Private Set Intersection

Mike Rosulek

crypt@b-it 2018
Private set intersection (PSI)

Special case of secure 2-party computation:

\[X = \{x_1, x_2, \ldots\} \]

\[Y = \{y_1, y_2, \ldots\} \]

\[X \cap Y \]
PSI applications

Contact discovery, when signing up for WhatsApp
 ▶ $X = \text{address book in my phone (phone numbers)}$
 ▶ $Y = \text{WhatsApp user database}$
PSI applications

Contact discovery, when signing up for WhatsApp
- $X =$ address book in my phone (phone numbers)
- $Y =$ WhatsApp user database

Private scheduling
- $X =$ available timeslots on my calendar
- $Y =$ available timeslots on your calendar
PSI applications

Contact discovery, when signing up for WhatsApp
 ▶ \(X = \) address book in my phone (phone numbers)
 ▶ \(Y = \) WhatsApp user database

Private scheduling
 ▶ \(X = \) available timeslots on my calendar
 ▶ \(Y = \) available timeslots on your calendar

Ad conversion rate (PSI variant)
 ▶ \(X = \) users who saw the advertisement
 ▶ \(Y = \) customers who bought the product
PSI applications

Contact discovery, when signing up for WhatsApp
- $X = \text{address book in my phone (phone numbers)}$
- $Y = \text{WhatsApp user database}$

Private scheduling
- $X = \text{available timeslots on my calendar}$
- $Y = \text{available timeslots on your calendar}$

Ad conversion rate (PSI variant)
- $X = \text{users who saw the advertisement}$
- $Y = \text{customers who bought the product}$

No-fly list
- $X = \text{passenger list of flight 123}$
- $Y = \text{government no-fly list}$
“Obvious” protocol

\[x_1, x_2, \ldots \]

\[H(x_1), H(x_2), \ldots \]

\[y_1, y_2, \ldots \]

compare: \(H(y_1), \ldots \)

I wonder if she had item insecure:

Receiver can test \(\frac{x_1, \ldots, x_n}{x_1, \ldots, x_n} \), offline

Problematic if items have low entropy (e.g., phone numbers).
“Obvious” protocol

\[x_1, x_2, \ldots \]

\[H(x_1), H(x_2), \ldots \]

\[y_1, y_2, \ldots \]

I wonder if she had item \(v\)

INSECURE: Receiver can test *any* \(v \in \{x_1, \ldots, x_n\}\), offline

- Problematic if items have low entropy (e.g., phone numbers)
Classical protocol [Meadows86, HubermanFranklinHogg99]

special case: each party has just one item
Classical protocol \([Meadows86, HubermanFranklinHogg99]\)

special case: each party has **just one** item

\[
\begin{align*}
x & \xrightarrow{H(x)^{\alpha}} y \\
H(y)^{\beta}; H(x)^{\alpha \beta} & \xleftarrow{} H(x)^{\alpha \beta} \quad \text{check: } H(x)^{\alpha \beta} = H(y)^{\beta \alpha}
\end{align*}
\]

Idea:

- If \(x = y\), then \(H(x)^{\alpha \beta} = H(y)^{\beta \alpha}\)
- If \(x \neq y\), they are independently random (when \(H\) is random oracle)
Classical protocol

\[\text{[Meadows86, HubermanFranklinHogg99]} \]

\[\begin{align*}
& x_1, x_2, \ldots \quad H(x_1)^\alpha, H(x_2)^\alpha, \ldots \\
& \quad H(y_1)^\beta, H(x_2)^\beta, \ldots \\
& \quad H(x_1)^\alpha \beta, H(x_2)^\alpha \beta, \ldots
\end{align*} \]

\[y_1, y_2, \ldots \]

Idea:

- If \(x = y \), then \(H(x)^\alpha \beta = H(y)^\beta \alpha \)
- If \(x \neq y \), they are independently random (when \(H \) is random oracle)
Classical protocol \cite{Meadows86,HubermanFranklinHogg99}

\[x_1, x_2, \ldots \]

\[H(x_1)^\alpha, H(x_2)^\alpha, \ldots \]

\[H(y_1)^\beta, H(x_2)^\beta, \ldots \]

\[H(x_1)^\alpha^\beta, H(x_2)^\alpha^\beta, \ldots \]

\[y_1, y_2, \ldots \]

Idea:
- If \(x = y \), then \(H(x)^{\alpha\beta} = H(y)^{\beta\alpha} \)
- If \(x \neq y \), they are independently random (when \(H \) is random oracle)

Drawback: \(O(n) \) expensive exponentiations
Roadmap

1. **Crypto**: Private equality tests:
 - How to securely test whether two strings are identical
 - Focus on building from OT (and similar primitives) in light of OT extension

2. **Algorithmic**: Hashing techniques
 - How to reduce number of equality tests
Simplest case: string equality

\[x \quad \text{does } x = y? \quad y \]
Simplest case: string equality

Using Yao’s protocol: \((x, y \in \{0, 1\}^\ell)\)

- \(\ell\) OTs
- Boolean circuit with \(\ell - 1\) AND gates
- E.g.: \(\ell = 64 \Rightarrow 48\) Kbits
String equality from OT

\[
\begin{array}{cc}
m_{1,0} & m_{1,1} \\
m_{2,0} & m_{2,1} \\
m_{3,0} & m_{3,1} \\
m_{4,0} & m_{4,1} \\
\vdots & \vdots \\
\end{array}
\]

- Sender chooses \(2\ell\) random strings

\[x = 0101, \quad m_{1,0} ; 0 \quad ? \quad m_{2,1} ; 1 \quad ? \quad m_{3,1} ; 1 \quad ? \quad m_{4,0} ; 0 \quad \vdots \]

\[y = 0110\]
String equality from OT

- Sender chooses 2ℓ random strings
- Receiver uses bits of y as OT choice bits
String equality from OT

\[x = 0101 \cdots \]
\[
\begin{array}{c|c}
 m_{1,0} & m_{1,1} \\
 m_{2,0} & m_{2,1} \\
 m_{3,0} & m_{3,1} \\
 m_{4,0} & m_{4,1} \\
 \vdots & \vdots \\
\end{array}
\]

\[y = 0110 \cdots \]
\[
\begin{array}{c|c}
 m_{1,0} & ? \\
 ? & m_{2,1} \\
 ? & m_{3,1} \\
 m_{4,0} & ? \\
 \vdots & \vdots \\
\end{array}
\]

- Sender chooses \(2\ell\) random strings
- Receiver uses bits of \(y\) as OT choice bits
- **Summary value** of \(v\) defined as \(\bigoplus_i m_{i,v_i}\)
 - Sender can compute **any** summary value (in particular, for \(x\))
 - Receiver can compute summary value **only** for \(y\)
 - Summary values other than \(y\) look random to receiver

\[m_{1,0} \oplus m_{2,1} \oplus m_{3,0} \oplus \cdots \]
String equality from OT

\[x = 0101 \ldots \]

\[
\begin{array}{cc}
m_{1,0} & m_{1,1} \\
m_{2,0} & m_{2,1} \\
m_{3,0} & m_{3,1} \\
m_{4,0} & m_{4,1} \\
\vdots & \vdots \\
\end{array}
\]

\[y = 0110 \ldots \]

\[
\begin{array}{cc}
m_{1,0} & ? \\
? & m_{2,1} \\
? & m_{3,1} \\
m_{4,0} & ? \\
\vdots & \vdots \\
\end{array}
\]

- Sender chooses \(2\ell \) random strings
- Receiver uses bits of \(y \) as OT choice bits
- **Summary value** of \(v \) defined as \(\bigoplus_i m_i v_i \)
 - Sender can compute **any** summary value (in particular, for \(x \))
 - Receiver can compute summary value only for \(y \)
 - Summary values other than \(y \) look random to receiver

Cost: just \(\ell \) OTs
Improving equality tests [PinkasSchneiderZohner14]

Idea: Instead of binary inputs, use base-\(k \) (base 3 in this example)

- Now only \(\log_k \ell \) instances of 1-out-of-\(k \) OT
Improving equality tests

$$x = 2101 \cdots$$

<table>
<thead>
<tr>
<th>$m_{1,0}$</th>
<th>$m_{1,1}$</th>
<th>$m_{1,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{2,0}$</td>
<td>$m_{2,1}$</td>
<td>$m_{2,2}$</td>
</tr>
<tr>
<td>$m_{3,0}$</td>
<td>$m_{3,1}$</td>
<td>$m_{3,2}$</td>
</tr>
<tr>
<td>$m_{4,0}$</td>
<td>$m_{4,1}$</td>
<td>$m_{4,2}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

$$y = 0122 \cdots$$

<table>
<thead>
<tr>
<th>$m_{1,0}$</th>
<th>$?$</th>
<th>$?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$?$</td>
<td>$m_{2,1}$</td>
<td>$?$</td>
</tr>
<tr>
<td>$?$</td>
<td>$?$</td>
<td>$m_{3,2}$</td>
</tr>
<tr>
<td>$?$</td>
<td>$?$</td>
<td>$m_{4,2}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Idea: Instead of binary inputs, use base-k (base 3 in this example)

- Now only $\log_k \ell$ instances of 1-out-of-k OT
- **Note:** Only random OT required
Improving equality tests [PinkasSchneiderZohner14]

\[x = 2101 \ldots \]

\[
\begin{array}{ccc}
 m_{1,0} & m_{1,1} & m_{1,2} \\
 m_{2,0} & m_{2,1} & m_{2,2} \\
 m_{3,0} & m_{3,1} & m_{3,2} \\
 m_{4,0} & m_{4,1} & m_{4,2} \\
 \vdots & \vdots & \vdots
\end{array}
\]

\[y = 0122 \ldots \]

\[
\begin{array}{ccc}
 m_{1,0} & ? & ? \\
 ? & m_{2,1} & ? \\
 ? & ? & m_{3,2} \\
 ? & ? & m_{4,2} \\
 \vdots & \vdots & \vdots
\end{array}
\]

Idea: Instead of binary inputs, use base-\(k \) (base 3 in this example)

- Now only \(\log_k \ell \) instances of 1-out-of-\(k \) OT
- Note: Only random OT required

Costs for different 1-out-of-\(k \) random OTs:

- Basic OT extension: \(k = 2 \):
 \(128 \) bits/OT
- [KolesnikovKumaresan13]: \(k = 2^8 \Rightarrow \) 3\(\times \) fewer OTs \@ 256 bits/OT
- [OrruOrsiniScholl16]: \(k = 2^{76} \Rightarrow \) 76\(\times \) fewer OTs \@ 512 bits/OT
- [KolesnikovKumaresanRosulekTrieu16]: \(k = \infty \Rightarrow \) \(~ 480 \) bits total
Another generalization

\[
\begin{align*}
x &= 0101 \cdots \\
n_1,0 &\quad n_1,1 \\
n_2,0 &\quad n_2,1 \\
n_3,0 &\quad n_3,1 \\
n_4,0 &\quad n_4,1 \\
\vdots &\quad \vdots
\end{align*}
\]

Private equality test: Alice has \(x \), Bob has \(y \), Bob learns \(x \equiv y \)
Another generalization

Private equality test: Alice has x, Bob has y, Bob learns $x = y$

Private set membership: Alice has set X, Bob has y, Bob learns $y \in X$
1

Crypto: Private equality tests:
- How to securely test whether *two strings* are identical

2

Algorithmic: Hashing techniques
- How to reduce number of equality tests
Building block

\[S = \{s_1, \ldots\} \]

\[\text{Cost: } 1 \text{ OT primitive } + \text{ sending } n \text{ summary values} \]
Dumb solution

\[X = \{ x_1, \ldots \} \]

\[Y = \{ y_1, \ldots \} \]

\[\text{Cost: } O(n^2) \]
Dumb solution

\[X = \{x_1, \ldots\} \]

\[Y = \{y_1, \ldots\} \]

\[\text{Cost: } O(n^2) \]
Better approach w/ hashing

Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$
Better approach w/ hashing

Agree on a random hash function \(h : \{0, 1\}^* \rightarrow [m] \)

Assign item \(v \) to bin \(\# h(v) \)

\[
h(x_1) = 7
\]

Cost:

\[
\sum_i O(a_i b_i)
\]

where \(a_i ; b_i = \) number of items in bin \(\# i \)

Except, this is completely insecure!
Better approach w/ hashing

Agree on a random hash function \(h : \{0, 1\}^* \rightarrow [m] \)

Assign item \(v \) to bin \# \(h(v) \)

\[
h(x_2) = 6
\]

Cost:
\[
\sum_i O(a_i b_i)
\]

Where \(a_i, b_i \) = number of items in bin \# \(i \)

Except, this is completely insecure! (why?)
Better approach w/ hashing

Agree on a random hash function \(h : \{0, 1\}^* \rightarrow [m] \)

Assign item \(v \) to bin \# \(h(v) \)

\[
\begin{array}{ccccccc}
& & & x_6 & & & \\
& & & & x_3 & & \\
& & & x_2, x_4 & & & \\
& & & x_1 & & & \\
& & x_5 & & & & \\
\end{array}
\]

Cost: \(\sum_i O(a_i b_i) \) where \(a_i, b_i \) = number of items in bin \# \(i \)

Except, this is completely insecure! (why?)
Better approach w/ hashing

Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$

Assign item v to bin # $h(v)$

<table>
<thead>
<tr>
<th>x_6</th>
<th>y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_3</td>
<td>y_1, y_6</td>
</tr>
<tr>
<td>x_2, x_4</td>
<td>y_3, y_5</td>
</tr>
<tr>
<td>x_1</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>y_2</td>
</tr>
</tbody>
</table>
Better approach w/ hashing

Agree on a random hash function \(h : \{0, 1\}^* \rightarrow [m] \)

Assign item \(v \) to bin \(# h(v) \)

Do \(\Theta(n^2) \) PSI in each bin

Idea: if both parties share an item \(v \), both will put it in bin \(h(v) \)
Better approach w/ hashing

Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$.

Assign item v to bin # $h(v)$.

Do $\Theta(n^2)$ PSI in each bin.

Idea: if both parties share an item v, both will put it in bin $h(v)$.

Cost: $\sum_i O(a_i b_i)$ where $a_i, b_i =$ number of items in bin $#i$.

- With n items into n bins, $E[\text{cost}] = O(n)$!
Better approach w/ hashing

Agree on a random hash function $h : \{0, 1\}^* \rightarrow [m]$

Assign item v to bin $\# h(v)$

Do $\Theta(n^2)$ PSI in each bin

Idea: if both parties share an item v, both will put it in bin $h(v)$

Cost: $\sum_i O(a_i b_i)$ where $a_i, b_i =$ number of items in bin $\#i$

\triangleright With n items into n bins, $E[\text{cost}] = O(n)$!

Except, this is completely insecure! (why?)
Subtleties with hashing

“cost = \(\sum_i O(a_i b_i) \)” ??

- **only if** \(a_i, b_i \) **public**
Subtleties with hashing

“cost = $\sum_i O(a_i b_i)$” ??

- only if a_i, b_i public
Subtleties with hashing

“cost = \(\sum_i O(a_ib_i) \)” ??

- only if \(a_i, b_i \) public

1 item

1 item

2 items

1 item

1 item

she has no \(x \) with \(h(x) = 3 \)
Subtleties with hashing

“cost = \[\sum_i O(a_ib_i) \]” ??

- only if \(a_i, b_i \) public

Solution:

1. Compute \(B \) such that \(\Pr_h[\text{no bin has } > B \text{ items}] \leq 2^{-s} \) (balls in bins)
2. Add **dummy items** so that each bin has **exactly** \(B \) items

\(\Rightarrow \) # (apparent) items per bin does not depend on input.
- (Protocol fails with probability \(2^{-s} \))
Balls & bins questions

randomly assign

\(n \) balls \(\sim \) \(m \) bins

- Expected # balls per bin is \(n/m \)
- What is the **worst case** # balls in a bin (with high probability)?
Balls & bins questions

\[\text{randomly assign} \]

\[n \text{ balls} \sim m \text{ bins} \]

- Expected # balls per bin is \(n/m \)
- What is the **worst case** # balls in a bin (with high probability)?

Natural parameter choice: \(n \) items, \(n \) bins

- **Expected** balls per bin = 1
- **Worst-case** balls per bin = \(O(\log n) \)
- PSI cost = (# bins) \(\times \) (worst-case load)\(^2\) = \(O(n\log^2 n) \)
Balls & bins questions

\[\text{n balls} \quad \sim \quad \text{m bins} \]

- Expected # balls per bin is \(n/m \)
- What is the **worst case** # balls in a bin (with high probability)?

Natural parameter choice: \(n \) items, \(n \) bins

- **Expected** balls per bin = 1
- **Worst-case** balls per bin = \(O(\log n) \)
- PSI cost = (# bins) \(\times \) (worst-case load)\(^2\) = \(O(n \log^2 n) \)

Better parameter choice: \(n \) items, \(O(n/\log n) \) bins

- **Expected** balls per bin = \(O(\log n) \)
- **Worst-case** balls per bin = \(O(\log n) \)
- PSI cost = \(O(n \log n) \)
Improved hashing

Remember:

$$S = \{ s_1, \ldots \}$$

Our basic building block naturally supports one item from Bob
Improved hashing

Remember:

\[S = \{s_1, \ldots\} \]

Our basic building block naturally supports **one item** from Bob

Idea: find hashing scheme that leaves only **1 item per bin**

- Only Bob needs to have 1 item per bin
Cuckoo hashing

Use 2 random hash functions h_1, h_2
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin

Claim: with sufficient bins, this process terminates with high probability.
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin

Claim: with sufficient bins, this process terminates with high probability.
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,
 ▶ **evict** someone y' and recurse on y'
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,
 ▶ evict someone y' and recurse on y'
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,
 ▶ evict someone y' and recurse on y'

Claim: with sufficient bins, this process terminates with high probability.
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
 ▶ put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,
 ▶ evict someone y' and recurse on y'
Cuckoo hashing

Use 2 random hash functions h_1, h_2

If either $h_1(y)$ or $h_2(y)$ is empty,
- put y in that bin

If $h_1(y)$ and $h_2(y)$ both occupied,
- **evict** someone y' and recurse on y'

Claim: with sufficient bins, this process terminates with high probability
Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

Idea: Only Bob gets output from PMT. He places y in $h(y)$; if Alice also has y, it will also be here.

Important: Alice cannot learn whether Bob placed y in $h_1(y)$ or $h_2(y)$.
Cuckoo hashing for PSI

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

Idea: Only Bob gets output from PMT

He places y in $h(y)$; if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in $h_1(y)$ or $h_2(y)$.
Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

- Place x in both $h_1(x)$ and $h_2(x)$
Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?
- Place x in both $h_1(x)$ and $h_2(x)$

x_6, x_1	y_4
x_6	y_6
x_1, x_3	y_1
x_3, x_4	y_3
x_2, x_4	
x_5	y_5
x_5, x_2	y_2
Cuckoo hashing for PSI [PinkasSchneiderZohner14]

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?
 ▶ Place x in both $h_1(x)$ and $h_2(x)$

PMT in each bin

<table>
<thead>
<tr>
<th></th>
<th>→ PMT →</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_6, x_1</td>
<td>y_4</td>
</tr>
<tr>
<td>x_6</td>
<td>y_6</td>
</tr>
<tr>
<td>x_1, x_3</td>
<td>y_1</td>
</tr>
<tr>
<td>x_3, x_4</td>
<td>y_3</td>
</tr>
<tr>
<td>x_2, x_4</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>y_5</td>
</tr>
<tr>
<td>x_5, x_2</td>
<td>y_2</td>
</tr>
</tbody>
</table>
Cuckoo hashing for PSI

[PinkasSchneiderZohner14]

Agree on h_1, h_2

Bob hashes with Cuckoo hashing

What about Alice?

▶ Place x in both $h_1(x)$ and $h_2(x)$

PMT in each bin

Idea: Only Bob gets output from PMT

▶ He places y in $h_? (y)$; if Alice also has y, it will also be here

Important: Alice cannot learn whether Bob placed y in $h_1(y)$ or $h_2(y)$
Cuckoo hashing PSI details

Don’t forget: Alice should pad with dummy items! (2n balls in m bins)

<table>
<thead>
<tr>
<th></th>
<th>← PMT →</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_6, x_1</td>
<td></td>
<td>y_4</td>
</tr>
<tr>
<td>x_6</td>
<td></td>
<td>y_6</td>
</tr>
<tr>
<td>x_1, x_3</td>
<td></td>
<td>y_1</td>
</tr>
<tr>
<td>x_3, x_4</td>
<td></td>
<td>y_3</td>
</tr>
<tr>
<td>x_2, x_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td></td>
<td>y_5</td>
</tr>
<tr>
<td>x_5, x_2</td>
<td></td>
<td>y_2</td>
</tr>
</tbody>
</table>
Don’t forget: Alice should pad with dummy items! (2n balls in m bins)
Cuckoo hashing PSI details

Don’t forget: Alice should pad with dummy items! (2n balls in m bins)
- Bob too!

\(\bot, \bot \)	PMT	\(\bot' \)
\(x_6, x_1 \)	PMT	\(y_4 \)
\(x_6, \bot \)	PMT	\(y_6 \)
\(x_1, x_3 \)	PMT	\(y_1 \)
\(x_3, x_4 \)	PMT	\(y_3 \)
\(x_2, x_4 \)	PMT	\(\bot' \)
\(x_5, \bot \)	PMT	\(y_5 \)
\(x_5, x_2 \)	PMT	\(y_2 \)
Cuckoo hashing PSI details

Don’t forget: Alice should pad with dummy items! (2n balls in m bins)

- Bob too!

Cost:

- ~ 1.5n bins for Cuckoo
- At most $O(\log n)$ items per bin for Alice

⇒ Still $O(n \log n)$ cost!
Avoiding dummy items

Summary values can be sent all together no longer associated with bins.

Previously:
- Can't leak true items in a bin

Now:
- Everyone knows: n_{true} items
- Send only summary masks of true items
- Send only summary values, shuffled

Symbols:
- $x_1, x_2, x_3, x_4, x_5, \perp, \perp'$
- $y_1, y_2, y_3, y_4, y_5, y_6$
Avoiding dummy items

Summary values can be sent all together no longer associated with bins.

Previously:
- Can't leak \(n \) true items in a bin

Now:
- Everyone knows: \(n \) true items

 Send only summary masks of true items

\[\begin{align*}
\bot, \bot & \xrightarrow{\text{ROT}} \bot' \\
x_6, x_1 & \xrightarrow{\text{ROT}} y_4 \\
x_6, \bot & \xrightarrow{\text{ROT}} y_6 \\
x_1, x_3 & \xrightarrow{\text{ROT}} y_1 \\
x_3, x_4 & \xrightarrow{\text{ROT}} y_3 \\
x_2, x_4 & \xrightarrow{\text{ROT}} \bot' \\
x_5, \bot & \xrightarrow{\text{ROT}} y_5 \\
x_5, x_2 & \xrightarrow{\text{ROT}} y_2
\end{align*} \]
Avoiding dummy items

Summary values can be sent all together

\[x_6, x_1 \]
\[x_6, \perp \]
\[x_1, x_3 \]
\[x_3, x_4 \]
\[x_2, x_4 \]
\[x_5, \perp \]
\[x_5, x_2 \]

\[\perp, \perp \]
\[\perp' \]
\[y_4 \]
\[y_6 \]
\[y_1 \]
\[y_3 \]
\[y_5 \]
\[y_2 \]

all summary values, shuffled
Avoiding dummy items

Summary values can be sent all together

- No longer associated with bins

Previously:
- Can’t leak # true items in a bin

Now:
- Everyone knows: \(n \text{ true} \) items \(\Rightarrow 2n \text{ true} \) summary masks
- \(\Rightarrow \) Send only summary masks of true items

all summary values, shuffled
Cuckoo PSI costs

Other details:
- Actually use Cuckoo hashing with 3 hash functions

Costs:
- ~ 1.5n Cuckoo bins
- ~ 1.5n OT primitives
- 2n summary masks
⇒ total cost $O(n)$

Performance: [KolesnikovKumaresanRosulekTrieu16] = most efficient 1-out-of-∞ OT equality test
- PSI of 1 million items ⇒ 3.8 seconds @ 120 MB
- Insecure protocol (hash and send) ⇒ 0.7 seconds @ 10 MB