Cut & Choose, continued

Cut & Choose idea: [LP07]
- Alice garbles f, independently S times
- Bob picks random subset to be "checked" ("check circuits")
- Bob evaluates remaining garbled circuits, outputs majority output value

Selective failure issue:
- Alice can make Bob’s probability of abort depend on his input!

Mitigation from LP07:

To securely evaluate f:
- Securely evaluate \hat{f} instead
- For each input x_i for Bob, pick random $x_{i,1}, \ldots, x_{i,s}$ such that XOR is x_i

Claim:
$$\left| \Pr[\text{Bob aborts w/ input } x_B] - \Pr[\text{Bob aborts w/ input } \hat{x}_B] \right| \leq \frac{n}{2^{S-1}}$$
where n is # of input bits for Bob
Pf: focus on Bob's first input bit to f

Alice provides wire labels for bit $= 0 / 1$

(1) she gives invalid inputs - for both 0/1
 \Rightarrow Bob picks up invalid wire labels regardless of his input

(2) otherwise, for each bit, at most 1 wire label invalid
 Bob's input bit gets expanded into 5 bits in \hat{f}

(2a) Alice sends invalid wire label in < 5 of these

Bob's distribution over these subset of bits (hence, abort probability)
trap: safe is indep of his "true" input to f

(2b) Alice sends invalid wire labels in all 5

Ex: sends invalid wire label for "1" for all of the bits
 (so if Bob has "1" on any of the expanded inputs, he aborts)

 \Rightarrow Bob has input 1 to f \Rightarrow must have some 1
 among expanded inputs
 \Rightarrow aborts w/ prob $= 1$

 \Rightarrow Bob has input 0 to f \Rightarrow aborts w/ prob $= 1 - \frac{1}{2^5}$

Attack: Bob must evaluate many circuits
Alice can send inconsistent inputs: different Alice-input for each garbled circuit
Example: \(f(x, y) = \sum x_i y_i \mod 2 \)

Alice gets Bob to evaluate

majority \{ f(x_1, y), f(x_2, y), \ldots, f(x_k, y) \}

where
\[
\begin{align*}
 x_1 &= 100_0 \ldots \\
 x_2 &= 0100 \ldots \\
 x_3 &= 001 \ldots
\end{align*}
\]

\[
\begin{align*}
 y_1 &\quad y_2 &\quad \cdots &\quad y_k
\end{align*}
\]

\[\Rightarrow \text{Bob outputs majority value of } \{ y_1, \ldots, y_k \} \]

Input Consistency Problem Alice uses different choices of inputs for different evaluation circuits

Building Block: Commitment scheme (locked box)

Protocol: Sender has value \(x \)

choose random \(s \leftarrow \mathbb{G}_1 \)

compute \(h := H(s, x) \) \(H \) is hash func, SHA-3

send \(h \)

\[\ldots \text{ later} \ldots\]

send \(s, x \)

receiver can check \(h \stackrel{?}{=} H(s, x) \)

Security:
- hard to find \((s, x) \) \((s', x') \) s.t. \(H(s, x) = H(s', x') \)
 \(\Rightarrow \) sender is "bound" to single value \(x \)
- for random \(s \), \(H(s, x) \) gives no info about \(x \)
 \(\Rightarrow \) commitment hides \(x \) until opened