Oblivious Transfer

Mike Rosulek

crypt@b-it 2018

\[m_0, m_1 \rightarrow^\text{OT} c \rightarrow^\text{OT} m_c \]
OT recap

OT is . . .

- Necessary for MPC [Kilian]
- **Inherently expensive**: impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]
OT recap

OT is . . .

- Necessary for MPC [Kilian]
- **Inherently expensive**: impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Today’s agenda: reducing the cost of OT

1. **Precomputation**: can compute OTs even before you know your input!

2. **OT extension**: 128 OTs suffice for everything.
Random OT

Standard OT:
\[m_0, m_1 \rightarrow OT \rightarrow c \rightarrow m_c \]

Random OT:
\[m_0, m_1 \leftarrow OT \rightarrow c, m_c \]

Deterministic functionality; parties choose all inputs

Randomized functionality chooses \(m_0, m_1 \) uniformly.

Beaver Derandomization Theorem

There is a cheap protocol that securely evaluates an instance of standard OT using an instance of random OT.

Offline/online approach to 2PC:

- In offline preprocessing phase, generate many random OTs
- During online phase, OT inputs are determined — cheaply derandomize the offline OTs with Beaver’s trick.
Random OT

Standard OT:

\[m_0, m_1 \rightarrow OT \leftarrow c \rightarrow m_c \]

Deterministic functionality; parties choose all inputs

Random OT:

\[m_0, m_1 \leftrightarrow OT \rightarrow c, m_c \]

Randomized functionality chooses \(m_0, m_1, c \) uniformly.

Beaver Derandomization Theorem [Beaver91]

There is a cheap protocol that securely evaluates an instance of standard OT using an instance of random OT.

Offline/online approach to 2PC:

- In offline preprocessing phase, generate many random OTs
- During online phase, OT inputs are determined — cheaply derandomize the offline OTs with Beaver's trick.
Random OT

Standard OT:

\[
m_0, m_1 \rightarrow \text{OT} \leftarrow c \rightarrow m_c
\]

Deterministic functionality; parties choose all inputs

Random OT:

\[
m_0, m_1 \leftarrow \text{OT} \rightarrow c, m_c
\]

Randomized functionality chooses \(m_0, m_1, c\) uniformly.

Beaver Derandomization Theorem [Beaver91]

There is a **cheap** protocol that securely evaluates an instance of **standard OT** using an instance of **random OT**.
Random OT

Standard OT:
\[m_0, m_1 \rightarrow \boxed{OT} \leftarrow c \rightarrow m_c \]
Deterministic functionality; parties choose all inputs

Random OT:
\[m_0, m_1 \leftrightarrow \boxed{OT} \rightarrow c, m_c \]
Randomized functionality chooses \(m_0, m_1, c \) uniformly.

Beaver Derandomization Theorem [Beaver91]
There is a cheap protocol that securely evaluates an instance of standard OT using an instance of random OT.

Offline/online approach to 2PC:
- In offline preprocessing phase, generate many random OTs
- During online phase, OT inputs are determined — cheaply derandomize the offline OTs with Beaver’s trick.
Beaver Derandomization [Beaver91]

\[m_0^$, m_1^$ \leftarrow \text{OT} \rightarrow c^$, m_c^$ \]

- - - - - - - - - - - - - - - - -
Beaver Derandomization [Beaver91]

\[m_0^\$, m_1^\$ \xleftarrow{\text{OT}} c^\$, m_c^\$ \]

\(m_0, m_1 \) offline online \(c \) compute \(m_c \) ?

Idea: Alice can use \(m_0^\$ \) and \(m_1^\$ \) as one-time pads to mask \(m_0, m_1 \); if \(c = c^\$ \) this works: Bob can decrypt only \(m_c \) (no info about \(m_1 \)); if \(c, c^\$ \), Bob learns wrong \(m_c \) unless Alice swaps \(m_0^\$ \), \(m_1^\$ \).

Solution: Bob says whether \(c = c^\$ \) (safe: Alice has no info about \(c \)).
Beaver Derandomization [Beaver91]

Idea: Alice can use $m_0^\$ \text{ and } m_1^\$ \text{ as one-time pads to mask } m_0, m_1$
Beaver Derandomization [Beaver91]

\[m_0^\$, m_1^\$ \leftarrow \text{OT} \rightarrow c^\$, m_c^\$ \]

\[m_0, m_1 \quad \text{offline} \quad \text{online} \quad c \quad (= c^\$) \]

\[x_0 = m_0^\$ \oplus m_0 \]
\[x_1 = m_1^\$ \oplus m_1 \]

compute \(x_c \oplus m_c^\$ \)
\[= x_c \oplus m_c^\$ = m_c \]

- **Idea:** Alice can use \(m_0^\$ \) and \(m_1^\$ \) as one-time pads to mask \(m_0, m_1 \)
- If \(c = c^\$ \) this works: Bob can decrypt only \(m_c \) (no info about \(m_{1-c} \))
Beaver Derandomization [Beaver91]

\[m_0^\$, m_1^\$ \leftrightarrow \text{OT} \rightarrow c^\$, m_c^\$ \]

- offline
- online

\[m_0, m_1 \quad c \ (\neq c^\$) \]

\[x_0 = m_1^\$ \oplus m_0 \]
\[x_1 = m_0^\$ \oplus m_1 \]

compute \[x_c \oplus m_c^\$ \]
\[= x_c \oplus m_1^\$ \oplus c = m_c \]

Idea: Alice can use \(m_0^\$ \) and \(m_1^\$ \) as one-time pads to mask \(m_0, m_1 \)

- If \(c = c^\$ \) this works: Bob can decrypt only \(m_c \) (no info about \(m_{1-c} \))
- If \(c \neq c^\$ \) Bob learns wrong \(m \) unless Alice swaps \(m_0^\$, m_1^\$.}
Beaver Derandomization [Beaver91]

- Idea: Alice can use $m_0^\$ and $m_1^\$ as one-time pads to mask m_0, m_1
- If $c = c^\$ this works: Bob can decrypt only m_c (no info about m_{1-c})
- If $c \neq c^\$ Bob learns wrong m unless Alice swaps $m_0^\$, $m_1^\$.
- Solution: Bob says whether $c = c^\$ (safe: Alice has no info about $c^\$)
Beaver Derandomization [Beaver91]

Idea: Alice can use m_0^s and m_1^s as one-time pads to mask m_0, m_1

If $c = c^s$ this works: Bob can decrypt only m_c (no info about m_{1-c})

If $c \neq c^s$ Bob learns wrong m unless Alice swaps m_0^s, m_1^s.

Solution: Bob says whether $c = c^s$ (safe: Alice has no info about c^s)

$$m_0, m_1 \leftarrow \text{OT} \rightarrow c^s, m_c^s$$

$$d = c \oplus c^s$$

$$x_0 = m_d^s \oplus m_0$$
$$x_1 = m_d^s \oplus m_1$$

compute $x_c \oplus m_c^s$

$$= x_c \oplus m_{c \oplus d}^s = m_c$$
Beaver Derandomization [Beaver91]

- **Offline cost:** same as before (1 OT instance)
- **Online cost:** simple XORs
E paucis plura

from a few, many
Oblivious Transfer is inherently expensive:

- Impossible using only cheap crypto (random oracle)

[ImpagliazzoRudich89]

Is there an analog of “hybrid encryption” for OT?

Public-key encryption is inherently expensive:

- Impossible using only cheap crypto (random oracle)

[PKE cost be minimized with hybrid encryption:
- Use (expensive) PKE to encrypt short
- Use (cheap) symmetric-key encryption with key s to encrypt long M

λ instances of OT + cheap SKE = N instances of OT

λ instances of OT + cheap SKE = PKE of λ bits + cheap SKE = PKE of N bits.
An analogy from encryption

Oblivious Transfer is inherently expensive:
 ▶ Impossible using only cheap crypto (random oracle)

Public-key encryption is inherently expensive:
 ▶ Impossible using only cheap crypto (random oracle)

[ImpagliazzoRudich89]
An analogy from encryption

Oblivious Transfer is inherently expensive:
- Impossible using only cheap crypto (random oracle)
 [ImpagliazzoRudich89]

Public-key encryption is inherently expensive:
- Impossible using only cheap crypto (random oracle)
 [ImpagliazzoRudich89]

PKE cost be **minimized** with hybrid encryption:
- Use (expensive) PKE to encrypt short s
- Use (cheap) symmetric-key encryption *with key* s to encrypt long M

PKE of λ bits + cheap SKE = PKE of N bits
An analogy from encryption

Oblivious Transfer is inherently expensive:
- Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

Is there an analog of “hybrid encryption” for OT?

\[\lambda \text{ instances of OT} + \text{cheap SKE} = N \text{ instances of OT} \]

Public-key encryption is inherently expensive:
- Impossible using only cheap crypto (random oracle) [ImpagliazzoRudich89]

PKE cost be **minimized** with hybrid encryption:
- Use (expensive) PKE to encrypt short \(s \)
- Use (cheap) symmetric-key encryption *with key* \(s \) to encrypt long \(M \)

\[\text{PKE of } \lambda \text{ bits} + \text{cheap SKE} = \text{PKE of } N \text{ bits} \]
Beaver OT extension [Beaver96]

Key insight: Yao’s protocol requires only # of OTs proportional to function’s input length
Beaver OT extension [Beaver96]

Key insight: Yao’s protocol requires only # of OTs proportional to function’s input length

Beaver protocol: Run the following 2PC using Yao:

- Use $s_A \oplus s_B$ as pseudorandom seed to:
 - Sample $2n$ random strings $(m_1,0, m_1,1), \ldots, (m_n,0, m_n,1)$.
 - Sample n-bit random string r.

- $s_B \in \{0, 1\}^\lambda$
Beaver OT extension [Beaver96]

Key insight: Yao’s protocol requires only # of OTs proportional to function’s **input length**

Beaver protocol: Run the following 2PC using Yao:

- Use $s_A \oplus s_B$ as pseudorandom seed to:
 - Sample $2n$ random strings $(m_1,0,m_1,1), \ldots, (m_n,0,m_n,1)$.
 - Sample n-bit random string r

- # OTs = input length = λ
- Output provides $n \gg \lambda$ instances of OT (random strings + choice bits)
- Impractical **feasibility** result (2PC evaluation of a PRG circuit)
IKNP protocol [IshaiKilianNissimPetrank03]

- Bob has input r

<table>
<thead>
<tr>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Bob
Bob has input $r \Rightarrow$ extend to matrix
Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')
IKNP protocol [IshaiKilianNissimPetrank03]

- Bob has input r ⇒ extend to matrix and secret share as (T, T')
- Alice chooses random string s
IKNP protocol [IshaiKilianNissimPetrank03]

<table>
<thead>
<tr>
<th>$s = 0$</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bob has input r ⇒ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each **column** ⇒ Alice obtains matrix Q
IKNP protocol [IshaiKilianNissimPetrank03]

Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each **column** \Rightarrow Alice obtains matrix Q
IKNP protocol

[ShaiKilianNissimPetrank03]

Bob has input r ⇒ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each column ⇒ Alice obtains matrix Q
IKNP protocol [IshaiKilianNissimPetrank03]

Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each column \Rightarrow Alice obtains matrix Q

Alice

$\begin{array}{cccccc}
 s = 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 0 & 1 & 1 & 0 \\
 1 & 1 & 0 & 1 \\
 1 & 0 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 \vdots & \vdots \\
\end{array}$

Bot

$\begin{array}{ccccccc}
 r & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
 \vdots & \vdots \\
\end{array}$
IKNP protocol

Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each column \Rightarrow Alice obtains matrix Q
Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each **column** \Rightarrow Alice obtains matrix Q
Bob has input r ⇒ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each **column** ⇒ Alice obtains matrix Q
IKNP protocol

Alice

Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each **column** ⇒ Alice obtains matrix Q
IKNP protocol

\[
\begin{array}{cccccc}
\hline
s = 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
\]

Alice

\[
\begin{array}{cccccc}
\hline
r & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
\]

Bob

- Bob has input \(r \Rightarrow \) extend to matrix and secret share as \((T, T')\)
- Alice chooses random string \(s \)
- OT for each **column** ⇒ Alice obtains matrix \(Q \)
- Whenever \(r_i = 0 \), Alice row = Bob row
IKNP protocol

Bob has input $r \Rightarrow$ extend to matrix and secret share as (T, T')

Alice chooses random string s

OT for each column \Rightarrow Alice obtains matrix Q

Whenever $r_i = 0$, Alice row = Bob row

Whenever $r_i = 1$, Alice row = Bob row $\oplus s$
IKNP protocol [IshaiKilianNissimPetrank03]

\[q_i = \begin{cases} t_i & \text{if } r_i = 0 \\ t_{i+1} & \text{if } r_i = 1 \end{cases} \]

\[t_1, t_2, t_3, \ldots \]

For every \(i \): Bob knows \(t_i \); Alice knows \(q_i \) and \(q_{i+1} \).

From Bob's perspective, he knows exactly one of Alice's two values: (Almost) an OT instance for each \(i \)!

Reusing \(s \) leads to linear correlations in OT strings.

Break correlations by applying random oracle:

\[H(t_1, s), \ldots, H(t_n, s) \] pseudorandom given \(t_1, \ldots, t_n \) (secret \(s \)).

Random OT instance for each row, using base OT for each column.
IKNP protocol [IshaiKilianNissimPetrank03]

- For every i: Bob knows t_i; Alice knows q_i and $q_i \oplus s$
For every i: Bob knows t_i; Alice knows q_i and $q_i \oplus s$

From Bob’s perspective, he knows **exactly one** of Alice’s two values: (Almost) an OT instance for each i!
IKNP protocol

\[q_i = \begin{cases}
 t_i & \text{if } r_i = 0 \\
 t_i \oplus s & \text{if } r_i = 1
\end{cases} \]

- For every \(i \): Bob knows \(t_i \); Alice knows \(q_i \) and \(q_i \oplus s \)
- From Bob’s perspective, he knows **exactly one** of Alice’s two values: (Almost) an OT instance for each \(i \!\)
 - Reusing \(s \) leads to linear correlations in OT strings
IKNP protocol [IshaiKilianNissimPetrunk03]

\[
q_i = \begin{cases}
t_i & \text{if } r_i = 0 \\
t_i \oplus s & \text{if } r_i = 1
\end{cases}
\]

\[
\begin{array}{cc}
H(t_1) & H(t_1 \oplus s) \\
H(t_2 \oplus s) & H(t_2) \\
H(t_3 \oplus s) & H(t_3) \\
\vdots & \vdots
\end{array}
\]

\[
\begin{array}{c}
r_1 = 0 \\
r_2 = 1 \\
r_3 = 1
\end{array}
\]

- For every \(i\): Bob knows \(t_i\); Alice knows \(q_i\) and \(q_i \oplus s\)
- From Bob’s perspective, he knows exactly one of Alice’s two values: (Almost) an OT instance for each \(i\)!
 - Reusing \(s\) leads to linear correlations in OT strings
- Break correlations by applying random oracle:
 - \(H(t_1 \oplus s), \ldots, H(t_n \oplus s)\) pseudorandom given \(t_1, \ldots, t_n\) (secret \(s\))
IKNP protocol

\[q_i = \begin{cases} t_i & \text{if } r_i = 0 \\ t_i \oplus s & \text{if } r_i = 1 \end{cases} \]

For every \(i \): Bob knows \(t_i \); Alice knows \(q_i \) and \(q_i \oplus s \)

From Bob’s perspective, he knows **exactly one** of Alice’s two values: (Almost) an OT instance for each \(i \)!

- Reusing \(s \) leads to linear correlations in OT strings
- Break correlations by applying random oracle:
 - \(H(t_1 \oplus s), \ldots, H(t_n \oplus s) \) pseudorandom given \(t_1, \ldots, t_n \) (secret \(s \))

⇒ Random OT instance for each **row**, using **base OT** for each **column**
Tall matrices (λ columns, $n \gg \lambda$ rows)
Tall matrices (λ columns, $n \gg \lambda$ rows)

Base OTs by column
- λ base OT instances
- transfer of n-bit strings
IKNP overview [IshaiKilianNissimPetrank03]

Tall matrices (λ columns, $n \gg \lambda$ rows)

Base OTs by column
- λ base OT instances
- transfer of n-bit strings

Obtain extended OT instance by row
- 1-2 evaluations of H per row
Generalizing IKNP

IKNP says: “Bob has r”

KK13 says: \(0 7! 000; 1 7! 111\) is simple repetition code

Q: How do code properties (rate, distance) affect protocol?

[Reference: KolesnikovKumaresan13]
Generalizing IKNP

<table>
<thead>
<tr>
<th>r</th>
<th>1 1 1 1 1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

- IKNP says: “Bob has $r \implies$ extend to a matrix”
Generalizing IKNP

IKNP says: “Bob has $r \Rightarrow$ extend to a matrix \Rightarrow secret-share”
Generalizing IKNP

- IKNP says: “Bob has r ⇒ extend to a matrix ⇒ secret-share”
- KK13 says: $0 \mapsto 000 \cdots; 1 \mapsto 111 \cdots$ is simple repetition code
Generalizing IKNP

- **IKNP** says: “Bob has \(r \Rightarrow \text{extend to a matrix} \Rightarrow \text{secret-share}”
- **KK13** says: \(0 \mapsto 000 \cdots ; 1 \mapsto 111 \cdots \) is simple **repetition code**
- **Generalize** by using a different error-correcting code.

Q: How do code properties (rate, distance) affect protocol?
Coding view of IKNP:

- Bob has input r

```
\begin{array}{c}
r \\
1 \\
0 \\
0 \\
0 \\
. \\
. \\
. \\
\end{array}
```

Bob
Coding view of IKNP:

<table>
<thead>
<tr>
<th>r</th>
<th>$\cdots C(1) \cdots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\cdots C(0) \cdots$</td>
</tr>
<tr>
<td>0</td>
<td>$\cdots C(0) \cdots$</td>
</tr>
<tr>
<td>0</td>
<td>$\cdots C(0) \cdots$</td>
</tr>
<tr>
<td>0</td>
<td>$\cdots C(0) \cdots$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

- Bob has input $r \Rightarrow$ **encode under** C

Bob
Coding view of IKNP:

- Bob has input \(r \Rightarrow \text{encode under } C \) and secret share as \((T, T')\)

<table>
<thead>
<tr>
<th>(r)</th>
<th>(\cdots t_1 \cdots)</th>
<th>(\cdots t_2 \cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\cdots t_1 \oplus C(1) \cdots)</td>
<td>(\cdots t_2 \oplus C(0) \cdots)</td>
</tr>
<tr>
<td>0</td>
<td>(\cdots t_3 \oplus C(0) \cdots)</td>
<td>(\cdots t_4 \oplus C(0) \cdots)</td>
</tr>
<tr>
<td>0</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>
Bob has input r ⇒ **encode under C** and secret share as (T, T')

OT for each **column** ⇒ Alice obtains matrix Q
Coding view of IKNP:

\[
\begin{array}{c}
\cdots q_1 \cdots \\
\cdots q_2 \cdots \\
\cdots q_3 \cdots \\
\cdots q_4 \cdots \\
\vdots
\end{array}
\]

\[
\begin{array}{c|c}
\hline
r & t_1 \cdots \\
1 & 0 \\
0 & \vdots \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\cdots t_1 \oplus C(1) \cdots \\
\cdots t_2 \oplus C(0) \cdots \\
\cdots t_3 \oplus C(0) \cdots \\
\cdots t_4 \oplus C(0) \cdots \\
\vdots
\end{array}
\]

\[
t_i = q_i \oplus C(r_i) \land s
\]

- Bob has input \(r \) ⇒ **encode under** \(C \) and secret share as \((T, T')\)
- OT for each **column** ⇒ Alice obtains matrix \(Q \)
Codiﬁcation view of IKNP:

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>\cdots</th>
</tr>
</thead>
</table>

\[
t_i = q_i \oplus C(r_i) \land s
\]

Alice

<table>
<thead>
<tr>
<th>r</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Bob has input \(r \Rightarrow \text{encode under } C \) and secret share as \((T, T')\)

OT for each \textbf{column} \Rightarrow Alice obtains matrix \(Q \)

Sanity check (using repetition code):

- \(r_i = 0 \Rightarrow t_i = q_i \oplus (000 \cdots) \land s = q_i \)
- \(r_i = 1 \Rightarrow t_i = q_i \oplus (111 \cdots) \land s = q_i \oplus s \)
Coding view of IKNP:

\[s, \{q_i\} \leftarrow \text{IKNP} \leftarrow r \]

\[\{t_i\} \]

For every \(i \):
- Bob knows \(t_i \);
- Alice knows \(q_i \) and \(C(0)^s \)

\[C(1)^s \]

\[C(0)^s = 00 \]

▶ Rewrite from Bob’s point of view

▶ When \(C \) is a linear code:

\[[C(a)^s][C(b)^s] = C(a \cdot b)^s \]

▶ Use random oracle to destroy correlations.
Coding view of IKNP:

- For every i: Bob knows t_i; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$
Coding view of IKNP:

\[t_i = q_i \oplus C(r_i) \land s \]

<table>
<thead>
<tr>
<th>(t_1 \oplus C(0) \land s \oplus C(0) \land s)</th>
<th>(t_1 \oplus C(0) \land s \oplus C(1) \land s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_2 \oplus C(1) \land s \oplus C(0) \land s)</td>
<td>(t_2 \oplus C(1) \land s \oplus C(1) \land s)</td>
</tr>
<tr>
<td>(t_3 \oplus C(1) \land s \oplus C(0) \land s)</td>
<td>(t_3 \oplus C(1) \land s \oplus C(1) \land s)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

For every \(i \): Bob knows \(t_i \); Alice knows \(q_i \oplus C(0) \land s \) and \(q_i \oplus C(1) \land s \).

Rewrite from Bob’s point of view.
Coding view of IKNP:

$t_i = q_i \oplus C(r_i) \land s$

<table>
<thead>
<tr>
<th>$t_1 \oplus C(0 \oplus 0) \land s$</th>
<th>$t_1 \oplus C(0 \oplus 1) \land s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_2 \oplus C(1 \oplus 0) \land s$</td>
<td>$t_2 \oplus C(1 \oplus 1) \land s$</td>
</tr>
<tr>
<td>$t_3 \oplus C(1 \oplus 0) \land s$</td>
<td>$t_3 \oplus C(1 \oplus 1) \land s$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

$\{r_1 = 0, r_2 = 1, r_3 = 1\}$

$\{t_i\}$

- For every i: Bob knows t_i; Alice knows $q_i \oplus C(0) \land s$ and $q_i \oplus C(1) \land s$
- Rewrite from Bob’s point of view
- When C is a **linear code**: $[C(a) \land s] \oplus [C(b) \land s] = C(a \oplus b) \land s$
Coding view of IKNP:

\[t_i = q_i \oplus C(r_i) \land s \]

\[
\begin{array}{|c|c|}
\hline
 t_1 & t_1 \oplus C(1) \land s \\
\hline
 t_2 \oplus C(1) \land s & t_2 \\
\hline
 t_3 \oplus C(1) \land s & t_3 \\
\hline
 \vdots & \vdots \\
\hline
\end{array}
\]

- For every \(i \): Bob knows \(t_i \); Alice knows \(q_i \oplus C(0) \land s \) and \(q_i \oplus C(1) \land s \)
- Rewrite from Bob’s point of view
- When \(C \) is a **linear code**: \([C(a) \land s] \oplus [C(b) \land s] = C(a \oplus b) \land s \) and \(C(0) \land s = 00 \cdots \)
Coding view of IKNP:

\[t_i = q_i \oplus C(r_i) \land s \]

\[
\begin{array}{c|c}
H(t_1) & H(t_1 \oplus C(1) \land s) \\
H(t_2 \oplus C(1) \land s) & H(t_2) \\
H(t_3 \oplus C(1) \land s) & H(t_3) \\
\vdots & \vdots \\
\end{array}
\]

- For every \(i \): Bob knows \(t_i \); Alice knows \(q_i \oplus C(0) \land s \) and \(q_i \oplus C(1) \land s \)
- Rewrite from Bob’s point of view
- When \(C \) is a **linear code**: \([C(a) \land s] \oplus [C(b) \land s] = C(a \oplus b) \land s \) and \(C(0) \land s = 00 \cdots \)
- Use random oracle to destroy correlations
Generalizing IKNP:

Consider a code that encodes more bits $C : \{0, 1\}^3 \rightarrow \{0, 1\}^k$

\[s, \{q_i\} \quad \text{IKNP} \quad r \quad \{t_i\} \]
Generalizing IKNP:

Consider a code that encodes more bits $C : \{0, 1\}^3 \rightarrow \{0, 1\}^k$

$$
\begin{array}{ccc}
q_1 \oplus C(000) \land s & \cdots & q_1 \oplus C(111) \land s \\
q_2 \oplus C(000) \land s & \cdots & q_2 \oplus C(111) \land s \\
q_3 \oplus C(000) \land s & \cdots & q_3 \oplus C(111) \land s \\
\vdots & \vdots & \vdots
\end{array}
$$

- For every i: Alice can compute (8 things)

$$q_i \oplus C(000) \land s, \quad q_i \oplus C(001) \land s, \quad \ldots \quad q_i \oplus C(111) \land s$$
Generalizing IKNP:

Consider a code that encodes more bits $C : \{0, 1\}^3 \rightarrow \{0, 1\}^k$

$$t_i = q_i \oplus C(r_i) \land s$$

For every i: Alice can compute (8 things)

$$q_i \oplus C(000) \land s, \quad q_i \oplus C(001) \land s, \quad \ldots \quad q_i \oplus C(111) \land s$$
Generalizing IKNP:

Consider a code that encodes more bits $C : \{0, 1\}^3 \rightarrow \{0, 1\}^k$

$$t_i = q_i \oplus C(r_i) \land s$$

<table>
<thead>
<tr>
<th>$t_1 \oplus C(r_1 \oplus 000) \land s$</th>
<th>\cdots</th>
<th>$t_1 \oplus C(r_1 \oplus 111) \land s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_2 \oplus C(r_2 \oplus 000) \land s$</td>
<td>\cdots</td>
<td>$t_2 \oplus C(r_2 \oplus 111) \land s$</td>
</tr>
<tr>
<td>$t_3 \oplus C(r_3 \oplus 111) \land s$</td>
<td>\cdots</td>
<td>$t_3 \oplus C(r_3 \oplus 111) \land s$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

For every i: Alice can compute (8 things)

$$q_i \oplus C(000) \land s, \quad q_i \oplus C(001) \land s, \quad \ldots \quad q_i \oplus C(111) \land s$$

Bob knows exactly 1 of the 8 values (corresponding to r_i)

- Others are of the form $t \oplus c \land s$ for known t and **codeword** c
Generalizing IKNP:

Consider a code that encodes more bits \(C : \{0, 1\}^3 \rightarrow \{0, 1\}^k \)

\[
\begin{array}{ccc}
H(t_1 \oplus C(r_1 \oplus 000) \land s) & \cdots & H(t_1 \oplus C(r_1 \oplus 111) \land s) \\
H(t_2 \oplus C(r_2 \oplus 000) \land s) & \cdots & H(t_2 \oplus C(r_2 \oplus 111) \land s) \\
H(t_3 \oplus C(r_3 \oplus 000) \land s) & \cdots & H(t_3 \oplus C(r_3 \oplus 111) \land s) \\
\vdots & \vdots & \vdots \\
\end{array}
\]

\[
t_i = q_i \oplus C(r_i) \land s
\]

- For every \(i \): Alice can compute (8 things)
 \[
 q_i \oplus C(000) \land s, \quad q_i \oplus C(001) \land s, \quad \ldots \quad q_i \oplus C(111) \land s
 \]

- Bob knows exactly 1 of the 8 values (corresponding to \(r_i \))
 - Others are of the form \(t \oplus c \land s \) for known \(t \) and codeword \(c \)

- In the random oracle model:
 - \(H(t_1 \oplus c_1 \land s), \ldots H(t_n \oplus c_n \land s) \) pseudorandom if all \(c_i \) have Hamming weight \(\geq \lambda \)
Generalizing IKNP:

Using a code $C : \{0, 1\}^\ell \rightarrow \{0, 1\}^k$ with minimum distance λ gives you 1-out-of-2^ℓ OT extension (from k base OTs)

[KolesnikovKumaresan13]:
- Walsh-Hadamard code $C : \{0, 1\}^8 \rightarrow \{0, 1\}^{256}$ (min. dist. 128)
- 1-out-of-256 OT

[OrruOrsiniScholl16]:
- BCH code $C : \{0, 1\}^{76} \rightarrow \{0, 1\}^{512}$ (min. dist. 171)
- 1-out-of-2^{76} OT

[KolesnikovKumaresanRosulekTrieu16]:
- Any pseudorandom function $C : \{0, 1\}^* \rightarrow \{0, 1\}^{\sim 480}$
- Linearity and decoding properties not needed (only min. dist. whp!)
- 1-out-of-∞ OT
Perspective

<table>
<thead>
<tr>
<th></th>
<th>semi-honest</th>
<th>malicious</th>
<th>semi-honest</th>
<th>malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-out-of-2</td>
<td>28 million / sec</td>
<td>24 million / sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-out-of-N</td>
<td>2.5 million / sec</td>
<td>1.8 million / sec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTs are cheap!
Perspective

<table>
<thead>
<tr>
<th></th>
<th>semi-honest</th>
<th>malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-out-of-2</td>
<td>28 million / sec</td>
<td>24 million / sec</td>
</tr>
<tr>
<td>1-out-of-N</td>
<td>2.5 million / sec</td>
<td>1.8 million / sec</td>
</tr>
</tbody>
</table>

OTs are cheap!