the acquired
data proportional to the square root of the number of spec-
tra captured, i.e. S/N ∝ √

nspectra provided systematic noise
is of minor importance. When all precautions have been
taken, S/N ratios up to 105 have been achieved for a sin-
gle scan FT-Rheology experiment. A typical FT-Rheology
spectrum is shown in Figs. 17 and 18 (nonlinear stress
curve and FT-spectrum). With such a large signal to noise
ratio, FT-Rheology can detect very low levels of nonlin-
earity in the FT spectrum. For example, from Fig. 18b, the
time-dependent stress curve at an excitation frequency of
ω1 = 1 rad/s and a strain amplitude of �0 = 0.37 appears as a

single sinusoid. However, a substantial peak in the Fourier
spectra at 3ω1 can be quantified even at this small inten-
sity (I3/I1 < 10−2). Using a high performance ADC card [31],
peaks can be quantified down to 10−4 relative intensity.
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ig. 17. FT-Rheology spectra of polyvinylalcohol (PVA) solution, at T = 5
eproduced by permission of Wilhelm [33], copyright (2002) of WILEY-V
igh performance FT-rheology setups not only have a high
ensitivity with respect to the signal-to-noise ratio, but can
lso quantify the system response up to very high multiples
f the input signal. Currently spectra have been recorded

ig. 18. The stress curve and FT spectrum of hyaluronic acid 1% aqueous solution
mplitude �0 = 10. A non-sinusoidal shape is observed, and the FT-method quant
f the odd higher harmonics. (b) Normalized stress and FT spectrum at a strain a
o a naked eye, the time-dependent stress is similar to a perfect sinusoid. Howeve
20, frequency 1 Hz, where a S/N ratio of 100,000:1 could be achieved.
spanning up to the 151st harmonic for an emulsion sys-
tem (Fig. 19). Obviously such a large amount of higher
harmonic contributions can lead to a rather complex inter-
pretation. Fortunately, among the higher harmonics, the

at frequency, ω1 = 1 rad/s. (a) Normalized stress and FT spectrum at strain
ifies the extent of the nonlinear response via the magnitude (and phase)
mplitude �0 = 0.37, which corresponds to intermediate strain amplitude.
r, the presence of a 3rd harmonic is clearly shown by the Fourier spectra.
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-oil emu
Fig. 19. FT-Rheology spectra at ω1/2� = 0.1 Hz and �0 = 870 of a water-in

relative intensity of the third harmonic (I3/1 ≡ I(3ω)/I(ω),
where ω is the excitation frequency) is generally the most
intense.

4.1.1. New nonlinear quantitative coefficient, Q from
FT-Rheology

If a strain sweep is performed at a fixed frequency, two
main regimes can generally be observed. One is the linear
regime at small amplitude (SAOS, small amplitude oscil-
latory shear) in which the rheological properties do not
depend on the strain amplitude – at least not in an observ-
able way. This is followed by a nonlinear regime in which
viscoelastic properties depend systematically on the strain
amplitude (LAOS, large amplitude oscillatory shear) (see
also Fig. 1). Hyun et al. [42] subdivided the nonlinear region
into two sub-regions, MAOS (medium amplitude oscilla-
tory shear) and LAOS. MAOS is defined as an intermediate
region (between SAOS and LAOS), where a particular scal-
ing behavior is observed for the 3rd harmonic contribution.
The strain amplitude for the MAOS regime typically ranges
from �0 ≈ 0.1 to �0 ≈ 1 for most concentrated polymer solu-
tions and polymer melts, although this range depends on
the excitation frequency and material characteristics. In
this intermediate region, I3/1 is typically very low, around
3 × 10−4 < I3/1 < 10−2, as compared to its magnitude in the
LAOS region which may be as large as 10%.

Within the framework of linear viscoelasticity theory,
I3/1 asymptotically approaches zero because there is, by
definition, no stress distortion. In the nonlinear regime,
however, I3/1 is finite and its intensity increases with strain
amplitude. From the series expansions discussed in Section
3, the Fourier intensities of the nth harmonics grow with
the corresponding odd powers of the strain amplitude (In ∝
�n

0 , n = 1, 3, 5 . . .) in the small and intermediate strain ampli-
tude range, e.g. Eq. (10) (note that each of decomposed sine
and cosine components, G′

nm and G′′
nm, also scale accord-

ing to odd powers of the strain amplitude). Therefore, the

total intensity of the third harmonic normalized by the first
harmonic should be expected to initially scale quadrati-
cally with the strain amplitude (I3/1 ≡ I3/I1 ∝ �3

0 /�1
0 = �2

0 ).
At small and medium strain amplitude, one may write
lsion. Mechanical overtones up to the 151st order could be detected.

this scaling relationship as a function of strain amplitude
[41–43],

log
(

I3
I1

)
= y0 + s log �0 or

I3
I1

= 10y0 �s
0 (24)

Hyun et al. [42,43] reported the experimental value
of s = 2, i.e. a quadratic scaling with strain amplitude
�0 (s = 2 in Eq. (24)) for multiple polymer melts includ-
ing linear polydisperse polypropylene (PP), monodisperse
polystyrene (PS), and comb PS. This scaling was reported
to be independent of molecular weight, molecular weight
distribution (MWD) and imposed excitation frequency (see
also Section 5.1). However, Hyun et al. [41,42] also reported
that the polymers which show strain hardening behavior,
e.g. branched PP, branched HDPE, PLA with epoxy chain
extension agent, and LDPE exhibit a power-law scaling
exponent s < 2. They suggested that this asymptotic log–log
slope of I3/1(�0) is a good measure of the degree of strain
hardening or long chain branching. Liu et al. [127] also
reported that the log–log slope of I3/1(�0) for Polyolefin
elastomer decreases from 2 with increased long chain
branching (LCB) content.

The experimental results which give s /= 2 contradict
the simulation results of canonical constitutive models
such as the Giesekus, exponential Phan-Thien Tanner
(E-PTT), or pom-pom model, which produce s = 2. The
mathematical power law expansion, Eq. (6), also predicts
that the leading-order power-law scaling of I3/1(�0) is two,
i.e. s = 2 in Eq. (24). Discrepancies between experimen-
tal results and theoretical asymptotic predictions are not
unique to the scaling of I3/1(�0), and appear also for linear
rheological properties. For example, in the linear viscoelas-
tic regime it is well known that the storage modulus scales
as G′(ω) ∝ ω2 in the terminal region for viscoelastic liquids.
However, blockcopolymer systems show different terminal
behavior G′(ω) ∝ ωn depending on the microdomain shape,
e.g. disordered structure (n = 2), lamellar structure (n = 1/2),
cylinders (n ≈ 1/3), and cubic (n ≈ 0) [128]. As another

example, for a PP/Clay nanocomposite it has been observed
that the slope of G′(ω) at low frequency approaches zero
with increased exfoliation of the clay layer [129]. We may
therefore expect that some materials may not show the
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imple theoretical prediction that I3/1 ∝ �2
0 . Nonetheless,

ost viscoelastic materials and constitutive models do
how such asymptotic behavior with s = 2 in the medium
mplitude oscillatory shear (MAOS) regime. As additional
xamples, we note that Sim et al. [91] also reported a
uadratic power-law scaling of I3/1 based on molecular
ynamics-like simulations of ER fluids, and Yu et al. [130]
nd Liu et al. [127] reported the same behavior using the
oupled double-convection-reptation with chain stretch-
ng (cDCR-CS) model.

In Fig. 20, we show the variation in I3/1 as a func-
ion of strain amplitude for both simulations (Giesekus

odel and pom-pom model) and experimental observa-
ions (monodisperse linear PS). From the results, it may
e deduced that a normalized third-harmonic nonlinear-

ty can be defined which depends quadratically on strain
mplitude even if there are some exceptional experimen-
al results that need further investigation. Thus Hyun et al.
43] proposed a new nonlinear coefficient Q, defined as

≡ I3/1

�2
0

(25)

By convention, the absolute strain amplitude value is
sed in Eq. (25), not the % strain amplitude. This new
onlinear coefficient provides insight in how a material
esponse develops and transitions from the linear to non-
inear regime. This new nonlinear material coefficient Q(ω,
0) characterizes FT-Rheology and will be a function of
oth strain amplitude (�0) and frequency (ω). However,

ust like other rheological properties such as viscosity (� ≡
12/�̇), first normal stress coefficient (�1 ≡ N1/�̇2), and
econd normal stress coefficient (�2 ≡ N2/�̇2), these mate-
ial coefficients are expected to approach constant values at
ow shear rates; these are commonly called the zero-shear
alues, for example �0, � 1,0, � 2,0 [131]. We can similarly
efine the nonlinear zero-strain value, Q0, as the asymptotic

imiting constant value achieved at low strain amplitude,

0(ω) = lim
�0→0

Q (ω, �0) (26)

Using this coefficient Q0 we can quantify the intrinsic
onlinearity of complex fluids as a function of frequency.

n Fig. 20, the coefficient Q is plotted as a function of strain
mplitude for simulations (Giesekus and pom-pom model)
nd experimental results (monodisperse linear PS melt).

The underlying mathematics of oscillatory shear defor-
ation is very similar to dielectric spectroscopy in which
sinusoidal electric field is applied and the resulting cur-

ent is quantified with respect to the dielectric storage ε′

nd loss ε′′. Increasing the magnitude of the electric field
eads to detectable optical nonlinearities as quantified via
yperpolarizabilities, e.g. (2) or (3). The hyperpolariz-
blity is a material constant independent of the electric
eld. The rheological nonlinear coefficient Q is analogous
o the nonlinear optical coefficient (3) [71]. As is the
ase for the nonlinear optical coefficients, the Q coeffi-
ient does not vanish but rather approaches a constant

alue in the limit of zero strain amplitude. Consequently
his material coefficient reflects the inherent and normal-
zed leading-order nonlinear mechanical properties of the

aterial under investigation.
ience 36 (2011) 1697–1753 1721

The meaning of the nonlinear coefficient Q can be
explored mathematically using the Fourier series, Eq. (8),
and power series, Eq. (10), representations of the nonlinear
stress response under LAOS flow. As a modification to Eq.
(8), the shear stress under nonlinear oscillatory shear from
FT-Rheology can be written as

�(t) = �1 sin(ωt + ı1) + �3 sin(3ωt + ı3) + · · ·
= �1 cos ı1 sin ωt + �1 sin ı1 cos ωt

+ �3 cos ı3 sin 3ωt + �3 sin ı3 cos 3ωt + · · · (27)

From the above equation we can calculate the relative
intensity of the third-harmonic from FT-Rheology as

I3/1 = I3
I1

= �3

�1
=
√

(�3 cos ı3)2 + (�3 sin ı3)2√
(�1 cos ı1)2 + (�1 sin ı1)2

(28)

For the power-law representation of the shear stress
waveform, we refer to Eq. (10) (see also Pearson and
Rochefort [20]),

1st nonlinear term = [G′
11�0 + G′

31�3
0 + O(�5

0 ) + · · ·]

sin ωt + [G′′
11�0 + G′′

31�3
0 + O(�5

0 ) + · · ·] cos ωt (29)

3rd nonlinear term = [G′
33�3

0 + G′
53�5

0 + O(�7
0 ) + · · ·]

sin 3ωt + [G′′
33�3

0 + G′′
53�5

0 + O(�7
0 ) + · · ·] cos 3ωt (30)

These two distinct representations, i.e. Fourier series
from Eq. (8) and power series from Eq. (10), describe the
same nonlinear phenomena, therefore we can obtain the Q
coefficient by inserting Eq. (29) and (30) into (28),

I3
I1

=

√
(G′

33�3
0 + G′

53�5
0 + · · ·)2 + (G′′

33�3
0 + G′′

53�5
0 + · · ·)2√

(G′
11�0 + G′

31�3
0 + · · ·)2 + (G′′

11�0 + G′′
31�3

0 + · · ·)2

=

√
G′2

33�6
0 + G′′2

33�6
0 + O(�8

0 )· · ·√
G′2

11�2
0 + G′′2

11�2
0 + O(�4

0 )· · ·

=

√
G′2

33 + G′′2
33 + O(�2

0 )· · ·√
G′2

11 + G′′2
11 + O(�2

0 )· · ·
× �3

0
�0

= Q (ω, �0) · �2
0

(31)

In the limit of the small-strain amplitudes we thus
obtain the zero-strain nonlinearity, Q0(ω)

Q0(ω) = lim
�0→0

Q (ω, �0) = lim
�0→0

√
G′2

33 + G′′2
33 + O(�2

0 )· · ·√
G′2

11 + G′′2
11 + O(�2

0 )· · ·

=
√

G′2
33(ω) + G′′2

33(ω)√ = |G∗
33(ω)|

(32)

G′2

11(ω) + G′′2
11(ω) |G∗

11(ω)|

From Eq. (32), it can be seen that Q0(ω) is the nor-
malized 3rd nonlinear complex modulus (3rd nonlinear
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in ampl
= 5, sa =
Fig. 20. I3/1 and Q as a function of strain amplitude from medium stra
with G = 1, � = 1, ˛ = 0.3, ω/2� = 1 Hz, (b) integral pom-pom model with q
ω = 4.25 rad/s, T = 160 ◦C.

term) divided by the linear complex modulus (1st nonlin-
ear term). The magnitude of this intrinsic nonlinearity can
be evaluated for any complex fluid, as with any other rheo-
logical properties; for example, Hyun et al. [43] have used
the strain and frequency dependence of the Q coefficient,
Q0(ω) and Q(�0), to distinguish linear PS and comb PS (see
Section 5.1). Further investigations are suggested to more
fully explore the scaling behavior of I3/1 as a function of
strain amplitude for various complex fluids.

4.1.2. Transition between linear and nonlinear
viscoelasticity

The higher-harmonic contributions in LAOS emerge
according to the quadratic scaling behavior discussed in the
previous section, but eventually deviate from this leading
order dependence. As the strain amplitude (�0) increases,
the variation in the higher harmonics, e.g. I3/1(�0) is often
observed to be a sigmoidal function and can empirically be
described via [33]

I3/1(�0) = A

(
1 − 1

1 + B�C
0

)
(33)

In this equation, the parameter A reflects the maxi-
mum intensity of I3/1 at high strain amplitudes (and is
often A = 0.2–0.3), B is approximately the point of inflec-
tion and the parameter C reflects the scaling exponent
(e.g. C = 2 from Section 4.1.1). The sigmoidal behavior of
I3/1 is reminiscent of the empirical equations often used
to describe shear-rate dependent viscosity, which also
show asymptotic limits at low and high shear-rates, e.g.
the Carreau-Yasuda or the Cross models [1,2,132]. The
parameters used in these empirical equations reflect the
underlying physics, including asymptotes at low and high
deformations and the pivot point where nonlinearities
appear. Non-sigmoidal behavior has also been observed
for I3/1(�0). For example, with dispersed systems the sig-
moidal behavior of I3/1 has shown a “bump” or “overshoot”

at intermediate strain amplitude due to the disperse phase
[59]. This non-sigmoidal behavior is obtained for systems
in which strong interactions occur between a viscoelas-
tic matrix and a dispersed phase, e.g. the major volume
itude (�0 ≈ 0.1) to large strain amplitude (�0 ≈ 10). (a) Giesekus model
6 and sb = 20, ω/2� = 0.1 Hz, and (c) monodisperse linear PS (PS 100K) at

phase and carbon black. Nonlinearity therefore reflects the
superposition of two responses: one qualitatively common
to all “pure” (unfilled) polymers and another related to
the “filler” response [60]. Leblanc suggested a simple five
parameter equation for the behavior of such highly filled
rubber systems [59] (original equation is modified by this
review format; see also Section 5 for more detail),

In/1(�0) = (In/1,m + ˛�0) × {[1 − exp(−˛�0)]In/1,m

+ B(C�0)D−1 exp[−(C�0)D]} (34)

The above equation consists of three members: one
describing the asymptotic high strain behavior

(In/1,m + ˛�0) (35)

one describing the matrix response, the so-called polymer
component

(In/1,m + ˛�0) × [1 − exp(−˛�0)]In/1,m (36)

and one describing the filler response, the so-called filler
component

(In/1,m + ˛�0) × B(C�0)D−1 exp[−(C�0)D] (37)

At low strain amplitude, the nonlinearity is essentially
controlled by the filler component (dispersed phase) and at
higher strain amplitude the influence of the filler vanishes
and the nonlinearity is controlled by the continuous phase
of the polymer component [59].

Any suitable functional form of I3/1(�0), whether
sigmoidal or non-monotonic, must be continuous and
differentiable. These functions describe an asymptotic
transition from the linear (SAOS) to the non-linear regimes
(MAOS and LAOS) and the deviation from the limiting
value is a measure of the limit of the linear response. This
result is striking, since it suggests that any improvement
in instrumentation could affect the apparent limit of the

linear regime for a specific sample. Within the concept of
the Q coefficient and the high sensitivity of FT-Rheology
a linear regime is only the asymptotic approximation for
vanishing nonlinearities. Having e.g. Q0 = 0.01 and a strain
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mplitude of �0 = 0.01 the expected non-linearity of the
hird-harmonic is I3/1 = 10−6. This value is outside the
etection range of any current commercial rheometer, but

s evidently nonzero.
This whole argument is recognition that the linear

esponse is only achieved for vanishing deformations, and
herefore never precisely achieved in any real experi-

ent. Nevertheless it is commonly accepted that the linear
esponse can accurately describe the limiting mechanical
esponse. An alternate definition of the linear viscoelastic
egime in oscillatory shear might be the regime in which
he experimental response obeys the leading-order non-
inear scaling and can be extrapolated to the limit of zero
train amplitude. Additionally, one may define a criteria
hat the nonlinearity in the signal response must be smaller
han a critical threshold, e.g. I3/1 < 0.5% (∼5 × 10−3) as deter-

ined from FT-Rheology, in which case the linear response
i.e. the moduli G′ or G′′, or the intensity I1) would describe
he overall response by 99.5%. This new definition of the
inear regime under oscillatory conditions may be helpful
n the unambiguous determination of the limit of a linear
esponse in a clear and reproducible way that is indepen-
ent of the instrumentation.

.1.3. Even harmonics of the normal stress differences
In the nonlinear regime, the normal stress differences

an also show higher harmonic contributions (cf. Section
.4). FT-Rheology can also quantify the even higher har-
onic intensities (N1,0, N1,2, N1,4, . . .) and phase angles

ı1,2, ı1,4, . . .) from the time-dependent first normal stress
ifference, Eq. (22). To illustrate this, in Fig. 21 we plot
he FT intensity spectrum of the normal stress difference
in which even higher harmonics dominate) measured
xperimentally for an entangled polymer solution and
multimode Giesekus model simulation [124,125]. The

igher order even harmonics grow with an even power of
he strain amplitude (In(= N1,2n) ∝ �n

0 , n = 2, 4, 6 . . ., I0 is
he non-zero mean or average normal stress) in the small
nd intermediate strain amplitude range. It is difficult to
xperimentally observe that the nth harmonics grow with
n even power of strain amplitude due to technical limi-
ations (small rectangular box in Fig. 21b). From the multi

ode Giesekus model, however, this terminal scaling can
e directly observed (Fig. 21b). It can be observed that the

ntensity of the 4th harmonic normalized by the 2nd har-
onic of first normal stress difference scales quadratically
ith the strain amplitude (N1,4/N1,2 ≡ I4/I2 ∝ �4

0 /�2
0 =

2
0 ), in the same way that the shear stress varied (i.e.

3/�1 ≡ I3/I1 ∝ �3
0 /�1

0 = �2
0 ) in the region we have defined

s medium amplitude oscillatory shear (MAOS). We can
herefore define once again a nonlinear normal stress coef-
cient (≡ I4/2/�2

0 ), e.g. like Q coefficient (≡ I3/1/�2
0 ) for

hear stress using the quadratic strain amplitude scaling
f the normalized harmonic intensity.

.1.4. Even harmonics within the shear stress

As discussed in Section 3.1, only odd harmonics of

hear stress are expected for typical and idealized mate-
ial responses to LAOS. However, even harmonics can be
bserved experimentally, e.g. Figs. 17, 18a, 19 show small
ience 36 (2011) 1697–1753 1723

peaks in the even higher harmonics of the Fourier trans-
formed shear stress. These even harmonics are relatively
small compared with the odd higher harmonics. Simi-
larly, in Fig. 21a, we can also observe peaks at odd higher
harmonics in the first normal stress difference. The occur-
rence of even higher harmonics within the shear stress
(or odd higher harmonics of normal stress difference) in
the response signal is often considered as an experimental
artifact and the peaks are neglected [14].

However, even harmonics can be reproducibly gener-
ated and quantified using the FT-Rheology technique [5].
Wall slip is expected to be one of the main reasons for the
occurrence of even harmonic contributions [22,133]. Gra-
ham [74] demonstrated the occurrence and growth of even
harmonics in a dynamic wall slip model. This leads to a
break in the symmetry of the shear flow, and the material
response no longer meets the symmetry of the measur-
ing geometry. These calculations support the experimental
investigations of Adrian and Giacomin [23]. Yoshimura and
Prud’homme [134] used a simple slip model at the bound-
ing surface and demonstrated that, in general, slip at the
bounding surfaces does not produce even harmonics. Atalık
and Keunings [77] have also shown that wall slip is not a
necessary condition for the occurrence of even harmon-
ics using the Giesekus model (see Appendix C) with no-slip
boundary conditions. They concluded that a combination of
elasticity (i.e. a finite Weissenberg number = ��0ω, where �
is the relaxation time, �0 is the strain amplitude, ω is angu-
lar frequency) and shear thinning yields transient even
harmonics in shear stress. The life span and intensity of
these even harmonics were considerably extended by iner-
tia. Wilhelm et al. [30] have also explained the appearance
of even harmonics arising from a time-dependent mem-
ory effect or a nonlinear elastic contribution in the system.
These results are in contrast with the results of Yosick et al.
[135]. Yosick et al. [135] reported that inertia does not cre-
ate even harmonics using the upper convected Maxwell
(UCM) model supplemented with a kinetic rate equation.
Mas and Magnin [136] have argued that a finite yield stress
can also be a reason for the occurrence of even harmonics.
Yu et al. [130] report that the yield stress is not a suffi-
cient condition to cause even harmonics from the Bingham
model even though they observed some even harmonic
contributions at the lower limits of their experimental res-
olution.

In contrast with the above macroscopic points of view,
Sagis et al. [137] explained the possibility of even harmon-
ics from a microscopic point of view. They incorporated
an orientation tensor which represents an anisotropic
internal microstructure with constitutive equations for
an elastic material containing anisotropic rigid particles.
They also predicted that the intensity of the even har-
monics first increases to a maximum as strain amplitude
increases, beyond which the intensity decreases contin-
uously with strain amplitude. Their experimental data
for a 4 wt% Xanthan gel also showed significant even
harmonic contributions with similar trends as strain ampli-

tude increased. The authors concluded that the even
harmonics in the stress response arise as a consequence
of changes in the structure of the material arising from
shear-induced alignment of the anisotropic colloidal par-



1724 K. Hyun et al. / Progress in Polymer Science 36 (2011) 1697–1753

Fig. 21. (a) 3D plot for the FT of the oscillating first normal stress difference for a 4 wt% PEO solution with a molecular weight 2 × 106 g/mol. There are
amplitu
train am
gher ha
trace contributions from the odd harmonics for the entire range of strain
present in the nonlinear shear stress.) (b) FT intensity as a function of s
multi-mode Giesekus model [124]. Experimental measurements of the hi

ticles in the system. Sim et al. [91] also investigated the
appearance of even harmonics of electrorheological flu-
ids (ER fluids) using numerical simulation. Sim et al. [91]
concluded that the appearance of even harmonics arose
from the abrupt release of shear stress during the struc-
tural reformation process of the anisotropic microstructure
in an ER fluid. Carotenuto et al. [46] report even har-
monics which appeared to be material independent for
an immiscible polymer blend system. They investigated
the second harmonic for different samples (pure PIB,
pure PDMS, PDMS/PIB-1/9) at different temperatures and
geometries (cone and plate and plate and plate). They con-
cluded that the second harmonics they observed could be
attributed to imperfect alignment of the upper and lower
plates of the rheometer. As we have noted above, it is
difficult to accurately measure the relatively small even
harmonic contributions compared with the high intensity
odd harmonic contributions to the shear stress. For com-
pleteness, we note that the Fourier spectrum of strain (for
a strain-controlled test) should not show higher harmonic
contributions. However, there are always technical limits
to producing perfect sinusoidal signals [57]. These defects
which come from non-sinusoidal strain can affect the stress
curve itself [95]. Therefore, imperfect excitation can also
create even higher harmonics.

As of this writing, we conclude that analysis of even
harmonics in the shear stress can give some additional
information for microstructured materials (e.g. orien-
tation) but care must be taken to avoid systematic
experimental artifacts (e.g. fluid inertia, imperfect exci-
tation, or misalignment). However the origin of even
harmonics may not always be clear, therefore additional
investigation is needed before a definitive conclusion can

be reached. Similar comments apply to reports of odd har-
monics in the first normal stress difference. In Table 1 we
summarize the current understanding of the presence of
even harmonics in the shear stress.
des tested. (This non-idealized behavior is similar to the even harmonics
plitude. The experimental data are compared with simulations using a

rmonic intensities (I4, I6) have severe errors at low strain amplitude.

4.2. Characteristic functions

A simple physical interpretation of the oscillatory stress
waveforms in terms of the Fourier amplitudes and phases
is not always possible. In this section we review an inter-
pretive method which considers the whole frequency
spectrum as a superposition of different overtone sub
spectra that characterize different non-linear rheological
effects. For simplicity, four canonical rheological effects
are considered: a base linear viscoelastic response, strain
hardening, strain softening, and stick-slip (e.g. asymmetric
shear-banding or wall slip). The waveforms which corre-
spond to these known rheological phenomena are referred
to as characteristic functions [5]. These four characteristic
waveforms, and the associated Fourier spectra, are shown
in Fig. 22. The total stress response can then quantitatively
be described by a superposition of these characteristic
functions.

The relative contributions are based on the magnitude
of the normalized higher harmonics (In/I1) and the deter-
mination of the corresponding phases ın of the higher
harmonics. The measured signal can be fitted in the time
domain or the frequency domain with the four charac-
teristic contributions (Fig. 22 on the top). Specifically,
these characteristic contributions are a sinusoidal func-
tion describing the linear response, a rectangular function
describing strain softening, a triangular function describing
strain hardening, and finally a saw tooth function describ-
ing shear bands or wall slip (see Eqs. (38)–(41) below).
This final characteristic function is the only one that can
represent the even harmonics contributions within stress
described in the previous section. The strain softening
contribution (a square wave) and the strain hardening con-

tribution (a triangular wave) only have peaks at odd higher
harmonics of the excitation frequency. One main distinc-
tion between the square and triangle functions is the rate
of decay in the intensity of the higher harmonics. In the



K. Hyun et al. / Progress in Polymer Science 36 (2011) 1697–1753 1725

Table 1
The summary of research regarding the appearance of even harmonics in shear.

The origin of even harmonics Reference Comment

Even harmonics are
within the range of
experimental error

• Onogi et al. [14]
-Carbon black dispersed in PS
solution

• Even harmonics are
negligibly small

• Carotenuto et al. [46]
-Immiscible polymer blends

• Even harmonic is attributed
to an imperfect alignment of
geometry

Macroscopic
view

Wall
slip

• Yoshimura and Prud’homme
[134]

• Wall slip is not a sufficient
condition

• Hatzikiriakos and Dealy
[22,133]
• Graham [74]
-Simulation with dynamic wall
slip model (memory slip)

Inertia
• Yosick et al. [135]
-Simulation with the UCM
model supplemented with a
kinetic rate equation

• Fluid inertia produces no
even harmonics

• Atalık and Keunings [77]
-Simulation with Giesekus
model with no-slip boundary
condition and
Johnson-Segalman models

• The combined effects of
inertia, elasticity, and shear
thinning. Inertia increases even
harmonics

Yield
stress

• Mas and Magnin [136] • Yield stress fluid
• Yu et al. [130]
-Simulation with Bingham
model

• Yield stress is not a sufficient
condition

Microscopic
view

Anisotropic
microstructure
- the change of
microstructure

• Sagis et al. [137]
-Simulation with constitutive
equation for an elastic material
with anisotropic rigid particle
and experimental results of
Xanthan gel

• The even harmonics are the
result of a change in the
structure of the material

• Sim et al. [91]
-Simulation of ER materials

• The abrupt change of shear
stress during reformation
process

Fig. 22. The four characteristic functions (from left to right): a sine, a rectangular, a triangular and a saw tooth shaped wave, representing viscoelastic,
strain softening, strain hardening, and shear bands. The time domain data is displayed on the top (a) and the corresponding FT magnitude spectra in the
bottom (b). Reproduced by permission of Klein et al. [5], copyright (2007) of American Chemical Society.
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case of strain softening (rectangular wave) the intensities
of the higher harmonics decay as 1/n (n = 1, 3, 5, . . .), and
in the case of strain hardening (triangle wave) they decay
as 1/n2 (n = 1, 3, 5, . . .). In addition to the scaling in the rate
of decay, the phase of the higher harmonics is also differ-
ent. For the rectangular function the phases of the higher
harmonic contributions are the same (for ır = 0), for the tri-
angular function they alternate between 0 and � (for ıl = 0).
The fourth characteristic function captures the influence of
shear bands or wall slip contributions. Peaks are present at
all multiples of the excitation frequency and the intensity
decreases progressively by a factor of 1/n (n = 1, 2, 3, . . .).

The linear response function is given by:

�l(t) = Al sin(ω1t + ıl) (38)

The periodic rectangular function is given by:

�r(t) = Ar
4
�

(
sin(ω1t + ır) + sin 3(ω1t + ır)

3

+ sin 5(ω1t + ır)
5

+ · · ·
)

(39)

The periodic triangular function is given by:

�t(t) = At
4
�

(
sin(ω1t + ıt) − sin 3(ω1t + ıt)

32

+ sin 5(ω1t + ıt)
52

− · · ·
)

(40)

The periodic saw tooth is given by:

�st(t) = Ast2

(
sin(ω1t + ıst) − sin 2(ω1t + ıst)

2

+ sin 3(ω1t + ıt)
3

− · · ·
)

(41)

The superimposed total signal is given by:

�(t) = �l(t) + �r(t) + �t(t) + �st(t) (42)

By superimposing these different contributions in Eq.
(42), the measured time domain signal of the torque
response can be reconstructed. Both the reconstructed
time data and the corresponding FT representation of the
experimental signal are used to determine the different
contributions of strain softening and hardening. This novel
analysis, based on FT-Rheology experiments, gives easy
access to the quantification of the non-linear mechani-
cal regime with respect to strain hardening, softening and
shear bands.

4.3. Stress decomposition

The viscoelastic stress measured in oscillatory shear
flow can readily be decomposed into elastic and viscous
parts in the linear regime (i.e. SAOS), however, it is not

easy to unambiguously decompose the stress in the non-
linear regime (i.e. LAOS). FT-Rheology does not decompose
the nonlinear shear stress in terms of the deformation
inputs themselves, but rather operates on the time-domain
cience 36 (2011) 1697–1753

representation of the stress waveform, �(t), and quanti-
fies nonlinear viscoelastic responses through intensity and
phase angle of higher harmonics. The higher harmonics
from FT-Rheology are used individually to interpret non-
linear behavior, especially the third harmonic contribution
(I3/1 or Q coefficient). The characteristic functions intro-
duced in the previous section may be thought of as a set
of “basis functions” used to represent a superposition of
different physical phenomena, however in contrast to the
harmonic series considered from FT-Rheology [69], they
are not mutually orthogonal (in a mathematical sense) nor
is the set of functions a unique basis.

Cho et al. [66] used symmetry arguments to propose a
method of decomposing the total stress in non-linear mea-
surements into a superposition of elastic stress � ′(�) (a
single-valued function of strain) and viscous stress � ′′(�̇) (a
single-valued function of strain-rate). This is related to Eq.
(4) and the corresponding discussion in Section 3, in which
the nonlinear shear stress is expanded by a polynomial or
Taylor expansion as a function of the strain and strain-rate
with the assumption that shear stress must be a function
of the direction of shearing. Eq. (4) can be reformulated as

�(x, y) =
∑
i=1

∑
j=1

[C2i−1,2(j−1)x
2i−1y2(j−1)

+ D2(i−1),2j−1x2(i−1)y2j−1] (43)

where x ≡ � = �0 sin ωt and y ≡ �̇/ω = �0 cos ωt.
From Eq. (43), the relationship �(x, − y) = − �( − x, y) can

be also confirmed. With this symmetry, shear stress can be
decomposed as follows:

�(x, y) = �(x, y) + �(x, −y)
2

+ �(x, y) + �(−x, y)
2

= �OE(x, y) + �EO(x, y) (44)

In Eq. (44), the first and the second subscript denote the
parities of x and y, respectively. Hence �OE(x, y) is an odd
function (O) for x and even (E) for y and �EO(x, y) is an even
function for x and odd for y. From Eq. (43), we can calculate
�OE and �EO as follows:

�OE(x, y) =
∑
i=1

∑
j=1

C2i−1,2(j−1)x
2i−1y2(j−1),

�EO(x, y) =
∑
i=1

∑
j=1

D2(i−1),2j−1x2(i−1)y2j−1 (45)

Since the stress �OE exhibits odd symmetry with respect
to x and even symmetry with respect to y, whereas �EO
exhibits even symmetry with respect to x and odd sym-
metry with respect to y, it is clear that over one cycle we
have:∮

�OE dx = 0,

∮
�EO dy = 0 (46)

Plots of �OE vs. x and �EO vs. y therefore do not enclose
any area in contrast to plots of � vs. x or � vs. y. This implies

that �OE is only a function of x (strain) and �EO is only a func-
tion of y (strain-rate), therefore �OE and �EO can be referred
to as the elastic stress � ′(x) and viscous stress � ′′(y), respec-
tively. Using the relation x2 + y2 = �2

0 in Eq. (45), it can be
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onfirmed that the elastic stress � ′ is an odd function of x
strain) and the viscous stress � ′′ is an odd function of y
strain-rate). The functional form of each stress contribu-
ion depends on the oscillatory inputs of strain amplitude
0 and frequency ω,

′ = � ′(x; �0, ω), � ′′ = � ′′(y; �0, ω) (47)

In Fig. 23, decomposition of the total shear stress into � ′

nd � ′′ are plotted for a polypropylene melt at 170 ◦C and
rad/s. These elastic and viscous stresses are also related
irectly to the Power series as follows:

′ =
∞∑

k=0

g′
2k+1(ω, �0)x2k+1, � ′′ =

∞∑
k=0

g′′
2k+1 (ω, �0) y2k+1

(48)

The work WE done by the elastic stress is stored in the
ystem and completely released during a cyclic deforma-
ion. In oscillatory shear flow, if � ′ is truly an elastic stress
hen the following equation should be satisfied:

E ≡
∫ t=2�/ω

t=0

� ′ dx = 0 (49)

Eq. (49) is easily proved because from Eq. (48) we have

E =
∫ t=2�/ω

t=0

∞∑
k=0

g ′
2k+1(ω, �0)x2k+1 dx =

[
∞∑

k=0

g ′
2k+1

2k + 2
x2k+2

]t=2�/ω

t=0

=

[
∞∑

k=0

g ′
2k+1

2k + 2
�2k+2

0 sin2k+2 ωt

]t=2�/ω

t=0

= 0 (50)

It should be noted that g′
1(ω, �0) and g′′

1(ω, �0) are not,
trictly speaking, storage and loss moduli associated with
onlinear viscoelasticity, although they do reduce to the

amiliar linear viscoelastic moduli in the limit �0 → 0. This
s because the polynomial expansions in Eq. (48) are not
rthogonal. The principal achievement of stress decompo-
ition (SD) is to decompose the nonlinear viscoelastic stress
easured in LAOS tests into physically meaningful elastic

nd viscous components. This alternate representation is
chieved by considering the stress to be a function of the
ndependent deformation inputs of strain and strain-rate,
.e. �(�, �̇), rather than the initial time-domain representa-
ion �(t).

This original stress decomposition approach suffers
rom non-orthogonality of polynomial regression fitting to
alculate nonlinear coefficients in Eq. (48). What is prefer-
ble is to use an orthogonal polynomial basis such as the
egendre or the Chebyshev polynomials. Use of Chebyshev
olynomials of the first kind seems to be the best and this
pproach is discussed in more detail in Section 4.4. When
pplying the stress decomposition approach to measure-
ents of the first normal stress difference, difficulties are
ncountered both in the experimental measurement and
n the theoretical analysis. It is currently not clear whether
ormal stress differences can usefully be decomposed into
lastic and viscous parts.
ience 36 (2011) 1697–1753 1727

4.4. Chebyshev polynomial representation

Although the decomposition of the nonlinear stress
response can be carried out for any complex material,
the challenge is to obtain a physical understanding of the
higher harmonic components of the stress response. It has
recently been demonstrated that a direct physical inter-
pretation can be obtained by representing the individual
curves of the decomposed elastic stress � ′ and viscous
stress � ′′ (introduced in Section 4.3, see Fig. 24) with
an orthogonal set of polynomial functions, such as the
Chebyshev polynomials of the first kind [69,138]. These
polynomials represent a set of basis functions that can
describe the measured material stress in the orthogonal
space formed from the oscillating strain and strain-rate.
This simplifies the description of the material response
because it is no longer necessary to consider the explicit
(and superfluous) temporal dependence in the stress, and
instead focus on how the material response varies with
magnitude and rate of deformation.

The decomposed stress curves inherently have odd
symmetry with respect to either � or �̇ = 0. The first
few Chebyshev functions with odd symmetry are T1(x) = x,
T3(x) = 4x3 − 3x, and T5(x) = 16x5 − 20x3 + 5x. A series of
Chebyshev functions, with corresponding weighting coef-
ficients, is then used to represent the elastic and viscous
stresses according to

� ′(x̄) = �0

∑
n=odd

en(ω, �0)Tn(x̄)

� ′′(ȳ) = �̇0

∑
n=odd

vn(ω, �0)Tn(ȳ)
(51)

where x̄ = x/�0 = �/�0 and ȳ = y/�0 = �̇/�̇0 represent the
instantaneous strain and rate of strain suitably normal-
ized with the magnitude of the input values (x ≡ �0 sin ωt
and y ≡ �0 cos ωt = �̇/ω are defined in Eq. (43), Section
4.3). The Chebyshev weighting coefficients en(ω, �0) and
vn(ω, �0), i.e. italic English letters ‘e’ and ‘v’, respectively
describe the elastic and viscous contributions and have
units of modulus and viscosity. The use of an orthogonal
polynomial series may be contrasted with the alternate
option of using a polynomial series of arbitrary order,
e.g. � ′(�) = a1 + a3�3 + a5�5 + · · · + am�m, in which the coef-
ficients am are fit by the method of least squares [66,139].
Such regressions result in coefficient values am which
depend on the highest order of the polynomial used for
the fit, in contrast to the use of orthogonality relations
that enable unique determination of the Chebyshev coeffi-
cients en and vn [68]. It is important that coefficients at each
order n can be determined independently of the highest
harmonic of interest because improvements in the sig-
nal/noise ratios of LAOS measurement techniques continue
to reveal the presence of ever-higher harmonics, e.g. har-
monics as high as n = 151 (see Fig. 20) can now be observed.
The Chebyshev polynomials also represent a near-optimal
basis set for capturing the variation in continuous func-

tions such as � ′(�), � ′′(�̇), and thus enable interpolation of
material properties to arbitrary intermediate strains.

The third-order coefficients determine the concavity
of each curve (to leading order), and it is this curva-
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polypro
0 sin ωt
Fig. 23. Decomposition of shear stress into elastic and viscous part for
complex modulus in the linear regime. (a) Elastic stress vs. strain x ≡ � = �
Cho et al. [66], copyright (2005) of the Society of Rheology.

ture of the measured material response with respect
to strain or strain-rate which corresponds to a physical
interpretation of the nonlinearity within a steady-state
oscillatory cycle (intra-cycle nonlinearities of a nonlin-
ear waveform). For the following discussion we focus on
the positive domains (� > 0, �̇ > 0). The curvature (sec-
ond derivative) of the elastic stress � ′(�) with respect to
input strain amplitude can indicate either strain-stiffening
(positive concavity; d2� ′/d2� > 0), strain-softening (neg-
ative concavity; d2� ′/d2� < 0), or linear elastic behavior
(zero concavity). Similarly, the curvature of the viscous
stress � ′′(�̇) indicates shear-thickening (positive curva-
ture; d2� ′′/d2� > 0) or shear-thinning (negative curvature).
The magnitude of each Chebyshev coefficient typically
decays monotonically with n, therefore to leading order
positive curvature results for e3, v3 > 0, whereas negative
curvature results for e3, v3 < 0.

The Chebyshev coefficients can be directly related to
the more traditional Fourier coefficients described in Sec-
tion 4.1. Although there is no explicit time dependence
apparent in Eq. (46), the temporal variation in the stress
can always be recovered by noting that ȳ = cos ωt and
x̄ = sin ωt, along with the identities Tn(cos �) = cos(n�) and
Tn(sin �) = sin(n�)( − 1)(n−1)/2 (n: odd). These Chebyshev
coefficients are thus directly related to the Fourier coef-
ficients of Section 4.1, Eq. (9), e3 = −G′

3 and v3 = G′′
3/ω.

Similar identities are available for all of the higher Cheby-
shev coefficients [68]. The Fourier coefficients represent
a complete mathematical description of the time-domain
response, but the physical interpretation of higher har-
monics is only revealed by considering the Chebyshev
coefficients in the orthogonal space formed by the input
strain and strain-rate.

The utility and interpretation of the Chebyshev coef-

ficients is illustrated by examining a prototypical single
mode nonlinear viscoelastic constitutive equation, the
Giesekus model (see Appendix C). For a polymer solution,
the Giesekus model captures the independent contribu-
pylene melt at 170 ◦C and 1 rad/s. The shear stress is normalized by the
, (b) viscous stress vs. y ≡ �̇/ω = �o cos ωt. Reproduced by permission of

tions of both a polymer stress (�p) and a Newtonian solvent
with viscosity �s [131],

�s = 2�sD (52)

The total stress tensor is then

� = �s + �p (53)

This model (in multi-mode form) has been used by
Calin et al. [140] to describe LAOS experiments with vis-
coelastic polymer solutions based on polyacrylamide [5].
Here the stresses predicted by the nonlinear Giesekus
model are simulated under imposed oscillatory simple
shear strain � = �0 sin ωt, and analyzed as described previ-
ously [68]. For illustrative purposes, the following model
parameters are used: �1 = 1 s, �s = 0.01 Pa s, �p = 10 Pa s,
and the nonlinear parameter ˛ = 0.3. These four inde-
pendent parameters result in a retardation time scale
�2 = �1�s/(�s + �p) = 0.001 s and a polymer shear modulus
G = �p/�1 = 10 Pa. The Giesekus model for polymer solutions
reduces to the linear Jeffreys model in the linear viscoelas-
tic regime [2]. A frequency sweep in the linear regime
(�0 = 10−3) is shown in Fig. 24a. A strain-sweep at fixed
frequency (�1ω = 1) is shown Fig. 24b–f. This strain-sweep
corresponds to the cross-over frequency at which G′ = G′′

in the linear regime. Fig. 24b shows the first-harmonic vis-
coelastic moduli, G′

1(�0) and G′′
1(�0). Both moduli decrease

as the strain amplitude is increased, and this is referred to
as type I behavior (see Section 3.1). In other words, one
observes inter-cycle strain-softening of G′

1 and inter-cycle
shear-thinning of G′′

1.
The coarse-level description of the actual material

response using the first-harmonic moduli alone is insuf-
ficient to completely understand the nonlinear LAOS
response. The full oscillatory response at each imposed

strain amplitude is first revealed by presenting the raw
steady-state oscillatory data in the form of parametric
plots, correctly referred to as “Lissajous-Bowditch curves”
[69] but for convenience we will simply use the term “Lis-
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Fig. 24. Giesekus model simulation, characterized by LAOS. (a) Linear viscoelastic frequency sweep for �0 = 10−3, points from numerical simulation of the
Giesekus model, lines from analytical solution to Jeffreys model. (b–f) LAOS strain amplitude sweep at �1ω = 1. (b) Coarse description using first-harmonic
viscoelastic moduli shows a Type I response with strain thinning in both moduli. A more complete characterization is shown by Lissajous curves and
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hebyshev coefficients, characterizing the model from the elastic persp
armonic coefficients are represented as n = 3 (�), n = 5 (�), and n = 7 (�)
iscous coefficients (f).

ajous curves.” Elastic Lissajous curves are presented in
ig. 24c, and these plots display the total stress �(t ; �0,
) (hysteretic loops) and the elastic stress (single-valued

unctions � ′(�(t)) shown by red dashed lines) as the strain
aries. In Fig. 24d we show the corresponding viscous

issajous curves; i.e. parametric plots of stress vs. strain-
ate; the total stress �(t ; �0, ω) (hysteresis loops) and the
orresponding viscous stress � ′′(�̇(t)) (single-valued blue
otted lines). The curvature in the decomposed stress con-
and e), and the viscous perspective (d and f). In (d) and (f) the higher
filled symbols are used for elastic coefficients (e) and open symbols for

tributions (red and blue lines) indicates the nature of the
intra-cycle nonlinearities that contribute to the evolution
of the polymer stress, and lends itself to a physical inter-
pretation in terms of strain-hardening/softening, etc.

Quantitative values of the elastic and viscous Cheby-

shev coefficients for this simulation are shown in Fig. 24e
and f, normalized by the first-harmonics as en/e1 and
vn/v1. From the third-order coefficients, it is observed that
the initial elastic nonlinearity is strain-softening (e3 < 0),
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but this is followed by strain-stiffening (e3 > 0) at larger
imposed strains. The intracycle viscous nonlinearity is
shear-thickening at this frequency, �1ω = 1, as indicated by
the sign of v3 > 0.

The signs of the third-order Chebyshev coefficients are
related to an alternate but equivalent representation of the
nonlinear stress response in the time-domain. The stress
output can be expressed by the magnitude and phase shift
(similar to Eq. (8)), so that �(t) = �0

∑
|G∗

n| sin(nωt + ın),
where the complex modulus at each order n depends on
both imposed strain and frequency, and the phase shift ın

is referenced to the input strain � = �0 sin ωt. Trigonomet-
ric expansion of this expression gives e3 = −|G∗

3| cos ı3 and
v3ω = |G∗

3| sin ı3 for the third-order harmonics; thus the
magnitude of the single parameter ı3 conflates the nature
of both viscous and elastic nonlinearities. Physical interpre-
tation of the third-harmonic phase angle (ı3) as revealed
by the signs of the Chebyshev coefficients, is sketched dia-
grammatically in Fig. 25. Note that a given value of ı3 can
be simultaneously associated with both elastic and viscous
nonlinearities, e.g. ı3 = 45◦ corresponds to viscous shear-
thickening and also elastic strain-softening.

As we noted in Section 3.3, consideration of the phase
angle ı3 of the third harmonics helps understanding of the
leading order influence of material nonlinearities on the
shape of stress waveforms at large strain amplitude (see
Figs. 8 and 9). However care must be taken to know how
such phase angles are defined; here the phase angle rel-
ative to the input strain is used, ı3, in contrast to Fig. 9
which used the phase angle relative to the fundamental
harmonic of the stress output ı′

3. The Chebyshev decom-
position naturally references the total system output to the
input deformation.

The utility of the Chebyshev representation was
recently demonstrated in the explanation of secondary
loops (self-intersection) of Lissajous curves, interpreting
the behavior with elastic stress overshoot [141]. Experi-
mental measurements to demonstrate the advantages of
the Chebyshev polynomial representation are presented
in Section 5.3.3 (application to a biopolymer gel), and
independent experimental studies are beginning to be pub-
lished, e.g. [142,143].

4.5. Viscoelastic moduli in the nonlinear regime

The familiar viscoelastic moduli G′ and G′′ are clearly and
uniquely defined only for the linear viscoelastic regime in
which the stress response is a single-harmonic sinusoid. In
the nonlinear regime the definition of viscoelastic moduli
is not unique [144]. Here we review various methods of
determining viscoelastic moduli from oscillatory data and
discuss the interpretation in LAOS.

Methods for calculating viscoelastic moduli can be
grouped into two categories: full-cycle methods and local
methods. Full-cycle methods require at least one entire
cycle of oscillatory data (or a half-cycle which is then mir-
rored), and include: (i) first-order Fourier or Chebyshev

coefficients, which are defined by orthogonality relation-
ships, e.g. G′

1 = ω/(��2
0 )
∮

�(t)�(t) dt, and are the common
output from commercial rheometers (note that in prac-
tice various methods can be used for determining G′

1, as
cience 36 (2011) 1697–1753

discussed by Franck et al. [145]); (ii) the so-called general-
ized elastic modulus G′

N ≡ � ′
max/�0 introduced by Cho et al.

[66], in which � ′
max may occur at any value of instantaneous

strain; (iii) a single-harmonic sine wave regression fit to the
oscillatory stress curve �(t ; �0, ω), with elastic coefficient
denoted as G′

SR; (iv) a first order polynomial regression fit to
the elastic stress-strain curve � ′(�), denoted as G′

LR for lin-
ear regression; and (v) a polynomial regression fit of degree
M > 1 in which the linear coefficient is denoted as G′

PR (for
polynomial regression).

In contrast to full-cycle methods, local methods charac-
terize the elastic modulus at a pre-defined instantaneous
strain on a Lissajous curve and may equate to either a secant
modulus or a tangent modulus. As described by Ewoldt
et al. [68,69], two particularly useful measures of the non-
linear elastic modulus of a material can be determined
from the raw stress curve of �(t) vs. �(t). At the minimum
imposed strain the tangent modulus, or minimum strain
modulus, can be defined as G′

M ≡ d�/d� at � = 0. At the
largest imposed strain the secant modulus, or large strain
modulus, is defined as G′

L ≡ �/� at � = �0. These measures
are both identically equal to the elastic modulus G′ for a
linear viscoelastic response. An additional local measure
of elastic modulus can be determined from the decom-
posed elastic stress curve � ′(�). It has been suggested that
the differential elastic modulus (or tangent modulus) at
the largest imposed strain be defined as G′

K ≡ d� ′/d� at
� = �0 [69]. All of the methods noted above will accu-
rately determine the elastic modulus G′ associated with
the linear viscoelastic regime, but results may be distinctly
different for a nonlinear response. Analogous viscous mod-
uli (dynamic viscosities) can also be calculated from each
methodology described above.

Table 2 shows the use of these methods to calculate the
elastic moduli for the response of the Giesekus model at
�1ω = 1 and �0 = 10−3, 3.16, 10 (using the model parameters
described in Section 4.4). Each method results in the same
value of elastic modulus in the linear regime, �0 = 10−3,
with some small variation due to different susceptibilities
to numerical inaccuracy. In the nonlinear regime the mod-
ulus calculation is not unique, and different methods result
in different values of elastic modulus.

The local measures have a precisely defined inter-
pretation, since each is associated with a pre-defined
instantaneous strain (� = 0 or � = �0). Full-cycle measures
can have various interpretations, e.g. as average measures
in the cases of G′

1, G′
SR, and G′

LR. These competing def-
initions may also overlap; for example, the generalized
modulus G′

N is equivalent to the large strain modulus G′
L if

the maximum elastic stress � ′
max occurs at maximum strain

� = �0. Another full-cycle measure, G′
PR, connects with the

local measure of minimum strain modulus G′
M ≡ d�/d�

at � = 0. This connection arises because the polynomial
regression acts as a Taylor expansion about � = 0, and the
leading order linear term therefore approximates the slope
d� ′/d� at � = 0.

Due to these differing and ambiguous interpretations of

viscoelastic moduli in the nonlinear regime, it is impera-
tive to state the method used for the calculation of such
parameters. Each definition of viscoelastic modulus dis-
cussed here is a correct but non-unique measure of the
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ig. 25. Diagram summarizing the interpretation of the third-harmonic
cf. Eq. (51)).

aterial response in the nonlinear domain. The authors
ope this discussion will emphasize why it is critical for
esearchers and instrument companies to report clearly the
ethods being used to calculate “viscoelastic moduli” from
nonlinear stress response. The proper combination of var-

ous methods can result in a more complete description of
he complex nonlinear viscoelastic response [69].

.6. Summary of quantitative methods

The aim of oscillatory rheological experiments is to
ystematically investigate nonlinear viscoelastic material
esponses, to connect quantitative nonlinear measures
ith microstructure or polymer topology, and to provide
seful information about the behavior of materials during
rocessing operations in which large strains are necessarily
ncountered. To achieve this, several different quantitative
ethods have been proposed. Different nonlinear mate-

ial coefficients can be extracted depending on the method
nd the chosen frame of reference (i.e. time-domain or
eformation-domain).

Within the framework of FT-Rheology ([33], Section
.1), the higher harmonic contributions (intensity and
hase angle) can be differentially observed and distin-
uished beyond the 100th harmonic contribution (Fig. 19).

f these higher harmonic contributions, the 3rd harmonic
ontribution represents the dominant nonlinear contri-
ution as the leading-order emergence of nonlinearity. A
ew nonlinear coefficient, Q ≡ I3/1/�2

0 , was proposed by

able 2
arious methods for reporting an elastic modulus from oscillatory shear data (a
iesekus LAOS response at �1ω = 1 (cf. Fig. 24). Units of elastic modulus are Pa, st

�0 Full-cycle methods

G′
1 G′

N
G′

SR
G′

LR
(M = 1)

10−3 5.0000 4.9995 5.0013 5.0000
3.16 1.7690 1.8916 1.7918 1.7693

10 0.34760 0.67730 0.34733 0.34760
gle ı3 (cf. Eq. (8)) as revealed by the third-order Chebyshev coefficients

focusing on the relationship between the 1st and 3rd har-
monic contributions (I3/1 = I3/I1) ([43], Section 4.1.1). In the
case of polymer melts and solutions, the intensity ratio
I3/1 (�0) displays a sigmoidal or S-shape behavior ([33],
Section 4.1.2). By contrast, dispersion systems typically
exhibit a nonmonotonic behavior at intermediate strain
amplitude as a consequence of the two phases present
([59], Section 4.1.2). Klein et al. ([5], Section 4.2) sug-
gested an alternate method of analysis which integrates
the higher harmonic contributions that are observed at
sufficiently large strain amplitudes. This involves decom-
position of the nonlinear response into a superposition
of several periodic time-dependent basis functions rep-
resenting canonical rheological behavior, e.g. sine (linear
response), rectangle (strain softening), triangular (strain
hardening), and saw tooth shaped waves (wall slip or shear
banding). This method has the advantage of simplicity but
the main disadvantage of this method is that the selected
four basis functions are neither orthogonal nor unique.

By viewing the stress as a function of the mechan-
ical input, Cho et al. ([66], Section 4.3) succeeded in
decomposing nonlinear oscillatory stress waveforms (�)
into elastic stress (� ′) and viscous stress (� ′′) compo-
nents. This perspective has been described as a geometrical
interpretation, and is also referred to as stress decom-

position (SD). Extending the concept of SD, Ewoldt et al.
([69], Section 4.4) resolved issues of uniqueness and non-
orthogonality by using orthogonal Chebyshev polynomials
of the first kind as basis function. The third-harmonic

nalogous methods exist for reporting dynamic viscosity), applied to the
rain amplitude is unitless. The different definitions are given in the text.

Local methods

G′
PR

(M = 9) G′
M

G′
L

G′
K

5.0108 5.0108 4.9995 5.0098
1.1172 1.1180 1.8916 2.4807

−0.65214 −0.67280 0.67730 2.3478
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Table 3
Summary of quantitative methods used to analyze higher harmonics under LAOS deformations.a

Time domain Strain and strain-rate domain (orthogonal
mechanical inputs)

Visualization Oscillatory time series, �(ωt) Lissajous curves, �(�(ωt), �̇(ωt))

Analytical representation Fourier transform (FT) method, Fourier series Stress decomposition (SD) methodb,
polynomial series

Original publications Philippoff [13] and Onogi et al. [14] – 1960, 1970
• First meaningful efforts to quantify nonlinear stress
• Suffered from noise problem and the lack of

technology at that time

Cho and Ahn et al. [66] – 2005
• Physical interpretation of nonlinear stress
• “Elastic” and “Viscous” contributions of

nonlinear stress
Subsequent developments Giacomin and Dealy [8] – 1993

• Solved problem of high torque and edge fracture of
high viscosity polymer melt system by mounting
torque transducer at the middle of SPR (sliding plate
rheometer) and Fourier series

Kim and Cho et al. [139] – 2006
• Least squares fitting of a polynomial series

suffered from non-orthogonality issues during
numerical calculation

Wilhelm et al. [33] – 2002
• Dramatic increase of S/N ratio (≈105) and coupling

of commercial rheometer with “high sensitivity
oversampling” method using high performance ADC
card

• Focus on relative 3rd harmonic contribution, e.g. its
intensity I3/1 and its phase angle

Ewoldt and McKinley et al. [69] – 2008
• Solved non-orthogonality problem in

evaluation of material functions by using
orthogonal Chebyshev polynomials of the first
kind

• Suggested local measures for viscoelastic
moduli, e.g. minimum-strain (G′

M
) and

large-strain (G′
L
) elastic moduli and

minimum-rate (�′
M

) and large-rate (�′
L
)

dynamic viscosities
Klein and Wilhelm et al. [5] – 2007

• Analyzing FT-spectra using superposition of various
characteristic basis functions
Leblanc [59] – 2008

• Simple five parameter equation of I3/1 for filled
compounds (or dispersion system) which show
“overshooting” or “bump” at intermediate strain
amplitude in plot of I3/1 vs. �0

Hyun and Wilhelm [43] – 2009
• New nonlinear coefficient Q ≡ I3/1/�2

0 ; other
rheological properties which define scaling
relationship between stress and amplitude of
deformation

Yu et al. [130] – 2009
• Generalized the stress decomposition

method for treating both odd and even higher
harmonics using orthogonal Chebyshev
polynomials of the first and second kind

Advantage Detects odd, even, and non-integer higher harmonic
contributions, high sensitivity, and traditionally easier
to implement

Tends to enable a physical interpretation of the
nonlinear viscoelastic response

Disadvantage Physically-meaningful interpretation can be difficult Detects only desired response, e.g. integer
higher harmonics.

Summary These two representations (time domain vs. deformation domain) complement each other and are
interrelated. Many material measures can be calculated using either approach

s metho

tive me
a In this table only quantitative methods are summarized, other analysi
excluded.

b SD method itself is a stress shape analysis method, but other quantita

contributions are still the leading-order nonlinearity, and
in the deformation-domain the sign of the third-order
coefficients can be physically interpreted in terms of elas-
tic strain-stiffening/softening (for e3 = −G′

3) and viscous
shear-thickening/thinning (for v3 = G′′

3/ω) (cf. Eq. (9) and
(51), Fig. 25). Ewoldt et al. [69] also suggested local mea-
sures of the viscoelastic moduli in the nonlinear regime; the
corresponding elastic moduli (the minimum-strain modu-
lus G′

M and the large-strain modulus G′
L) and the dynamic

viscosity (minimum-rate dynamic viscosity �′
M and large-

rate dynamic viscosity �′
L), can be related to the Fourier

coefficients (Eq. (9)) as follows
G′
M =

∑
n=odd

nG′
n, G′

L =
∑

n=odd

G′
n(−1)(n−1)/2 (54)
ds (e.g. visual inspection of Lissajous curve and stress shape analysis) are

thods are based on the SD method.

�′
L = 1

ω

∑
n=odd

G′′
n, �′

M = 1
ω

∑
n=odd

nG′′
n(−1)(n−1)/2 (55)

These new nonlinear viscoelastic moduli can also
be used to effectively and unambiguously define ter-
minology such as strain-stiffening/softening and shear-
thinning/thickening (Section 4.5).

In Table 3 we summarize and categorize these quan-
titative methods. The methods are grouped according to
the primary association with either a time-domain repre-
sentation (Sections 4.1 and 4.2) or a deformation-domain
representation (Sections 4.3–4.5). These two representa-

tions complement each other and are sometimes used
interchangeably since the different nonlinear coefficients
evaluated from each method are interrelated. The rel-
ative merits of each approach are typically associated
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ith ease of data processing (in the time-domain) com-
ared to the ease of a physical interpretation (in the
eformation-domain). The goal of any analysis method is
o find meaningful nonlinear parameters to describe non-
inear data as a result of LAOS excitation. The next section
emonstrates the application of this array of quantitative
ethods in rheological tests of various classes of viscoelas-

ic materials.

. Applications

In this article we have reviewed several methods to
nalyze the nonlinear response of materials undergoing
arge amplitude oscillatory shear flow. These methods can
e applied to a wide range of different material systems.
ecause the nonlinear response of each subclass of com-
lex fluid (e.g. polymer solution or melt, dispersed system,
lockcopolymer, or biopolymer gel) can be very differ-
nt, each approach has its own merits and disadvantages.
ere we survey several recently published LAOS investiga-

ions of different complex fluids. These examples are not
ntended to be exhaustive but rather to serve as case stud-
es that illustrate the utility of the analysis tools reviewed
n the previous sections.

.1. Entangled polymer systems

FT-Rheology under LAOS is now recognized as a very
ensitive characterization method for detecting long chain
ranching (LCB) – or more generally to distinguish differ-
nt polymer topologies. Experiments have shown that the
atio I3/1 and the phase angle of the third harmonic (ı3)
re sensitive to macromolecular architecture, specifically
he molecular weight distribution, number of branches,
nd their length [36,37,39,45]. However, these early pub-
ications did not systematically explore LAOS using a well
efined, entangled homopolymer to provide a baseline for
ur rheological understanding of the influence of excita-
ion frequency, temperature, or molecular weight. Hyun
t al. [43] presented the first systematic investigation of
he evolution in the nonlinear ratio (I3/1) obtained from FT-
heology, and proposed a new nonlinear coefficient Q(ω,
0) for quantifying the response of monodisperse linear
olystyrene and comb polystyrene melts. They also investi-
ated the zero-strain nonlinearity, Q0 obtained in the limits
f small strain amplitude (lim�0→0Q ≡ Q0) that character-
zes the onset of nonlinearity of each sample (Section 4.1.1).

e provide a review of this systematic study here, in which
nionically synthesized monodisperse linear and comb
olystyrenes (PS) were used (see Table 4). The PS comb
eries C6 consists of a linear backbone with weight-average
olecular weight of the backbone Mb = 275 kg/mol, and

pproximately q = 25–30 linear branches of varying molec-
lar weight arms with Ma varying from 11.7 to 47 kg/mol.
or PS a typical literature value of the entanglement
olecular weight is Me = 17 kg/mol [43]. The sample C622

herefore has unentangled arms, whereas sample C632 is

xpected to have entangled arms. The ratio of intensities

3/1 was measured as a function of strain amplitude at var-
ous excitation frequencies from 0.1 rad/s to 10 rad/s and
he corresponding value of the Q coefficient (= I3/1/�2

0 )
ience 36 (2011) 1697–1753 1733

was then calculated (Fig. 26). It is clear that the coefficient
approaches a constant value (corresponding to a ‘zero-
strain nonlinearity’, Q0) at small strain amplitude (Fig. 26c
and d) with residual fluctuations that arise from the low
magnitudes of the intensity ratio (3 × 10−4 < I3/1 < 10−2) in
the limiting asymptotic regime. Because Q0 is evaluated
from several data points (typically 5–10), very reliable
values of the asymptotic value obtained in the limit of zero-
strain can be determined.

5.1.1. Frequency-dependence of Q0(ω) in the asymptotic
regime

In Fig. 27, the values of Q0 for the linear and comb
PS samples are plotted at a reference temperature of
Tref = 190 ◦C. The data for the monodisperse linear PS as
a function of frequency displays a single local peak value
and terminal quadratic behavior (Q0 ∝ ω2) at low fre-
quencies (Fig. 27b). The quadratic scaling (Q0 ∝ ω2) at the
low-frequency limit is expected from the analysis for the
Doi-Edwards model presented by Pearson and Rochefort
[20] (see Appendix D). As the molecular weight increases,
the transition to terminal behavior shifts to lower frequen-
cies (analogous to the familiar frequency shift observed in
conventional linear viscoelastic properties) and the peak
becomes increasingly broad. In the case of the comb PS
sample with unentangled branch chains (C622), Q0(ω) dis-
plays a similar shape as a function of frequency (with one
maximum value and a terminal regime (Q0 ∝ ω2)). In con-
trast to the linear samples, however, the maximum value
of Q0 is lower than for the comb PS PS melts. The authors
conjectured that this might result from the dynamic tube
dilution induced by the side branches. For the comb PS with
entangled side branches (C632 and C642), Q0(ω) has two
peak values, one corresponding to the branches’ disentan-
glement at higher frequencies and the second arising from
backbone relaxation at lower frequencies (see Fig. 27a).
As a consequence of having entangled branches, the max-
imum value of Q0 can be associated with the backbone
relaxation (Q0,b) and is much lower than that of the comb
PS with unentangled branches (C622). As the entangled
branch chain length becomes longer, the value of Q0,b drops
progressively and the frequency dependence becomes nar-
rower and sharper (see Fig. 27b). In the case of the comb
PS series (C622, C632 and C642), the volume fraction of
the backbone chain decreases as the side branch length
increases. From the viewpoint of dynamic tube dilution,
the fully-relaxed side-branches act as an effective solvent
for the unrelaxed backbone chain. The increasing length of
the side branches has a similar effect to decreasing the con-
centration of the main backbone chain in a viscous solvent.
Quantitative measurement of Q0(ω) can thus effectively
probe frequency dependence in the relaxation processes
associated with disentanglement for a range of polymer
melts.

5.1.2. Strain-dependence of Q(�0) under LAOS
The behavior of the coefficient Q with increasing strain
amplitude is investigated at a fixed frequency in Fig. 28.
For monodisperse linear PS melts, Q decreases as the strain
amplitude increases at various frequencies, which is rem-
iniscent of the shear thinning observed in the viscosity as



1734 K. Hyun et al. / Progress in Polymer Science 36 (2011) 1697–1753

Table 4
Molecular characteristics of the samples used.

Sample Mb (kg/mol)
backbone

Ma (kg/mol)
branch

q
(branches/backbone)

Mtotal (kg/mol) 〈�G〉w (s)aat 190 ◦C Molecular
structure

PS 76k 75.9 – – 75.9 0.05 Linear
PS 100k 100 – – 100 0.14 Linear
PS 220k 214 – – 214 2.66 Linear
PS 330k 330 – – 330 12.44 Linear
C622-PS 275 11.7 30 624 11.63 Comb

t 190 ◦C
C632-PS 275 25.7 25
C642-PS 275 47 29

a The terminal relaxation time was evaluated from linear moduli data a

a function of shear rate. By contrast, the value of Q(�0)
for the comb PS sample with entangled side branches
(C642) increases as the strain amplitude increases. The nor-
malized variation in the nonlinearity Q/Q0 as a function
of strain amplitude can be compared to the normal-
ized complex modulus |G∗/G∗

0| where |G∗
0| is the complex

modulus measured under SAOS conditions at a fixed fre-
quency, see Fig. 28a. For the linear PS melt, both functions
decrease as the strain amplitude increases. Similar results

are obtained for the comb PS melt with unentangled side
branches. On the contrary, for the comb sample with entan-
gled side branches (C642), |G∗/G∗

0| decreases, whereas the
ratio Q/Q0 increases with strain amplitude (Fig. 28c) for

Fig. 26. The nonlinear intensity ratio (I3/1) as a function of strain amplitude f
polystyrene (PS 100K) at 160 ◦C, (b) entangled branched melt C642 at 200 ◦C. Als
of strain amplitude evaluated from the intensity ratio data for (c) PS 100K at 160
copyright (2009) of American Chemical Society.
913 28.59 Comb
1630 102.06 Comb

.

specific frequencies. It is well known that the extent of
strain hardening behavior in elongational flow is directly
connected to branched polymer chains. The increase in
the nonlinear coefficient Q also reflects the role of chain
branching. Although it is clear that chain topology plays a
role, the underlying nonlinear physics controlling the vari-
ation in Q(�0) with increasing strain amplitude are still
not fully understood. The strain-dependence observed in
Q(�0) appears to be a promising parameter for detecting

long chain branching in commercial branched polymers,
e.g. LCB-PE, however further theoretical and experimental
work is required to fully evaluate the sensitivity of such a
probe.

or linear and comb PS at various frequencies: (a) linear monodisperse
o shown are the corresponding values of the Q coefficient as a function
◦C and (d) C642 at 200 ◦C. Reproduced by permission of Hyun et al. [43],
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Fig. 27. (a) Frequency dependence of the zero-strain nonlinearity Q0 for linear PS chains (PS 76K, 100K, 220K, 330K) and PS combs (C622, C632 and C642)
a (Ma), th
c e = aTω
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two model hard-sphere suspensions with different average
particle diameters (Table 5). The measured and recon-
structed LAOS data for sample 1 and sample 2 is shown

Table 5
Characterization of samples using particle dispersity index (PDI), solid
content, and particle diameter for two monodisperse hard-sphere sus-
pensions (denoted sample 1 and 2).
t Tref = 190 ◦C. With increasing molecular weight of the branched chain
lear comparison, the coefficient Q0 is plotted against Deborah number (D
eproduced by permission of Hyun et al. [43], copyright (2009) of Americ

.2. Dispersion systems

There have been many LAOS investigations of the non-
inear rheology exhibited by dispersed systems and these
nclude some of the very first reports of the LAOS proto-
ol. Materials of interest have included clay–water systems
12], carbon black in PS solution [14], spherical polymer
articles in PS solution [16], soft hydrogel microspheres
80], particle suspensions [5], immiscible polymer blends
46,146] and others.

.2.1. Suspensions
Analysis of the non-linear oscillatory properties of

ater-based polymer dispersions do not always result
n a simple physical picture of how the amplitudes and
hases of the harmonics evolve. As we have noted above,
he bulk of previous studies have focused on the mag-
itude of the third harmonic I3/1 and the corresponding

hase ı3. In many cases this restricted analysis is justified
ue to the fact that the intensity of the higher harmon-

cs, e.g. 5th, 7th, etc., are negligibly small. However, in
he hard sphere model systems examined here, a large
e maximum corresponding backbone chain (Q0,b) is decreasing. (b) For
〈�〉) of linear PS 330K and comb PS (C622, C632 and C642) at Tref = 190 ◦C.

ical Society.

number of higher harmonics of the excitation frequency
with high intensity are often detected (possibly up to the
45th harmonic). Moreover, in such samples not only odd
harmonics, but also even harmonics are observed. In this
limit, The Characteristic Functions method (see Section
4.2) enables convenient analysis of the Fourier spectra of
the non-linear mechanical behavior of dispersions because
each selected characteristic function is composed of many
higher order contributions [5]. To illustrate this, we use
Sample 1 Sample 2

PDI 1.04 1.01
Solid content [%] 35.4 32.7
Particle diameter [nm] 69.7 133.2
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Fig. 28. The magnitude of the complex modulus |G*| and Q as a function of strain amplitude from medium strain amplitude (�0 ≈ 0.25) to large strain
amplitude (�0 ≈ 7). (a) Monodisperse linear PS (PS 100K) at ω = 4.25 rad/s, T = 160 ◦C, (b) comb PS with unentangled side chains (C622) at ω = 1 rad/s,
T = 200 ◦C, and (c) comb PS with entangled branches (C642) at ω = 1 rad/s, T = 190 ◦C. The |G*|(�0) curves display only strain softening for all three samples.
In contrast, the curves of Q(�0) for the linear PS and comb PS with unentangled branches (C622) exhibit strain softening with increasing strain amplitude,
whereas the corresponding curve for the comb PS with entangled branches (C642) displays strain hardening. Reproduced by permission of Hyun et al. [43],
copyright (2009) of American Chemical Society.

Fig. 29. The overlay of the time-dependent torque response and the reconstructed time data and the corresponding FT spectra of the experimental data
for sample 1 (a and b) and sample 2 (c and d). The time domain signals were recorded at 298 K with ω1/2� = 1 Hz, �0 = 1 for sample 1 and �0 = 6 for sample
2. Reproduced by permission of Klein et al. [5], copyright (2009) of American Chemical Society.
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Table 6
Amplitude, phase angle and time lag of the three characteristic functions that generate the reconstructed response of sample 1 and sample 2 shown in
Fig. 29.

Sinusoidal Rectangular Saw tooth

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2

Normalized amplitude 1 1 1.47 1.4 <0.01 0.36
Phase angle [◦] 0 0 35 51 a ∼0
Time-lag [ms] 0 0 97 142 a ∼0

i
p
r
d
o
r
t
T
e
s
p
s
d
d
i
f

m
s
s
s
t
f
t
s
m
o
t
f
s
u
a
r
A
o
r
a
s
t
s
t
a
s
t
m
s
i
t
c

a Below accuracy.

n Fig. 29a and c. The FT magnitude spectrum for each sus-
ension is presented in Fig. 29b and d. The measured and
econstructed data superpose well near the maxima, but
eviations appear close to the turning point of the peri-
dic functions (where the torque is zero). The different
elative contributions of the four characteristic functions,
heir amplitudes, phases, and time-lags, are presented in
able 6. The triangular-wave function (representing thick-
ning) was not used because the system showed only
hear-thinning behavior. The time-lag is defined from the
hase shift between the linear contribution and the strain
oftening or shear-banding contribution. Note the dramatic
ifferences between both the time and frequency-domian
ata for the two samples, this is readily identified as aris-

ng from the big difference in the saw-tooth contribution
or the two suspensions.

In a subsequent stage, this decomposition of the
echanical response was then applied to a complete data

et of oscillatory responses varying only in the applied
train amplitudes. In a strain sweep test, both of the
amples showed the same LAOS type III behavior (see Sec-
ion 3.2). However, the characteristic functions obtained
rom the reconstructed stress data can distinguish the
wo samples, especially due to the contribution of the
aw-tooth functions. Because the characteristic functions
ethod incorporates the contributions of many higher-

rder harmonics, it can readily differentiate between the
wo samples. The amplitude and phase angle of each basis
unction as a function of strain amplitude for two hard
phere model systems are represented in Fig. 30. The val-
es of the amplitudes are normalized with respect to the
mplitude of the pure sinusoidal function. The sinusoidal
esponse was used as reference with the amplitude set to
l = 1 and a phase angle ıl = 0 (Eq. (38)). The phase values
f the rectangular, triangular, and saw tooth function are
eferenced to this sine function phase angle. The three char-
cteristic functions that capture the linear response, strain
oftening, and wall slip are needed to obtain a satisfac-
ory match to the experimental data, in particular at high
train amplitudes. With increasing strain amplitude �0,
he amplitude of the rectangular function increased until
maximum is reached. For sample 1, the amplitude of the

aw-tooth function is considerably lower as compared with
he rectangular function (please note the double logarith-

ic scale). The phase angles of the two functions increase

lowly with increasing �0, but the difference between them
s almost constant. The phase angle of the rectangular func-
ion is about 360◦, and therefore in-phase with the linear
ontribution. About 20 different dispersions were found to
respond in a similar way. An exception to this finding is
the behavior of sample 2. In fact, at small values the saw
tooth function is larger in amplitude than the rectangular
function. At a value of �0 = 0.06, both contributions show
a strong increase and a cross-over in relative amplitude. A
large change is also observed in the phase angle of both
functions.

5.2.2. Emulsions
Small amplitude oscillatory shear tests are a reliable

way of extracting a characteristic droplet size for emul-
sions [147]. Carotenuto et al. [46] proposed using LAOS
to determine not only the characteristic dimension of an
immiscible polymer blends but also to infer the size dis-
tribution of the drops. The principal idea is that even an
emulsion formed from two immiscible Newtonian fluids
will exhibit a viscoelastic response due to the interfacial
tension, and this response will become nonlinear when suf-
ficiently large amplitude shear is applied to the emulsion
droplets. Consequently the droplet size and the size dis-
tribution will drastically affect the intensity and phase of
the different higher harmonics in the FT-rheology spectra.
Conversely, some information about this size distribution
can be obtained from analysis of the FT-Rheology spectrum
as shown in Fig. 31.

5.2.3. Polymer blends
Filipe et al. [47,48] investigated the evolution in the

morphological and rheological properties along the length
of a screw extruder for blends of a commercial liquid
crystalline polymer (LCP) and polypropylene. They col-
lected samples at different locations (labeled v1–v11) along
the extruder (Fig. 32a), and examined the morphology of
the samples using SEM and light microscopy. Rheolog-
ical properties of the collected samples were measured
using linear oscillatory tests (SAOS) and nonlinear oscilla-
tory tests (LAOS). It was concluded that the nonlinear tests,
e.g. the nonlinearity ratio (I3/1) obtained from FT-Rheology,
were more sensitive than linear viscoelastic tests (SAOS)
for probing the morphology evolution along the extruder
length. During the extrusion process, the morphology of
the LCP dispersed phase can change from spherical to
elongated droplets or fibrillar structures depending on
the position along the extruder, and this is reflected in
a progressive change in the nonlinear rheology from the

beginning to the end of the extrusion process (Fig. 32). It is
thus possible to extract information about both the average
dimension of the dispersed phase structure as well as the
change in morphology under large amplitude shear. This
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Fig. 30. Dependence of the amplitude and the phase angle on the strain amplitude of the characteristic functions for sample 1 ((a) amplitude and (b) phase
ic respo
ms such
ociety.
angle) and sample 2 ((c) amplitude and (d) phase angle). The characterist
shear banding (saw tooth wave form). In rare cases, experimental proble
by permission of Klein et al. [5], copyright (2009) of American Chemical S

conclusion is consistent with the results of Carotenuto et al.
[46] discussed in the previous section.
5.2.4. Filled rubber compounds
Leblanc [52,55–60] and Leblanc et al. [53,54,61] have

investigated many kinds of industrial rubber and elas-
tomers both with and without added filler. They observed

Fig. 31. Drop distribution estimated with the regression procedure for blend C
permission of Carotenuto et al. [46], copyright (2009) of American Chemical Soci
nse contains strain softening (rectangular basis function) and wall slip or
as wall slip appeared. In those cases the data is not shown. Reproduced

that the ratio I3/1 of filled rubber compounds does not
show simple sigmoidal function (see Eq. (33)) because of a
strain overshoot detected at intermediate strains (around

�0 ≈ 5–6) [59]. Such behavior is obtained using systems
in which strong interactions occur between the viscoelas-
tic matrix, i.e. the major volume phase, and the dispersed
phase, i.e. the carbon black. Therefore, the nonlinearity

(10% PDMS and 90% PIB) using the FT-Rheology spectra. Reproduced by
ety.
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Fig. 32. (a) Screw and cylinder profile used for the processing of the blends. Here “vi” is ith valve that allows local removal of samples along the extruder
length. Morphological evolution along the length for the blend with 40 wt% LCP processed at 220 ◦C (SEM). (b) location v5 in the extruder and (c) final
e in ampl
w , copyrig
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xtrudate. (d) Ratio I3/1 from FT-Rheology as a function of the applied stra
ith 40 wt% LCP at 170 ◦C). Reproduced by permission of Filipe et al. [47]

ppears to reflect the superposition of two responses: one
ualitatively common to all “pure” (unfilled) polymers and
separate “filler” response ([60], see also Section 4.1.2). At

ow strain amplitude, the nonlinearity is essentially dom-
nated by the filler component (dispersed phase) and at
igher strain amplitude the influence of the filler is less
ronounced and the nonlinearity arises primarily from the
olymer component (continuous phase) [59]. A fitting of
odel parameters provides information on the viscoelastic

ehavior of filled rubber compounds affected by the filler
ontent with little effect of the matrix material (typically
imited to high cis-1,4-polybutadiene and natural rubber).
he type and grade of carbon black added to the system
s also found to affect the nonlinear shear stress of filled
ubber compounds, and results, for example, in the “for-
ard” tilted or “backward” tilted stress forms discussed in

ection 3.3. Leblanc suggested quantifying the “backward”
nd “forward” tilted shapes of the shear stress using quar-
er cycle integration from one cycle of shear stress data as a
unction of time. The ratio of the first quarter stress (Q1) and
econd quarter stress (Q2) signal integration, i.e., Q1/Q2 (=1
n case of no distortion sinusoidal shear stress curve) allows
clear distinction between “forward” tilted (Q1/Q2 > 1) and
backward” tilted (Q1/Q2 < 1). The unfilled material was
ound to exhibit a Q1/Q2 ratio that is always larger than
nity and increases with strain amplitude i.e. a “forward”
ilted stress [59]. In the case of a carbon black filled elas-
omer, the Q1/Q2 ratio was first found to be higher than one

t low strain amplitudes, then quickly dropped below one
ith increasing strain amplitude corresponding to a “back-
ard” tilted stress. With these two methods, Leblanc [61]

nvestigated thermoplastic vulcanizates (TPV) which are
itude for the different samples collected along the extruder length (blend
ht (2004) of Elsevier Science.

blends of a crystalline thermoplastic polymer (polypropy-
lene) and a vulcanizable rubber composition and Leblanc
and Nijman [148] investigated silica-based rubber com-
pounds.

5.3. Block copolymers and gels

5.3.1. Block copolymer melts
LAOS has been used to study the orienta-

tion/reorientation processes in microphase-separated
lamellar PS-b-PI diblock copolymers as well as in diblock
and triblock copolymers of styrene and butadiene (PS-PB;
PS-PB-PS) which form lamellar microphases [50,149] at
temperatures well above the glass transition temperature
(Tg) of PS. The alignment kinetics can be studied in detail via
online monitoring of the degree of mechanical nonlinearity
exhibited during the orientation process – as determined
via the higher harmonics in FT-Rheology – coupled with
investigation of the orientational distribution by ex situ
two-dimensional small angle X-ray scattering (2D-SAXS).
For the PS-PI polymer, both methods detected parallel
alignment of the lamellae after increasing the frequency
of shearing as well as spatially heterogeneous alignment
via bimodal parallel and perpendicular alignment of the
lamellae [149].

The rheological behavior of both unaligned and aligned
diblock and triblock copolymers of styrene and butadiene

(PS-PB; PS-PB-PS) lamellar phases were studied later in
[50]. The evolution of the microstructure during the flow
alignment process can be easily quantified using the FT-
Rheology technique.
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Fig. 33. Variation of the relative intensity of the third harmonic I (©) during the 10hours of the macroscopic orientation process of a styrene–butadiene
ential fi

r et al. [5
3/1

(9 kg/mol–9 kg/mol) sample. The solid line represents the stretched expon
modulus as a function of time. Reproduced by permission of Oelschlaege

For di- and triblocks, parallel alignment is achieved at
low frequency and temperatures below the order/disorder
transition temperature TODT. The kinetics of orientation can
be quantified by the intensity of the third harmonic I3/1(t)
as shown in Fig. 33. Specifically I3/1(t) can be described
by a stretched exponential function with a characteristic
relaxation time �.

I3/1 = y0 + A exp
[
− t

�

]ˇ

(56)

For di- and triblock copolymers, the kinetics of orien-
tation strongly depend on the strain amplitude and the
time constant varies with a scaling exponent: � ∝ �−4

0 for
the diblock and � ∝ �−2.85

0 for the triblock. This scaling
exponent greatly exceeds the expected scaling of � ∝ �−1

0
which corresponds to a physical process in which the total
applied deformation is responsible for the observed ori-
entation. The larger scaling exponent might be explained
by the cooperative nature of the underlying processes.
Analysis of the time-dependent variation in the phase
difference related to the third harmonic (ı3(t)) enables
further differentiation between the diblock and triblock
for the PS-PB and PS-PB-PS model systems. The plateau
value of ı3 is independent of the strain amplitude and
frequency but depends on the morphology of the sys-
tem, at least within the lamella systems investigated to
date. For the PS-PB diblock, ı3 plateau ≈ 170◦ and for the
PS-PB-PS triblock ı3 plateau ≈ 140◦. The reorientation from
a parallel to a perpendicular orientation is only possible
for the diblock copolymer. For the triblock samples, the
complementary X-ray analysis revealed a time-dependent
bimodal orientation distribution. This observation suggests
a complex mechanism for reorientation from parallel to

perpendicular alignment, which is the subject of ongoing
investigations. In summary, FT Rheology offers a new and
simple way for online monitoring of complex reorientation
kinetics in blockcopolymer melts or solutions.
t. The insert represents the variation of the storage modulus and the loss
0], copyright (2007) of WILEY-VCH.

5.3.2. Block copolymer solutions
Poly(ethylene oxide)–poly(propylene oxide)–poly

(ethylene oxide) (PEO–PPO–PEO) triblock copolymers,
often referred to by their trade names of Pluronic (BASF)
or Synperonic (ICI), have been widely used in industry
as amphiphilic rheology modifiers. Aqueous solutions of
poly(propylene oxide) (PPO) exhibit a dramatic tempera-
ture dependence; below approximately 15 ◦C, water is a
good solvent for PPO, whereas PPO aggregates at higher
temperature. Poly(ethylene oxide) (PEO), on the other
hand, is hydrophilic over the whole temperature range
from 0 to 100 ◦C. With a block of PPO and two blocks
of PEO combined into a single polymer chain, one can
expect amphiphilic characteristics with interesting aggre-
gation phenomena [150]. Daniel et al. [49] studied the
nonlinear response of a face-centered cubic (fcc) micellar
structure formed by a PEO–PBO diblock copolymer in
aqueous solution. Hyun et al. [6] investigated a 20 wt%
aqueous solution of PEO–PPO–PEO triblock copolymers
subjected to LAOS at different temperature. As the sample
temperature changes, the transition between a soft gel
and a hard gel is revealed by LAOS measurements and
the material response can be classified with respect to
LAOS type according to the definitions proposed by Hyun
et al. [63]. The sol shows Newtonian behavior (strain-
independent G′′) at temperatures below the transition.
By increasing the temperature a soft gel forms and type I
(monotonic strain thinning) appears. As the temperature
increases, type IV responses (strong strain overshoot;
local maxima in G′ and G′′) are observed at large strain
amplitude. Therefore the LAOS signature of a soft gel
displays a combination of type I and type IV behaviors
(Fig. 34a). However, as the temperature is increased
further, the type IV response becomes weaker, and finally
the strain overshoot (characteristic of a type IV response)

disappears at the transition temperature from soft gel to
hard gel. Finally, the hard gel shows a type III response (G′

decreasing, with a local maximum in G′′ alone) as shown
in Fig. 34b.
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Fig. 34. (a) LAOS pattern (type I + type IV) of a soft gel at 25 ◦C and microstructural interpretation: (1) clusters of micelles in the solution, (2) strain thinning
(type I) due to the alignment of clusters with flow direction, (3) strong strain overshoot (type IV) due to the formation of larger clusters, (4) second strain
thinning due to the break up or alignment with flow direction. (b) LAOS pattern (type III) of a hard gel and corresponding microstructural interpretation:
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1) close-packed (cubic) array of micelles, (2) weak strain overshoot due
ther in the flow direction. Fourier spectra as a function of strain amplit
t al. [6], copyright (2006) of Springer.

The FT spectra for the hard gel and soft gel states were
lso compared. The LAOS measurements show that the
ntensity of the higher harmonics (3rd, 5th, 7th) in the soft
el reached a maximum and then decreased with strain
mplitude, before slightly increasing again with further
ncrease of the strain amplitude (Fig. 34c). This result is
imilar to the “hump” in I3/1 observed for carbon black
lled rubber compounds in the previous section [59]. On
he other hand, the higher harmonics of a hard gel increase
s a function of strain amplitude before approaching an
symptote (Fig. 34d). Decreases in the intensity of the
igher harmonics with increasing strain amplitude is per-
aps initially unexpected, but can also be observed with the
iesekus model LAOS response in Fig. 24e and f, in which
ome higher harmonic components decrease in magnitude
nd subsequently change sign. Heymann et al. [79] have
nvestigated highly concentrated suspensions of PMMA
articles in PDMS, which show a combination of type I and
ype IV response like a soft gel, and also exhibited a local
aximum in the intensity of the third harmonic. Kallus
t al. [51] characterized rigid polymer dispersions by FT-
heology, and also found a local maximum in the Fourier

ntensities as a function of strain amplitude. By analogy,
reak up of structures, (3) strain thinning due to layers sliding past each
soft gel (24 ◦C), (d) hard gel (26 ◦C). Reproduced by permission of Hyun

we may infer that the micellar aggregates in the soft gel
behave like the rigid particles studied in [51]. However,
the subsequent increase in the intensities after the local
minimum shown in Fig. 34c has not been reported previ-
ously. It seems to be related to the alignment and rupture of
large aggregates at very high strain amplitudes. From the
experimental results shown in Fig. 34, it is clear that the
flow-aligned microstructure of a soft gel and hard gel can
be clearly distinguished by LAOS experiments.

5.3.3. Biopolymer gel
LAOS characterization is also useful for probing the

nonlinear rheological properties of biopolymer gels that
are critical for the successful locomotion of gastropods.
Snails and slugs utilize a rheologically complex fluid, called
pedal mucus, as part of their locomotory strategy in order
to adhere to and climb upon vertical surfaces [151]. This
biopolymer gel acts as a yield stress fluid, in which the local
magnitude of the applied stress reversibly transforms the

mucus between an apparently solid and liquid state [151].

Natural pedal mucus (the excreted slime trail) was
collected from the slug Limax maximus. Similar analy-
sis has been previously discussed in [69,152], and the
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Fig. 35. Strain-controlled LAOS response of natural pedal mucus from the slug Limax maximus at ω = 1 rad/s. (a) steady state 3D response curves showing
measured stress as a function of the orthogonal oscillatory inputs of strain and strain-rate, i.e. �[�(t), �̇(t)]. The closed 3D curves shown in (a) can be

viscous
(�̇) as sh
projected onto planes which emphasize an elastic interpretation (b), or a
of elastic stress � ′(�) as shown in (d), or the viscous stress contribution � ′′

as in part (d), emphasizing the dominant elastic response in the mucus.

same sample preparation and data acquisition protocols
are used for the results presented here. The nonlin-
ear behavior of these physically-crosslinked hydrogels is
revealed by considering the distorted stress waveforms in
the deformation-domain (Lissajous curves) and quantify-
ing the higher harmonics with Chebyshev polynomials of
the first kind. Strain-controlled LAOS tests are used with
increasing strain amplitude at a fixed frequency ω = 1 rad/s
that is characteristic of actual molluscan locomotion. Strain
amplitudes up to �0 = 3.5 were imposed, but the sample
was not fully yielded due to experimental limitations of
the instrument (i.e. the maximum allowable angular dis-
placement amplitude). Fig. 35 displays the steady state
oscillatory data in the form of Lissajous curves at each strain

amplitude �0. The closed 3D curves shown in Fig. 35a can
be projected onto complementary 2D planes. The elastic
perspective results from projection onto the plane of stress
�(t) vs. strain �(t), shown in Fig. 35b. In such a projection, a
interpretation (c). The response can be decomposed into the components
own in (e). The ordinate scale in (e) is deliberately chosen to be the same

purely elastic response would be a single-valued function
�(�). By contrast, the Lissajous figure for the pedal mucus
sample encloses a finite area on this plot, and thus viscous
dissipation is also evident. The corresponding viscous per-
spective of the LAOS response is shown in Fig. 35c, in which
the response curves are projected onto the plane of stress
�(t) vs. strain-rate �̇(t).

The tools of stress decomposition can be applied to this
data set to decompose the total stress into a superposi-
tion of elastic and viscous stresses, according to �(t) =
� ′(�) + � ′′(�̇) (Section 4.3). The decomposed stresses are
shown in Fig. 35d and e, in which these component stresses
are single-valued functions within their respective 2D pro-
jections. It is the non-constant slope of these component

elastic and viscous stresses which immediately indicate
the nature of the intra-cycle viscoelastic nonlinearities.
For this pedal mucus sample, the elastic stresses are ini-
tially linear but develop a convexity as the strain amplitude
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ncreases. In this case the curves of elastic stress display
ntra-cycle strain stiffening. Similarly, the concavity of the
iscous stress � ′′(�̇) reveals the viscous nonlinearity, and
n this case shear-thinning within a steady state oscillation
s observed.

The leading order elastic and viscous nonlinearities
re quantified by the third-order Chebyshev coefficients
3 = −G′

3 and v3 = G′′
3/ω, as described in Section 4.4. In

ig. 36 we display the n = 1, 3, 5 coefficients for both the
lastic and viscous stress decompositions. Each of the third-
armonic contributions, e3 and v3, initially appear with a
ependence on �2

0 , which is expected from the integral
xpansion of the Boltzmann superposition principle [153],
nd is furthermore consistent with the observed behav-
or of the Q-parameter (Section 4.1.1), which effectively
umps together the contributions of both e3 and v3 (Section
.4). It is the sign of the third-order Chebyshev coefficients
hich allows interpretation of the leading order nonlinear-

ty. Fig. 36 is a log–log plot, and the sign of each data point is
ndicated by a filled symbol (positive value) or open symbol
negative value). For all strain-amplitudes, and for torque
ontributions above the critical noise threshold, it is found
hat e3 > 0 and v3 < 0. These results correspond to intra-
ycle elastic strain-stiffening and viscous shear-thinning,
nd this quantitative analysis is consistent with the visual
nalysis and interpretation of the decomposed elastic and
iscous stress shown in Fig. 35d and e.

The intra-cycle stiffening likely results from polymeric
omponents within the pedal mucus gel which exhibit
tretch-stiffening. However, the structure of the polymeric
ucus gel must be more complicated than affine stretch-

ng of polymeric components to account for the distinct
ehavior revealed by the minimum-strain elastic mod-
lus, G′

M ≡ d� ′/d� |�=0, which decreases as a function of
he imposed strain amplitude �0. The LAOS decoupling of
imultaneous overall softening with local stiffening was
lso reported recently for a filled elastomer system [154].
uch physical insight may be able to inform constitutive
odels of this and other materials tested with LAOS, as

ecently demonstrated with nonlinear constitutive models
o capture the biomechanics of hagfish gel [155] and gluten
ough networks [156].

. Microstructural probes under LAOS flow

Substantial efforts have been made to correlate the
easured relationship between the nonlinear mechanical

esponse in LAOS and the underlying microstructural ori-
ntation or molecular topology of the viscoelastic material.
he macroscopic behavior of any complex fluid depends
trongly on its microscopic structural state, thus an inti-
ate relationship exists between rheological properties

nd microscopic structure. As an example, for flexible poly-
er chains under shear, orientational anisotropy is the

tructural origin of the shear-thinning in the macroscopic
tress and the thermal motion of the chains which erases
his anisotropy results in stress relaxation properties [157].

onsequently, quantitative prediction of both molecular
cale structure and macroscopic flow properties in realis-
ic flow fields is a central goal of research in complex fluids
158].
ience 36 (2011) 1697–1753 1743

However, purely rheological methods provide only
macroscopic measurements (e.g. the total measured torque
or normal force response). This means that macroscopic
rheological techniques can only be used to determine
continuum-level averaged material functions, in which
case any information regarding microscopic or molecular
structure is inherently indirect. Simultaneous determina-
tion of additional information on the microstructure or
even molecular level structure is often needed for a deeper
understanding of rheological behavior. Thus, several meth-
ods have been developed to cross this bridge with respect
to the length scales involved. One example is the simulta-
neous measurement of rheological and optical properties,
e.g. via optical microscopy, light scattering or measure-
ment of birefringence and dichroism. Rheo-optics has been
widely utilized in combined rheological and microstruc-
tural investigation of various materials [159,160]. Several
companies have introduced various rheo-optical tools, for
example, optical microscopes (Thermo Fisher Scientific
Inc.: HAAKE RheoScope rheometer; Anton Paar: Physica
MCR rheometer; Malvern Instruments: Bohlin rheometer),
flow-birefringence measurement (TA instruments: ARES),
and small angle light scattering (SALS) (Anton Paar: Physica
MCR rheometer).

There have also been numerous investigations designed
to investigate microscopic or molecular scale morphology
under various flow conditions with various optical tools,
e.g. SALS, SANS (small-angle neutron scattering), SAXS
(small-angle X-ray scattering), flow-induced birefringence
(FIB) etc. For example, Safinya et al. [161] investigated the
nematic to smectic-A phase transition of a liquid crystal
(LC) under shear flow with synchrotron X-rays. Bent et al.
[158] investigated the flow field of an entangled polymer
melt through a planar contraction, typical of many polymer
processes, by using both optical imaging and SANS. Dootz
et al. [162] demonstrated shear-induced alignment within
microchannels by utilizing in situ SAXS measurements.
Block copolymer melts and solutions have also been inves-
tigated in great detail using LAOS. For example, Chen et al.
[163] studied the flow alignment of a diblock copolymer
melt under LAOS flow with in situ birefringence mea-
surements and ex situ SAXS measurements. Wiesner [164]
reviewed the effects of LAOS deformation (as a function
of both frequency and strain amplitude) on the orientation
behavior of lamellar structures of block copolymers with ex
situ SAXS measurements. Hamley and coworkers [165,166]
have examined the effect of flow fields on the orientation
of block copolymer nanostructures in both melt and solu-
tion with in situ SANS and SAXS measurement. Tapadia
et al. [78] reported shear banding with an entangled poly-
mer fluid under LAOS flow at various frequency and strain
amplitude using a particle-tracking velocimetry method.
In addition to the above examples, there have been many
other studies conducted to investigate the effect of flow on
the microscopic or molecular scale structure using a variety
of optical and scattering tools.

For rheo-optical methods to be applied, the material

must be (at least partially) transparent at the interrogation
wavelengths being utilized. More importantly, the rheo-
optical measurement usually detects just an isochronal
average of the material microstructure, and molecular
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Fig. 36. Chebyshev analysis (Section 4.4) applied to the measured data shown in Fig. 35. (a) Elastic Chebyshev coefficients, and (b) Viscous Chebyshev
rpretat
indicat
coefficients. The sign of the third-order coefficients reveals a physical inte
stiffening and v3 < 0 reveals viscous shear-thinning. Symbols in light gray
Tmin = 0.1 �N m.

motion is observed as a time-dependent change of this
average [167]. Furthermore there are constraints with
respect to the size of the observed objects. A detailed review
of all these studies is beyond this review article. Therefore,
in this section, we introduce and focus on two different
in situ combination setups, i.e. the rheo-dielectric setup and
the rheo-SAXS setup in order to illustrate the effect of LAOS
deformation on the sample microstructure.

6.1. Rheo-dielectric setup

As a complementary method to rheo-optical tech-
niques, the rheo-dielectric combination is applicable to any
material having permanent electrical dipoles or charge-
induced electrical dipoles. Rheo-dielectric setups allow for
simultaneous measurements of dielectric and viscoelas-
tic properties of a sample subjected to external electric
and deformation fields [167], and have been used to study
liquid crystals [168–170], the dynamics of polyisoprene
chains [167,171,172], block-copolymers [171], carbon nan-
otube networks dispersed within polymer melts [173] and
carbon black suspensions [174]. This method has also been
extended to the nonlinear regime under LAOS deforma-
tions [83,168,175].

The dielectric property reflects the orientational corre-
lation of two segments at two separate times (e.g. t0 = 0
and t1 = �) and can be converted to provide measures of
the motion and fluctuations of the dipolar constituents
with respect to the molecular axis. The chain conformations
and local motions are differently averaged in the viscoelas-
tic and dielectric properties [176]; thus, the combination
of rheological and dielectric property measurements
provides distinct information compared to mechanical
measurements alone. This includes detailed information

about the relationship between local molecular relaxation
dynamics and the corresponding macroscopic rheological
response, as well as insight into the evolution of molec-
ular conformation, specifically stretch and orientation. In
ion of the leading order nonlinearities, here e3 > 0 indicates elastic strain-
e data points which are below a critical torque measurement threshold,

addition to polymer chain dynamics, the rheo-dielectric
combination can be used to investigate shear-induced
changes in various materials, e.g. in block copolymers or
liquid crystals under shear.

A polymer chain is called type-A if it has monomer
dipoles oriented parallel along the chain backbone [177].
Therefore, for type-A polymers the overall electric dipole
of the molecule is directly related to the end-to-end
vector orientation and its fluctuations. Consequently the
spectra reflect the global chain motion [178]. These
specific dielectric features of type-A chains have been suc-
cessfully utilized in recent studies to reveal interesting
equilibrium and non-equilibrium dynamics of linear and
branched polymer chains [167,171,172]. Furthermore, the
in situ combination of dielectric and mechanical meth-
ods reveals quite novel dynamic features [171]. Watanabe
et al. [167,172,176] have studied polymer chain dynam-
ics under steady shear in this way. They analyzed their
rheo-dielectric and viscoelastic data for entangled PI melts
within the molecular picture of convective constraint
release (CCR) induced by dynamic tube dilation (DTD).
The rheo-dielectric method also allows the investigation of
global chain dynamics under LAOS flow. The effect of LAOS
on the dielectric response of 1,4-cis-polyisoprene as a type-
A polymer has been studied in some detail [83,168,175].
For the rheo-dielectric experiments, a new setup was built
using a combination of the ARES-Rheometer (TA Instru-
ments) and a very sensitive dielectric analyzer (Alpha
analyzer from Novocontrol Technologies) [83,175].

Rheological measurements were carried out on a strain
controlled rheometer using a modified parallel plate fixture
and oven (Fig. 37). FT-Rheology was conducted as described
in Section 4.1 and a separate PC was used to control the
Alpha-analyzer. Fig. 37a shows the experimental setup of

the combination of a rheometer and a dielectric analyzer
in situ. To realize this rheo-dielectric setup with a con-
ventional rheometer, a new measuring plate and fixture
had to be designed and constructed and some parts of the
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Fig. 37. (a) Experimental setup for the in situ combination of rheometry and dielectric spectroscopy. (b) Schematic 3D view of the measurement geometry,
which consists of parallel electrode plate, ceramic insulation, and bolts for connecting the measuring plate with the electronics. Reproduced by permission
of Hyun et al. [175], copyright (2009) of Elsevier.

Fig. 38. (a) The dielectric loss ε′′ as a function of dielectric frequency under LAOS with PI 55K at 10 ◦C. The LAOS tests were carried out at a rheological test
frequency ωrheo/2� = 11.45 Hz. (b) The dielectric strength as a function of strain amplitude is divided into three regions for the PI 55K, an initially constant
value (0 < �0 < 0.4), decreasing (0.4 < �0 < 1), and asymptotic plateau at high strains (�0 > 1). Reproduced by permission of Hyun et al. [175], copyright (2009)
of Elsevier.
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oven were also modified (see Fig. 37b). Fig. 38a displays
the dielectric spectra as a function of ωdiel/2� under LAOS
with different strain amplitudes for a PI sample (Mw = 55K)
at 10 ◦C. The intensity decreases with increasing strain
amplitude, but the peak position and shape of the curve
remain unchanged. This means that LAOS affects neither
the mean relaxation time nor the relaxation time distri-
butions of the normal mode process. Fig. 38b shows the
dielectric strength (	ε) as a function of strain amplitude.
It was observed that 	ε shows significant changes as the
shear strain amplitude is increased. At small or medium
strain amplitude (�0 = 0.2 and 0.4) the dilectric strength
	ε remains unchanged from the value observed under no-
flow conditions; however, for strain amplitude between
�0 = 0.4 and �0 = 1, it decreases rapidly before leveling off
and approaching an almost constant asymptote for strain
amplitudes �0 > 1.

6.2. In situ Rheo-SAXS setup

The combination of rheometry and X-ray scattering
allows investigation of the effect of macroscopic shear
on molecular ordering at the nanometer scale. Since this
question is of general interest, there have been many
in situ rheo-SAXS experiments using a range of test geome-
tries, including Couette cells [106,161,179–181], a toothed
geometry [182,183], annular cone and plate [184], a con-
ventional plate-plate geometry by reflecting X-ray beam
[185,186], and others [107,187]. These in situ Rheo-SAXS
setups offer great potential for investigating the shear-
induced changes in the microstructure of various complex
fluids under nonlinear oscillatory shear flow. The advent
of very bright x-ray sources will enable development of
time-resolved experiments that provide a large amount of
new information regarding non-equilibrium chain dynam-
ics and evolution in orientation and shape of micro- or
nano-structure during nonlinear oscillatory shear flow.
An in situ Rheo-SAXS setup can directly correlate this
structural information with changes in the nonlinear coef-
ficients obtained from LAOS, e.g. the ratio I3/1 calculated
from FT-rheology.

7. Concluding remarks

In this article we have reviewed the current status
of large amplitude oscillatory shear (LAOS) rheological
measurements. The primary focus has been with respect
to strain-controlled shear tests and measurement of the
oscillating nonlinear shear stress and first normal stress dif-
ference for a wide range of complex fluids, with a primary
focus on polymeric systems. LAOS tests are substantially
more complex rheological probes than small amplitude
oscillatory shear (SAOS) tests because of the non-sinusoidal
and nonlinear system response. The complexity of the
material response to LAOS is both the strength and weak-
ness of the technique. The additional information obtained
can help characterize the response of complex fluids to

nonlinear deformation, but it also makes the results more
difficult to interpret.

Recent hardware and software advances have con-
tributed to impressive advances in quantitative analysis
cience 36 (2011) 1697–1753

of LAOS measurements. These quantitative techniques
enable systematic investigation of nonlinear responses
under large amplitude deformation; consequently, LAOS
is becoming adopted more broadly. As a result of the
very recent technical implementation of high performance
LAOS techniques in commercial rheometers, the spread of
these techniques will be further facilitated. Recent uses of
LAOS measurements, not included in this review, include
fitting nonlinear parameters for constitutive models, e.g.
the Giesekus model [188] and interrogating nonlinear
response of dense colloidal suspensions under oscillatory
shear using Mode-coupling theory and experiments [189].
Broader experimental application is also being found by
modifying the LAOS ideas reviewed here. For example,
recent reports have demonstrated the use of controlled
shear stress input with analysis of the resulting nonlin-
ear strain signal [190], and the use of large amplitude
oscillatory extension tests [191]. Experimentally, one con-
tinuing difficulty is ensuring homogenous deformation.
Recent work has shown the ability to simultaneously
observe LAOS behavior while confirming homogeneous
deformation [192]. LAOS responses in concert with non-
homogenous deformation (shear-banding) have also been
considered, e.g. for a nonlinear model for entangled worm-
like micellar solutions [193].

The theoretical underpinnings of the nonlinear
responses observed under LAOS flow for different complex
fluids (e.g. polymer melts or solutions, dispersed systems,
and blockcopolymer systems) are still poorly under-
stood. The mechanisms that can lead to even harmonic
generation in the shear stress also beg for improved
theoretical understanding. Finally we also note that the
use of complementary in situ microstructural probes, e.g.
rheo-SAXS, rheo-dielectric configurations, etc., will help to
more deeply connect the measured macroscopic response
with the microstructural origin of nonlinear viscoelastic
behavior.

List of symbols
Al coefficient of linear response function from char-

acteristic function
Ar coefficient of periodic rectangular function from

characteristic function
At coefficient of periodic triangular function from

characteristic function
Ast coefficient of periodic saw tooth function from

characteristic function
a creation rate constants in network model
apq in-phase expansion coefficients at nonlinear oscil-

latory regime (p, q = 1, odd)
b loss rate constants in network model
bpq out-of-phase expansion coefficients at nonlinear

oscillatory regime (p, q = 1, odd)
Cij Taylor or polynomial expansion coefficient, i, j = 1,

2, 3, · · ·
D the rate of deformation tensor

De Deborah number (=ω/ωc)
en nth elastic Chebyshev coefficients (n = 1, odd)
f(t) creation rate function in network model
g(t) loss rate function in network model
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′ elastic (storage) modulus in linear regime (SAOS)
[Pa]

′′ viscous (loss) modulus in linear regime (SAOS)
[Pa]

′
n nonlinear elastic (storage) modulus from a

Fourier series (n = 1, odd)
′′
n nonlinear viscous (loss) modulus from a Fourier

series (n = 1, odd)
′
nm nonlinear elastic modulus from a power series (n,

m = 1, odd)
′′
nm nonlinear viscous modulus from a power series

(n, m = 1, odd)
′
N generalized elastic modulus
′
SR sine-wave regression fit elastic modulus
′
LR linear regression fit elastic modulus
′
PR polynomial regression fit elastic modulus
′
M the minimum-strain elastic modulus
′
L the largest-strain secant elastic modulus
′
K the largest-strain tangent elastic modulus
0
N plateau modulus

n nth harmonic intensities from FT-Rheology (n = 1,
odd)

n/I1 or In/1 relative intensities from FT-Rheology (n = 3,
odd)

i first normal stress difference at i = 1 and second
normal stress difference at i = 2

i,2k (k=0,1,2. . .) nonlinear normal stress differences i = 1 or 2
(�0, ω) nonlinear parameter from FT-Rheology
0(ω) zero-strain nonlinear parameter or intrinsic non-

linear parameter from FT-Rheology
1 the first quarter cycle torque (stress) signal inte-

gration
2 the second quarter cycle torque (stress) signal

integration
/N the signal to noise ratio

time [s]
n Chebyshev functions
n nth viscous Chebyshev coefficients

reek letters
the mobility factor in Giesekus model
phase angle at linear regime (SAOS) [rad or ◦]

n nth phase angle from shear stress at nonlinear
regime (n = 1, odd) [rad or ◦]

i,2k (k=0,1,2. . .) kth phase angle from normal stress differ-
ence i = 1 or 2 [rad or ◦]
viscosity

0 zero shear viscosity
s solvent viscosity in Giesekus model
p polymer viscosity in Giesekus model
shear strain
0 shear strain amplitude

˙ shear rate [s−1]
relaxation time [s]

or �12 shear stress
stress tensor

∇
upper convected stress tensor
ience 36 (2011) 1697–1753 1747

�ij stress tensor component, i, j = 1, 2, 3
�max maximum shear stress
�n nth harmonic shear stress at nonlinear regime

(n = 1, odd)
� ′ elastic shear stress (LAOS decomposition)
� ′′ viscous shear stress (LAOS decomposition)
�s solvent stress tensor in Giesekus model
�p polymer stress tensor in Giesekus model
� characteristic relaxation time
ω angular frequency [rad/s]
ωc crossover angular frequency at G′ = G′′ in SAOS test

[rad/s]
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Appendix A. Stress direction and deformation
direction

In simple shear flow, the deformation gradient in the
sample is given by F = I + �e1e2 where I is the identity ten-
sor, � is the shear strain and ei are the orthonormal base
vectors inherent to the reference frame under considera-
tion. Changes in the chosen coordinate system should not
alter the physical phenomena that arise from the deforma-
tion. Consider a physical process that is described by two
coordinate systems such that

e′
1 = −e1, e′

2 = −e2, e′
3 = e3 (A1)

Because of the symmetry of the simple shear flow, it
follows that

F = eiei + �e1e2 = e′
ie

′
i + � ′e′

1e′
2, � = � ′ (A2)

In Eq. (A2), the summation convention was used. Since
the stress (�) arising from the simple shear depends on
the deformation history, the nature of the tensor and the
symmetry of the simple shearing deformation lead to

� = �ikeiek = � ′
ik

e′
i
e′

k
= �ike′

i
e′

k

�11 = � ′
11, �22 = � ′

22, �33 = � ′
33, (A3)
�12 = � ′
12, �23 = −� ′

23, �31 = −� ′
31

Thus, the only non-zero components of the stress tensor
are the diagonal components and the off-diagonal
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element �12. Hence, we have

� = �11e1e1 + �22e2e2 + �33e3e3 + �12(e1e2 + e2e1)

(A4)

Eq. (A4) is valid for shear flows such as those generated
between rotating parallel disks, those between a rotating
cone and a stationary plate and those generated in capillary
rheometers. In case of oscillatory shear flow, the stress is
analyzed in the steady periodic state, therefore stress can
be expressed by an algebraic function of deformation rather
than a functional of deformation. Hence we can write

� = �(�, � (1), � (2), . . .) (A5)

where

� (n) = dn�

dtn
(A6)

Because shear strain is given by � = �0 sin ωt, we know
that all time derivatives of shear strains are not indepen-
dent. This allows us to write Eq. (A5) in simpler form:

� = �(x, y) (A7)

where x ≡ �0 sin ωt and y = �0 cos ωt = ω−1d�/dt.
If the shear direction is changed, i.e., x → − x then we

know that y → − y. This change of the direction of shearing
is equivalent to a change of the base vectors as follows

e′
1 = −e1, e′

2 = e2, e′
3 = e3 (A8)

Eqs. (A8) and (A4) imply

�(−x, −y) =
3∑

k=1

�kk(−x, −y)ekek + �12(−x, −y)(e1e2 + e2e

=
3∑

k=1

�kk(x, y)e′
ke′

k + �12(x, y)(−e′
1e′

2 − e′
2e′

1)

=
3∑

k=1

�kk(x, y)ekek − �12(x, y)(e1e2 + e2e1)

(A

Finally, we note that the shear stress changes its sign
according to that of the imposed deformation whereas the
normal stress difference does not. Therefore, the symmetry
of shear stress and normal stress difference are given as
follows,

�12[−�(t), −�̇(t)] = −�12[�(t), �̇(t)] (A10)

N1,2[�(t), �̇(t)] = N1,2[−�(t), −�̇(t)] (A11)

where N1,2 = first and second normal stress differences,
respectively.

Appendix B. Odd harmonics of shear stress in

oscillatory shear

�(t) =
∑
i=0

∑
j=0

Cij�
i(t)�̇ j(t) (B1)
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From Appendix A, the shear stress must be an odd func-
tion of the direction of shearing deformations.

�[−�(t), −�̇(t)] = −�[�(t), �̇(t)] (B2)

�(t) =
∑
i=1

∑
j=1

[C2i−1,2(j−1)�
2i−1(t)�̇2(j−1)(t)

+ C2(i−1),2j−1�2(i−1)(t)�̇2j−1(t)] (B3)

Applying an oscillatory shear flow, the strain and strain-
rate can be described as follows

�(t) = �0 sin ωt, �̇(t) = ω�0 cos ωt (B4)

Inserting Eq. (B4) into Eq. (B3) results in the following
expression for the shear stress:

�2i−1�̇2(j−1) = �2i+2j−3
0 ω2(j−1) sin2i−1 ωt cos2(j−1) ωt

�2(i−1)�̇2j−1 = �2i+2j−3
0 ω2j−1 sin2(i−1) ωt cos2j−1 ωt (B5)

�(t) =
∑
i=1

∑
j=1

�2i+2j−3
0 ω2j−1

[
C2i−1,2(j−1)

ω
sin2i−1

ωt cos2(j−1) ωt + C2(i−1),2j−1 sin2(i−1) ωt cos2j−1 ωt

]
(B6)

Sine and cosine functions are expressed as follows:

cos2j−1 ωt =
j∑

n=1

an cos(2n − 1)ωt,

sin2j−1 ωt =
j∑

n=1

bn sin(2n − 1)ωt (B7)

sin2j ωt =
j∑

n=0

cn cos 2nωt, cos2j ωt =
j∑

n=0

dn cos 2nωt

(B8)

From the above equation,

sin2i−1 ωt cos2(j−1) ωt =
(

i∑
n=1

cn sin(2n − 1)ωt

)

(
j∑

m=1

dm cos 2(m − 1)ωt

)
=

i∑
n=1

j∑
m=1

cndm sin(2n − 1)ωt

cos 2(m − 1)ωt =
i∑

n=1

j∑
m=1

cndm

2
[sin(2n + 2m − 3)ωt
+ sin(2n − 2m + 1)ωt] =
2i+2j−3∑
m=1,odd

am sin mωt (B9)
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sin2i−2 ωt cos2j−1 ωt =
(

i∑
n=1

en cos 2(n − 1)ωt

)

(
j∑

m=1

fm cos(2m − 1)ωt

)
=

i∑
n=1

j∑
m=1

enfm cos 2(n − 1)ωt

cos(2m − 1)ωt =
i∑

n=1

j∑
m=1

enfm
2

[cos(2n + 2m − 3)ωt

+ cos(2n − 2m − 1)ωt] =
2i+2j−3∑
n=1,odd

bn cos nωt (B10)

Inserting Eq. (B9) and Eq. (B10) into the equation for
tress given in Eq. (B6) results in the following expression
or the stress:

(t) =
∑
i=1

∑
j=1

�2i+2j−3
0 ω2j−1

[
C2i−1,2(j−1)

ω

2i+2j−3∑
m=1,odd

am sin mωt

+C2(i−1),2j−1

2i+2j−3∑
n=1,odd

bn cos nωt

]
(B11

Therefore, we simply summarized the shear stress with
he odd higher-order terms in the nonlinear regime as fol-
ows:

(t) =
∑
p,odd

p∑
q,odd

�q
0 [apq sin qωt + bpq cos qωt] (B12)

ppendix C. Giesekus and UCM model

Giesekus attempted to derive a theory for concentrated
olutions or melts by starting from the simple dumbbell
heory for dilute solutions [123]. The Giesekus model is
iven by

∇ + 1
�

�+˛
1

�G
� · �=2GD or �+�

∇
� + ˛

�

�
� · � = 2�D

(C1)

here � is the relaxation time, G is the modulus, � is the
iscosity (� = �/G) and the superscript ∇ denotes the upper
onvective time derivative, which is defined as follows:

∇ = ∂

∂t
� + v · ∇� − (∇v)T · � − � · ∇v (C2)

here � is the stress tensor, ∇v is the velocity gradient and
is the rate of deformation tensor. The parameter ˛ is the

mobility factor” which can be associated with anisotropic
rownian motion and/or anisotropic hydrodynamic drag
2]. Maximum and minimum anisotropy correspond to
= 1 and ˛ = 0, respectively. If ˛ exceeds unity, the stress
eeps on growing rather than relaxing when deformation

eases. When ˛ = 0 (isotropic drag), the upper-convected
axwell (UCM) equation is recovered [123].

∇ + 1
�

� = 2GD or � + �
∇
� = 2�D (C3)
ience 36 (2011) 1697–1753 1749

Appendix D. Q0 at low frequency

Pearson and Rochefort [20] calculated the nonlinear
coefficients using the Doi-Edwards model for entangled
polymer systems:

G′
11(ω) = 3

5
�kT

Ne

∞∑
p,odd

8
�2p2

ω2�2
d

p4 + ω2�2
d

(D1)

G′′
11(ω) = 3

5
�kT

Ne

∞∑
p,odd

8
�2

ω�d

p4 + ω2�2
d

(D2)

G′
33(ω) = 3

28
�kT

Ne

∞∑
p,odd

8
�2p2

(
ω2�2

d

p4 + ω2�2
d

− 4ω2�2
d

p4 + 4ω2�2
d

+ 3ω2�2
d

p4 + 9ω2�2
d

)
(D3)

G′′
33(ω) = 3

28
�kT

Ne

∞∑
p,odd

8
�2

(
ω�d

p4 + ω2�2
d

− 2ω�d

p4 + 4ω2�2
d

+ ω�d

p4 + 9ω2�2
d

)
(D4)

The low-frequency limits of the dynamic moduli are

G′
11(ω) ∼= 3

5
�kT

Ne

∞∑
p,odd

8
�2

ω2�2
d

p6
(D5)

G′′
11(ω) ∼= 3

5
�kT

Ne

∞∑
p,odd

8
�2

ω�d

p4
(D6)

G′
33(ω) ∼= 3

28
�kT

Ne

∞∑
p,odd

8
�2

−12ω4�4
d

p10
(D7)

G′′
33(ω) ∼= 3

28
�kT

Ne

∞∑
p,odd

8
�2

−2ω3�3
d

p8
(D8)

Using the definition of the nonlinear coefficient Q0 from
Eq. (31), the limiting response at low frequencies for the
Doi-Edwards model is given as follows,

lim
ω→0

Q0(ω) = lim
ω→0

√
G′

33
2 + G′′

33
2√

G′
11

2 + G′′
11

2
∝ lim

ω→0

√
ω8 + ω6√
ω4 + ω2

∝ lim
ω→0

ω3

ω
∝ ω2 (D9)

Therefore, a quadratic scaling (Q0 ∝ ω2) in the low-
frequency limit can be assumed for the nonlinear
coefficient Q0(ω). For the specific case of the Doi-Edwards

mode using standard formulae for summation of the indi-
vidual terms in Eqs. (D5)–(D8), we find:

lim
ω→0

Q0(ω) → 1
3

(�dω)2 (D10)
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which is in good agreement with Fig. 12b of Hyun and Wil-
helm [43].
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