Secure Computation & Yao’s Protocol

Mike Rosulek

Roadmap

1 Secure computation: Concepts & definitions

Secure computation

Premise:

> Mutually distrusting parties,
each with a private input

Secure computation

Premise:

> Mutually distrusting parties,
each with a private input

» Learn the result of
2 x5 agreed-upon computation

» Ex: election, auction, etc.

- fIx1, x2, X3, X4, X5)

Secure computation

Premise:

> Mutually distrusting parties,
each with a private input

» Learn the result of
X5 agreed-upon computation

» Ex: election, auction, etc.
Security guarantees:

» Privacy (“learn no more
than” prescribed output)

> Input independence

> Output consistency, etc..

- fIx1, x2, X3, X4, X5)

Secure computation

Premise:

> Mutually distrusting parties,
each with a private input

» Learn the result of
X5 agreed-upon computation

» Ex: election, auction, etc.
Security guarantees:

» Privacy (“learn no more
than” prescribed output)

> Input independence

> Output consistency, etc..

..even if some parties cheat,
collude!

- fIx1, x2, X3, X4, X5)

Examples: Sugar Beets

Beet Farmers BANISCO

— H

Examples: Sugar Beets

Beet Farmers BANISCO

o~ 5
— ; B
T .

» Farmers make bids (“at price X, | will produce Y amount”)

» Purchaser bids (“at price X, | will buy Y amount”)
» Market clearing price (MCP): price at which total supply = demand

Examples: Sugar Beets

Beet Farmers BANISCO

o~ 5
— ; B
o .

» Farmers make bids (“at price X, | will produce Y amount”)

v

Purchaser bids (“at price X, | will buy Y amount”)

v

Market clearing price (MCP): price at which total supply = demand

v

2009: MCP (+ bids at that price) computed via secure computation

Examples: Ad

Ad impressions
alice@gmail.com
bob@gmail.com
charlie@gmail.com
dianne@gmail.com
edwin@gmail.com
frank@gmail.com

gina@gmail.com

conversion

In-store purchases
albert@gmail.com
bob@gmail.com
caroline@gmail.com
edwin@gmail.com
felipe@gmail.com
T = 5 L & | frank@gmail.com
hilda@gmail.com

)

Examples: Ad conversion

Ad impressions
alice@gmail.com
bob@gmail.com
charlie@gmail.com

In-store purchases
albert@gmail.com
bob@gmail.com
caroline@gmail.com

dianne@gmail.com
edwin@gmail.com
frank@gmail.com

edwin@gmail.com
felipe@gmail.com
frank@gmail.com

hilda@email com

SELECT SUM(amount)
FROM ads, purchases
WHERE ads.email = purchases.email

» Computed with secure computation by Google and its customers

Examples: Wage Equity Study

€he New York Times

How Boston Is Trying to
Close the Gender Pay Gap

Through pay-negotiation workshops and partnerships with more
than 100 companies, the city is trying to help female workers match
the salaries of male counterparts.

DATA SUBMISSION PROCESS:
BOSTON WOMEN ’ S Part of the commitment employers make when signing

the Boston 100% Talent Compact is to anonymously

report employee data to the BWWC biennially. The

WO RK FO R C E Co U N C IL Software & Application Innovation Lab at Boston

University's Rafik B. Hariri Institute of Computing
R E P o RT 2 o'l '7 and Computational Science & Engineering, the BWWC’s

data partner, developed a completely confidential
reporting system from which anonymous data from
multiple independent sources can be analyzed in the
aggregate.

During the submission process, Compact signers submit
their wage data in the aggregate form over a unique,
web-based software program that employs encryption
using a technique known as secure multi-party com-
putation. During this process, individual compensation
data never leaves each organization’s server. The
BWWC then receives aggregate data unconnected to
any firm

What does it mean to
“securely” compute f?

Security laundry list

» What if adversary learns more than f(x, y)?

» What if adversary learns f{x, y) but then prevents honest party from
learning it too?

> What if adversary forces several parties to have inconsistent outputs?
> What if adversary’s choice of input depends on honest party’s input?
» Whatif ...

Defining security: ideal world

Defining security: ideal world

Defining security: ideal world

Defining security: ideal world

What can a corrupt party do in this ideal world?

Defining security: ideal world

i,
@

3

What can a corrupt party do in this ideal world?
» Choose any input y (independent of x)
» Learn only f(x, y), and nothing more

» Cause honest party to learn f(x, y)

Real-ideal paradigm wosaemciss

Security goal: real protocol interaction is
as secure as the ideal-world interaction

Real-ideal paradigm o

Security goal: real protocol interaction is
as secure as the ideal-world interaction

For every “attack” against real protocol, there is a way
to achieve “same effect” in ideal world

Real-ideal paradigm

What is the “effect” of a generic attack?

Real-ideal paradigm

What is the “effect” of a generic attack?

» Something the adversary learns / can compute about honest party

Real-ideal paradigm

What is the “effect” of a generic attack?

» Something the adversary learns / can compute about honest party

» Some influence on honest party’s output

Defining security

Defining security

Security definition: For every real-world adversary A, there exists an
ideal adversary A’

Defining security

Security definition: For every real-world adversary A, there exists an
ideal adversary A’ s.t. joint distribution (HonestOutput,AdvOutput) is
indistinguishable

Defining security

Security definition: For every real-world adversary A, there exists an

ideal adversary A’ s.t. joint distribution (HonestOutput,AdvOutput) is
indistinguishable

WLOG: 3 simulator that simulates real-world interaction in ideal world

Defining security

Role of simulator:
1. Send protocol messages that look like they came from honest party

2. Extract an f-input by examining adversary’s protocol messages

Defining security

Role of simulator:
1. Send protocol messages that look like they came from honest party
> Demonstrates that honest party’s messages leak no more than f(x, y)
2. Extract an f-input by examining adversary’s protocol messages

> “Explains” the effect on honest party’s output in terms of ideal world

Semi-Honest security

Special case: security against semi-honest (passive, honest-but-curious)
adversary:

> Adversary assumed to follow the protocol on a given input
> Adversary may try to learn information based on what it sees

> No need to extract, only simulate transcript given ideal input+output

isclaimer

Security definition here is greatly oversimplified

Universally Composable Security:
A New Paradigm for Cryptographic Protocols*

Ran Canettit

July 16, 2013

Abstract

We present a general framework for representing cryptographic protocols and analyzing their
security. The framework allows specifying the seeurity requirements of practically any crypto-
graphic task in a unified and systematic way. Furthermore, in this framework the sccurity of
‘protocols is preserved under a general protocol composition operation, called universal composi-

The framework witlh its security-preserving composition operation allows for mod-

Roadmap

1 Secure computation: Concepts & definitions

Warm-up: garbled truth table

Alice does the following:

1. Write truth table of function f

A A DB D WWWWNNNNSA A 2 2

A WN =2 B WN=2 AR WN =2 B W =

ALT)
f1,2)
AL3)
fL4)
f2,1)
f2,2)
f2,3)
f2,4)
f3,1)
f3,2)
f3,3)
f(3,4)
fl4,1)
f14,2)
f(4,3)
fl4,4)

Warm-up: garbled truth table

Alice does the following:

1. Write truth table of function f

2. For each possible input, choose random
cryptographic key

RN IR IR R R S S S S S >y
PR RO W WWNDNNNN =
W N o W N R W - R WDND
RN EREERERERRE

Warm-up: garbled truth table

Alice does the following: Ea,.8 (A1,

1. Write truth table of function f Ea,. 8, (A1,

2. For each possible input, choose random Ea,,8, (f(1.
cryptographic key Ea,.8, (f(2,

3. Encrypt each output with corresponding keys E, ’B (f
2,03 ’

Warm-up: garbled truth table

Alice does the following:

1.
2.

Write truth table of function f

For each possible input, choose random
cryptographic key

3. Encrypt each output with corresponding keys

Randomly permute ciphertexts, send to Bob

(s}

>

fory

[o~]

N
WHEWEEPENENEEBRDNDPRENDWRW
N — — — O NN R R R DD W W L
N ANIPNIPNI NGNS IS I
T D D D D D D D D o o o o o o

Warm-up: garbled truth table

Alice does the following:

7

1.
2.

Write truth table of function f

For each possible input, choose random
cryptographic key

3. Encrypt each output with corresponding keys

Randomly permute ciphertexts, send to Bob

Somehow Bob obtains “correct” A, B,

®

(s}

>

fory

[o~]

N
WHEWEEPENENEEBRDNDPRENDWRW
N — — — O NN R R R DD W W L
N ANIPNIPNI NGNS IS I
T D D D D D D D D o o o o o o

Warm-up: garbled truth table

Alice does the following:

1. Write truth table of function f

2. For each possible input, choose random
cryptographic key Ea,, 8, (f(4.2))

3. Encrypt each output with corresponding keys

4. Randomly permute ciphertexts, send to Bob

7 Somehow Bob obtains “correct” A, B, ??J

Through trial decryption, Bob learns only f(x, y)

Security of warm-up protocol

Suffices to show that Bob’s

view in the protocol can be Bob’s view (real):

simulated given just Bob’s A4, Bo

ideal input/output. Ey.5,(3.9)
Ea,, B, (f(4,3))
EAs,BS (f(Ss 3))
Ea,,8,(f(2.3))
Ea,, B, (f(4,2))
EA2,34 (f(Qs 4))
EA4, By (f(4’ 4))
Ea,,8,(f(1,4))
EAQ,Bz (f(Q’ 2))
EAl, Ba (f(l’ 2))

Security of warm-up protocol

Suffices to show that Bob’s

view in the protocol can be Bob’s view (real): = Simulated view:

simulated given just Bob’s Ay, Bo A*, B*

ideal input/output. Ep,. 8, (3,4)) Ea,.5,(0)
Ba, 6 (14.3)) Ex,.5,(0)
Ea,.5, (f(3,3)) Ex..8,(0)
Ea,.5, (2,3)) E4..5. (0)
Ea,.5,(f4,2)) Ea g (flx y))
Ea,.8,(f(2,4)) En,.5,(0)
EA4,B4 (f(4’ 4)) EA7’B7 (O)
By 6, (1.4)) Ex,.5,(0)
Ea,, 8, (f(2,2)) En.,8.(0)
E/\LBQ (f(l’2)) EA7’B7 (O)

Security of warm-up protocol

Suffices to show that Bob’s
view in the protocol can be
simulated given just Bob’s
ideal input/output.

Simulation is
indistinguishable, as long as
E satisfies:

EA,B(C) =~ EA/,Bf(C,)

if at least one of {A, B} random
and unknown to distinguisher.

Bob’s view (real):

Ay, Bo

~
~

Simulated view:

A*, B*

Ea,,8,(0)
Ea,,8,(0)
EA?,B? (O)
Ea,,8,(0)
Ea-, g (f(x. y))
EA?,B? (O)

Extending warm-up protocol

Problem: Cost scales with the truth table size of fl

Extending warm-up protocol

Problem: Cost scales with the truth table size of fl

> Idea: instead of encrypting outputs, encrypt keys to yet more

garbled tables
EA1,31(C1)
Ea,,8,(C1) Ec,p, ()
By, (C2) Ec, p, ()
Ea,,8,(C1) \) ECL,D:;('“)
Ea,,8,(C3) ECz:Dl("')
: Ec,,p,(-**)

Problem: How does Bob magically learn “correct” A,, B,?

Extending warm-up protocol

Problem: Cost scales with the truth table size of fl

> Idea: instead of encrypting outputs, encrypt keys to yet more

garbled tables
EA1,31(C1)
Ea,,8,(C1) Ec,p, ()
By, (C2) Ec, p, ()
Ea,,8,(C1) \) ECL,D:;('“)
Ea,,8,(C3) ECz:Dl("')
: ECZsDQ ()

Problem: How does Bob magically learn “correct” A,, B,?

> Discuss later (oblivious transfer)

Garbled circuit framework w.s

—D
TS Djﬁ

Garbled circuit framework s

_ =

o - -

S — O

S O v

oS — O O

S — O

OO - -

S — O O

S — O —
OO T

O = — O

S — O —

o O v

S — O o

S — O —

SO v

Garbled circuit framework s

M_D Eo, E1

By, B1 \i > Fo, 1

IO’ Il

Ho, Hy

Co, C; Go, Gy

Do, Dy
000 000 0 00 0 0]0 000
0 1|1 0 1|1 0 1|1 0 11 0 1|1
10]0 101 10(0 10]0 101
1 1(0 1 1(0 1 1(0 1 1|0 1 1|1

Garbling a circuit:

> Pick random labels W, W; on each wire

Garbled circuit framework s

M_D Eo, E1

By, B1 \i > Fo, 1

Go. G Go, Gy
Do, Dy

IO’ Il

Ho, Hy

Ao Bo|Eo| |Ao Bo|Fo| |Co Do|Go| |fo Go|Ho Eo Ho|lo
Ao Bi1|E1 Ao Bi|Ffi| |Co D1|G1| |Fo G1|H1 Eo Hi|h
A1 Bo|Eo| |A1 Bo|Fi| |C1 Do|Go| |F1 Go|Ho Ey Ho|h
A1 Bi|Eo A1 Bi|Fo| |C1 D1|Go| | Gi|Ho Ey Hi|h

Garbling a circuit:

> Pick random labels W, W; on each wire

Garbled circuit framework s

M_D Eo, E1

By, B1 \i > Fo, 1

IO’ Il

Co, Cy

Do, D1
EAosBo(EO) EAosBo(FO) ECO’DO(GO) EFOsGO(HO) EEOsHU(IO)
Eao, 8, (E1) | |Eag,8,(F1)| |Eco,0,(G1) | |ERy Gy (H1) | | Egp my (1)
Eay.B,(E0) | |Ea,.B,(F1)| |Ecy.po(C0) | |EF.Go(Ho) | |EEy,Ho(h)
Eay,B, (E0) | |Ea,,8,(Fo)| |Ecy,p,(Co) | |ER,G,(Ho) | |Eg,n (h)

Garbling a circuit:
> Pick random labels W, W; on each wire

> “Encrypt” truth table of each gate

Garbled circuit framework s

M_D Eo, E1

By, B1 \i > Fo, 1

IO’ Il

Co, Cy

Do, D1
EAosBo(EO) EAosBo(FO) ECO’DO(GO) EFOsGO(HO) EEOsHU(IO)
Eao, 8, (E1) | | Eag,8, (F1) | |Eco,0,(G1) | | By Gy (H1) | | EEphy (1)
Eay.B,(E0) | | Ea,.8,(F1) | |Ecy.0o(C0) | |EF.Go(Ho) | | By 1o ()
Eay,8, (Eo) | |Ea,,8,(Fo) | |Ecy,p,(Co) | |ER,G, (Ho) | | Egy,my (h)

Garbling a circuit:
> Pick random labels W, W; on each wire
> “Encrypt” truth table of each gate

> Garbled circuit = all encrypted gates

Garbled circuit framework s

D

R g

Co

D
EAosBo(EO) EAosBo(FO) ECO’DO(GO) EFOsGO(HO) EEOsHU(IO)
Eao, 8, (E1) | | Eag,8, (F1) | |Eco,0,(G1) | | By Gy (H1) | | EEphy (1)
Eay.B,(E0) | | Ea,.8,(F1) | |Ecy.0o(C0) | |EF.Go(Ho) | | By 1o ()
Eay,8, (Eo) | |Ea,,8,(Fo) | |Ecy,p,(Co) | |ER,G, (Ho) | | Egy,my (h)

Garbling a circuit:
> Pick random labels W, W; on each wire
> “Encrypt” truth table of each gate
> Garbled circuit = all encrypted gates

> Garbled encoding = one label per wire

Garbled circuit framework s

Ay

i

R g

Co

D

Bo() EAosBo (FO) ECO’DO (GO) EFosGo (HO) EEOaHU (IO)
E (5] | Bag.s, (F) | |Eco.py (G1) | | ERy Gy (H1) | | EEymy (1)
Eay.B,(E0) [| Eay.8,(F1) | |Ecy.po(C0) | |EF. Gy (Ho) | | By 1o (h)
Ea, o (")) |Eays (Fo)| [Ec,.p,(Go) | |EF,G (Ho) | |EE,m (1)

Garbling a circuit:
> Pick random labels W, W; on each wire
> “Encrypt” truth table of each gate
> Garbled circuit = all encrypted gates

> Garbled encoding = one label per wire

Garbled evaluation:

> Only one ciphertext per
gate is decryptable

Garbled circuit framework s

D .

By \D i

Co

D

Bo() E ,Bo() ECO’DO(GO) EFosGo(HO) EEOsHU(IO)
E o U E L () | Econ, (G1) | | ERyG,(H1) | | EEymy (1)
Eay.B,(E0) [| Eay.8,(F1) | |Ecy.po(C0) | |EF. G, (Ho) | | By 1o ()
Ea,o (C)) [BEa, ()] [Ec.p,(Go) | |EF,G (Ho) | |EE,m (1)

Garbling a circuit:
> Pick random labels W, W; on each wire
> “Encrypt” truth table of each gate
> Garbled circuit = all encrypted gates

> Garbled encoding = one label per wire

Garbled evaluation:
> Only one ciphertext per
gate is decryptable

> Result of decryption =
value on outgoing wire

Garbled circuit framework s

D .

PR

Co G,
D
Bo () E. 8, (") Eco, o (©0) | |EFy,G,(Ho) Eg,, o (lo)

E o CO B () B B0, (G1) [By 6y (H1) | By, 1y (11)

Eay 8o (E0) | | Baygo (FL) | | B0 (©0) || BR,Go(Ho) || BEy h, (1)

Ea () Ea,, () E D1() EFlscl(HO) EEle(Il)

Garbling a circuit: Garbled evaluation:

> Pick random labels Wy, W on each wire > Only one ciphertext per
> “Encrypt” truth table of each gate gate is decryptable
> Garbled circuit = all encrypted gates > Result of decryption =

. : value on outgoing wire
> Garbled encoding = one label per wire gomng

Garbled circuit framework s

D .

b =) > .
Hy

Co G,
D
BO() E Bo() Ec, () Er, (") EE(),HU(IO)

E GO B e () [Beo,ny (G1) || Br L6y (1) || Beg 1y (1)

Eav 8o (E0) | | Bay o (FL) || Ec 0 (C0) [Br, o (00) | By hy (1)

Ea () Ea,, () E D1() EFlscl(HU) EEle(Il)

Garbling a circuit: Garbled evaluation:

> Pick random labels Wy, W on each wire > Only one ciphertext per
> “Encrypt” truth table of each gate gate is decryptable
> Garbled circuit = all encrypted gates > Result of decryption =

value on outgoing wire

v

Garbled encoding = one label per wire

Garbled circuit framework s

e —
lo

BO \ F1
—) >
Ho

Co G,
D
BO() E Bo() Ec, () Er, (") EE()’HU(I())

E U Ba e () [B,y (G1) | Br ey () F By, (1)

Eay.8o(Eo) | | Bayo (F1) [HEC 0 (C0) | ErL o (00) FEr 1o (1)

Ea o (CO)f | Ba e CO)PE 0, (C) [{EBr.G (Ho) | [E . (1)

Garbling a circuit: Garbled evaluation:

> Pick random labels Wy, W on each wire > Only one ciphertext per
> “Encrypt” truth table of each gate gate is decryptable
> Garbled circuit = all encrypted gates > Result of decryption =

value on outgoing wire

v

Garbled encoding = one label per wire

Syntax & Security (informal)

D

o >

Co
Dy
EAosBo(EO) EAO,BO(FO) ECO,DO(GO) EFOsGO(HO) EEOaHO(IO)
Eno,8, (E1) | | Eag,8, (F1) | | Eco,0,(G1) | |Er, G, (H1) | | EEp, 1, (1)
Ea,,8,(E0) | | Eay,B,(F1) | | Ec,,p,(Go) | | EFR,Go(Ho) | | EEy,H, (1)
EALB1(E0) EA1531(F0) ECLDl(GO) EFLG1(H0) EELH1(11)

Key idea: Given garbled circuit + garbled input . ..

Syntax & Security (informal)
D -

By)
2= >

D
E 8o () | B 8o (70) F Beo, o (D) || B0 (00) | | BEo, Ho (o)
E () E . () ECO D1(Gl) E ,G1() EE(), ()
EAl BU(EO) EAl,Bo(Fl) E () EF1, () E Ho()
Eac (“0)) [Bapo () B o, (C0) | |BF.c (Ho) | B, (1)

Key idea: Given garbled circuit + garbled input . ..
> ... Only thing you can do is (blindly) evaluate circuit on that input

Syntax & Security (informal)
D . :

By A\ F
—]) >
Ho

Co G,

D

,Bo (1) Bo (") | By, (C0) FUEr o (F0) || BE, Ho (To)
E s () E . () ECO D1(Gl) E G1() EE(), ()
EAl Bu(EO) EAl B()(Fl) E () EF1, () E HU()
EAL () EAL () E D1() EF1,Gl(H0) Er, ()

Key idea: Given garbled circuit + garbled input . ..
.. Only thing you can do is (blindly) evaluate circuit on that input
> Learn only 1 label per wire: hard to guess “complementary” label
> Seeing a single label hides logical value on wire, although . ..

> Revealing both labels on output wires leaks only circuit output

Syntax & Security [BellareHoangRogaway12]

-

Garble

garbled circuit

Eval

garbled

encoding
info
Encode | garbled
X —> input

output

decoding info

Decode

— f(x)

Syntax & Security [BellareHoangRogaway12]

-

Garble

garbled circuit £

encoding

info e

X —

Eval

Encode | garbled

garbled

input X

output Y

decoding info d

Decode

— f(x)

Syntax & Security [BellareHoangRogaway12]

-

Garble

garbled circuit £

encoding

info e

X —

Eval

Encode | garbled
input X

garbled

output Y

decoding info d

Formal security properties:
Privacy: (F, X, d) reveals nothing beyond fand f{x)

Obliviousness: (F, X) reveals nothing beyond f

Decode

— f(x)

Authenticity: given (F, X), hard to find Y that decodes ¢ {f(x), L}

Syntax & Security [BellareHoangRogaway12]

-

Garble

garbled circuit £

encoding

info e

X —

Eval

Encode | garbled
input X

garbled

output Y

decoding info d

Formal security properties:
Privacy: (F, X, d) reveals nothing beyond fand f{x)

Obliviousness: (F, X) reveals nothing beyond f

Decode

— f(x)

Authenticity: given (F, X), hard to find Y that decodes ¢ {f(x), L}

Other interesting notions we won’t discuss:

Adaptive security: choice of input can depend on garbled circuit
Gate-hiding: (F, X d) reveals nothing beyond topology of f and f{(x)

Oblivious transfer

How does evaluator (Bob) get the garbled input?

A
By, By)

COs Cl

Do, Dy

Oblivious transfer

How does evaluator (Bob) get the garbled input?

Aabrd

By, By)

—

Oblivious transfer

How does evaluator (Bob) get the garbled input?

Aabrd

Alice . \
0, B1
Sub]
Co, C1
Bob {
Do, Dy

Garbler’s inputs: She knows both Ay, A1, and which one is correct = just
send correct one to Bob

Oblivious transfer

How does evaluator (Bob) get the garbled input?

Aabrd

Alice 5 B y
0, B1)
Co, C1

Bob {
Do, Dy

Garbler’s inputs: She knows both Ay, A1, and which one is correct = just
send correct one to Bob

Evaluator’s inputs: We need the following “gadget™:

Wo, W1 (OT] ce {0,1}

W,

Oblivious transfer

How does evaluator (Bob) get the garbled input?

Aabrd

Alice 5 B y
0, B1)
Co, C1
Bob {
Do, Dy

Garbler’s inputs: She knows both Ay, A1, and which one is correct = just
send correct one to Bob

Evaluator’s inputs: We need the following “gadget” (oblivious transfer):
P g gadg

Wo, W1 (OT] ce {0,1}

W,

How to construct OT?

Wo, W1 c

How to construct OT?

Wo, W1 c

Nv
pko, pki o % (ske, pke) — KeyGen

F pki—c < BlindKeyGen

Need public-key encryption that supports blind key generation:
» sample a public key without knowledge of secret key

» E.g.: EIGamal (sample group element without knowing discrete log)

How to construct OT?

Wo, W1 c

Nv
pho, Pk o % (ske, pke) — KeyGen

E pki—c < BlindKeyGen

EP"‘o (WU)’ EPk1 (Wl)

Need public-key encryption that supports blind key generation:
» sample a public key without knowledge of secret key

» E.g.: EIGamal (sample group element without knowing discrete log)

Yao’s Protocol: overview

Yao’s Protocol: overview

garbled circuit f,
garbled input x,
output wire labels

Yao’s Protocol: overview

garbled circuit f,
garbled input x,
output wire labels

input ——
OT (xn)

wire labels garbled y

Yao’s Protocol: overview

garbled circuit f
garbled input x,
output wire labels

> Ay Y
S y ¢ 5
inpu | ———
——— OT (xn) 5
wire labels garbled y
fixy)

> Given garbled f+ garbled inputs + all output labels = Bob learns
only f(x.y)

Summary so far

Secure Computation allows parties to perform a computation on private
input, learning only the output.

> market clearing price, advertising revenue, . ..

Security: every attack against the protocol can be “simulated” in an ideal
world interaction.

Yao’s protocol:
> Garbled lookup table for each gate of boolean circuit

> Oblivious transfer for each input wire

Next lectures:

U1 WN

Garbled circuits are extremely large

> How to reduce their size by 10x

Yao’s protocol insecure against malicious attacks:

> How to harden the protocol against malicious adversaries

Oblivious transfer is prohibitively expensive:

> How to “amplify” OT instances using cheap crypto

Special-purpose protocols can be much faster than Yao’s

> How to securely compute set intersection

