
11 Hash Functions

Suppose you share a huge �le with a friend, but you are not sure whether you both have
the same version of the �le. You could send your version of the �le to your friend and they
could compare to their version. Is there any way to check that involves less communication
than this?

Let’s call your version of the �le x (a string) and your friend’s version y. The goal
is to determine whether x = y. A natural approach is to agree on some deterministic
function H , compute H (x), and send it to your friend. Your friend can compute H (y) and,
since H is deterministic, compare the result to your H (x). In order for this method to be
fool-proof, we need H to have the property that di�erent inputs always map to di�erent
outputs — in other words, H must be injective (1-to-1). Unfortunately, if H is injective
and H : {0, 1}in → {0, 1}out is injective, then out > in. This means that sending H (x) is
no better/shorter than sending x itself!

Let us call a pair (x ,y) a collision in H if x , y and H (x) = H (y). An injective
function has no collisions. One common theme in cryptography is that you don’t always
need something to be impossible; it’s often enough for that thing to be just highly unlikely.
Instead of saying thatH should have no collisions, what if we just say that collisions should
be hard (for polynomial-time algorithms) to �nd? An H with this property will probably
be good enough for anything we care about. It might also be possible to construct such an
H with outputs that are shorter than its inputs!

What we have been describing is exactly a cryptographic hash function. A hash
function has long inputs and short outputs — typically H : {0, 1}∗ → {0, 1}n . Such an H
must necessarily have many collisions. The security property of a hash function is that it
is hard to �nd any such collision. Another good name for a hash function (which I just
made up, and no one else uses) would be a “pseudo-injective” function. Although it is not
injective, it behaves like one for our purposes.

11.1 Security Properties for Hash Functions

There are two common security properties of hash functions:

Collision resistance. It should be hard to compute any collision x , x ′ such thatH (x) =
H (x ′).

Second-preimage resistance. Given x , it should be hard to compute any collision in-
volving x . In other words, it should be hard to compute x ′ , x such that H (x) =
H (x ′).

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

Brute Force A�acks on Hash Functions

There is an important di�erence between collision resistance and second-preimage resis-
tance, which is re�ected in the di�culty of their respective brute force attacks. Suppose
H is a hash function whose outputs are n bits long. Let’s make a simplifying assumption
that for anym > n, the following distribution is roughly uniform over {0, 1}n :

x ← {0, 1}m

return H (x)

This is quite a realistic assumption for practical hash functions. If this were not true, then
H would introduce some bias towards some outputs and away from other outputs, which
would be perceived as suspicious. Also, as the output of H deviates farther from a uniform
distribution, it only makes �nding collisions easier.

Below are straight-forward brute-force attacks for collision resistance (left) and
second-preimage resistance (right):

Collision brute force:
Acr():

for i = 1, . . .:
xi ← {0, 1}

m

yi := H (xi)
if there is some j < i with xi , x j

but yi = yj :
return (xi ,x j)

Second preimage brute force:

A2pi(x):
while true:
x ′← {0, 1}m

y ′ := H (x ′)
if y ′ = H (x): return x ′

Under the simplifying assumption on H , the collision-resistance brute force attack Acr is
essentially choosing each yi uniformly at random. Since each yi ∈ {0, 1}n , the probability
of �nding a repeated value after q times through the main loop is roughly Θ(q2/2n) by
the birthday bound. While in the worst case it could take 2n steps to �nd a collision in
H , the birthday bound implies that it takes only 2n/2 attempts to �nd a collision with 99%
probability (or any constant probability).

On the other hand, the second-preimage brute force attack A2pi is given y as input
and (under our simplifying assumption on H) essentially samples y ′ uniformly at random
until y is the result. It will therefore take Θ(2n) attempts in expectation to terminate
successfully.1

There is a fundamental di�erence in how hard it is to break collision resistance and
second-preimage resistance. Breaking collision-resistance is like inviting more people into
the room until the room contains 2 people with the same birthday. Breaking second-
preimage resistance is like inviting more people into the room until the room contains
another person with your birthday. One of these fundamentally takes longer than the
other.

1A well-known and useful fact from probability theory is that if an event happens with probability p,
then the expected number of times to repeat before seeing the event is 1/p. For example, the probability of
rolling a 1 on a d6 die is 1/6, so it takes 6 rolls in expectation before seeing a 1. The probability of sampling a
particular y from {0, 1}n in one try is 1/2n , so the expected number of trials before seeing y is 2n .

202

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

This di�erence explains why you will typically see cryptographic hash functions in
practice that have 256- to 512-bit output length (but not 128-bit output length), while you
only typically see block ciphers with 128-bit or 256-bit keys. In order to make brute force
attacks cost 2n , a block cipher needs only an n-bit key while a collision-resistant hash
function needs a 2n-bit output.

to-do Discussion of these attacks in terms of graphs, where # of edges is the “number of chances”
to get a collision. Collision-resistance brute force is a complete graph (need

√
N vertices to

have N edges / chances for a collision) . Second-preimage brute force is a star graph (need N
vertices to N edges). Can generalize to consider complete bipartite graph between

√
N +
√
N

vertices.

Hash Function Security In Practice

We will focus on developing a formal de�nition for collision resistance. We can take some
inspiration from the security de�nition for MACs. Security for a MAC means that it should
be hard to produce a forgery. The MAC security de�nition formalized that idea with one
library that checks for a forgery and another library that assumes a forgery is impossible.
If the two libraries are indistinguishable, then it must be hard to �nd a forgery.

We can take a similar approach to say that it should be hard to produce a collision.
Here is an attempt:

test(x ,x ′):
if x , x ′ and H (x) = H (x ′): return true

else: return false

∼∼∼
test(x ,x ′):

return false

This corresponds to what I would call the “folk de�nition” of collision resistance. It makes
intuitive sense (as long as you’re comfortable with our style of security de�nition), but
unfortunately the de�nition su�ers from a very subtle technical problem.

Because of Kerckho�s’ principle, we allow calling programs to depend arbitrarily on
the source code of the two libraries. This is a way of formalizing the idea that “the attacker
knows everything about the algorithms.” Our security de�nitions restrict calling programs
to be polynomial-time algorithms, but they never consider the e�ort that goes into �nding
the source code of the calling program!

This strange loophole leads to the following valid attack. When we consider the se-
curity of some function H , we know that there exists many collisions (x ,x ′) in H . These
collisions may be hard to �nd, but they certainly exist. With exponential time, we could
�nd such an (x ,x ′) pair and write down the code of an attacker:

A:
return test(x ,x ′)

Here, the values x and x ′ are hard-coded into A. The algorithm A is clearly polynomial-
time (in fact, constant time). The “loophoole” is that the de�nition considers only the cost
of running the algorithm A, and not the cost of �nding the source code of A.

203

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

The way this kind of situation is avoided in other security de�nitions is that the li-
braries have some secret randomness. While the attacker is allowed to depend arbitrarily
on the source code of the libraries, it is not allowed to depend on the choice of outcomes
for random events in the libraries, like sampling a secret key. Since the calling program
can’t “prepare” for the random choice that it will be faced with, we don’t have such trivial
attacks. On the other hand, these two libraries for collision resistance are totally deter-
ministic. There are no “surprises” about which function H the calling program will be
asked to compute a collision for, so there is nothing to prevent a calling program from
being “prepared” with a pre-computed collision in H .

Hash Function Security In Theory

The way around this technical issue is to introduce some randomness into the libraries
and into the inputs of H . We de�ne hash functions to take two arguments: a randomly
chosen, public value s called a salt, and an adversarially chosen input x .

Definition 11.1 A hash function H is collision-resistant if LH
cr-real

∼∼∼ L
H
cr-fake

, where:

LH
cr-real

s ← {0, 1}λ

getsalt():
return s

test(x ,x ′ ∈ {0, 1}∗):
if x , x ′ and H (s,x) = H (s,x ′): return true

return false

LH
cr-fake

s ← {0, 1}λ

getsalt():
return s

test(x ,x ′ ∈ {0, 1}∗):
return false

The library initially samples the salt s . Unlike in other libraries, this value s is meant
to be provided to the calling program, and so the library provides a way (getsalt) for the
calling program to learn it. The calling program then attempts to �nd a collision x , x ′

where H (s,x) = H (s,x ′).
I don’t know why the term “salt” is used with hash functions. The reason appears to be

a mystery to the Internet.2 Think of salt as an extra value that “personalizes” the hash
function for a given application. Here is a good analogy: an encryption scheme can be
thought of as a di�erent encryption algorithm Enc(k, ·) for each choice of key k . When I
choose a random k , I get a personalized encryption algorithm Enc(k, ·) that is unrelated
to the algorithm Enc(k ′, ·) that someone else would get when they choose their own k .
When I choose a salt s , I get a personalized hash function H (s, ·) that is unrelated to other
H (s ′, ·) functions. Because the salt is chosen uniformly from {0, 1}λ , a calling program
cannot predict what salt (which personalized hash function) it will be challenged with.

De�nition 11.1 is a valid de�nition for collision resistance, free of strange loopholes
like the “folklore” de�nition. However, it is not a particularly useful de�nition to use
in security proofs, when a hash function is used as a building block in a bigger system.

2If you have an additional random argument to a hash function, but you keep it secret, it is called a
“pepper.” I’m serious, this is a real thing.

204

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

It becomes cumbersome to use in those cases, because when you use a hash function,
you typically don’t explicitly check whether you’ve seen a collision. Instead, you simply
proceed as if collisions are not going to happen.

In this chapter, we won’t see provable statements of security referring to this de�ni-
tion.

Salts in Practice

When we de�ne hash functions in theory, we require that the hash function accept two
inputs, the �rst of which is interpreted as a salt. The hash functions that you see in practice
have only one input, a string of arbitrary length. You can simulate the e�ect of a salt for
such a hash function by simply concatenating the two inputs — e.g., H (s‖x) instead of
H (s,x).

The concept of a salted hash is not just useful to make a coherent security de�nition, it
is also just good practice. Hash functions are commonly used to store passwords. A server
may store user records of the form (username,h = H (password)). When a user attempts
to login with password p ′, the server computes H (p ′) and compares it to h. Storing hashed
passwords means that, in the event that the password �le is stolen, an attacker would need
to �nd a preimage of h in order to impersonate the user.

Best practice is to use a separate salt for each user. Instead of stor-
ing (username,H (password)), choose a random salt s for each user and store
(username, s,H (s, password)). The security properties of a hash function do not require s
to be secret, although there is also no good reason to broadcast a user’s salt publicly. The
salt is only needed by the server, when it veri�es a password during a login attempt.

A user-speci�c salt means that each user gets their own “personalized” hash function
to store their password. Salts o�er the following bene�ts:

I Without salts, it would be evident when two users have the same password — they
would have the same password hashes. The same password hashed with di�erent
salts will result in unrelated hash outputs.

I An attacker can compute a dictionary of (p,H (p)) for common passwords. Without
salts, this dictionary makes it easy to attack all users at once, since all users are using
the same hash function. With salts, each user has a personalized hash function, each
of which would require its own dictionary. Salt makes an attacker’s e�ort scale with
the number of victims.

11.2 Merkle-Damgård Construction

Building a hash function, especially one that accepts inputs of arbitrary length, seems like
a challenging task. In this section, we’ll see one approach for constructing hash functions,
called the Merkle-Damgård construction.

Instead of a full-�edged hash function, imagine that we had a collision-resistant func-
tion whose inputs were of a single �xed length, but longer than its outputs. In other words,
h : {0, 1}n+t → {0, 1}n , where t > 0. We call such an h a compression function. This is
not compression in the usual sense of the word — we are not concerned about recovering

205

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

the input from the output. We call it a compression function because it “compresses” its
input by t bits (analogous to how a pseudorandom generator “stretches” its input by some
amount).

The following construction is one way to build a full-�edged hash function (supporting
inputs of arbitrary length) out of such a compression function:

Construction 11.2

(Merkle-Damgård)

Let h : {0, 1}n+t → {0, 1}n be a compression function. Then the Merkle-Damgård trans-
formation of h is MDh : {0, 1}∗ → {0, 1}n , where:

mdpadt (x)
` := |x |, as length-t binary number
while |x | not a multiple of t :
x := x ‖0

return x ‖`

MDh(x):
x1‖ · · · ‖xk+1 := mdpadt (x)
// each xi is t bits
y0 := 0n

for i = 1 to k + 1:
yi := h(yi−1‖xi)

output yk+1

h h h h h· · · MDh(x)y0

x = x1 x2 x3 · · · xk |x |

The idea of the Merkle-Damgård construction is to split the input x into blocks of size
t . The end of the string is �lled out with 0s if necessary. A �nal block called the “padding
block” is added, which encodes the (original) length of x in binary.

Example Suppose we have a compression function h : {0, 1}48 → {0, 1}32, so that t = 16. We build
a Merkle-Damgård hash function out of this compression function and wish to compute the
hash of the following 5-byte (40-bit) string:

x = 01100011 11001101 01000011 10010111 01010000

We must �rst pad x appropriately (mdpad(x)):

I Since x is not a multiple of t = 16 bits, we need to add 8 bits to make it so.

I Since |x | = 40, we need to add an extra 16-bit block that encodes the number 40 in
binary (101000).

After this padding, and splitting the result into blocks of length 16, we have the following:

01100011 11001101︸ ︷︷ ︸
x1

01000011 10010111︸ ︷︷ ︸
x2

01010000 00000000︸ ︷︷ ︸
x3

00000000 00101000︸ ︷︷ ︸
x4

The �nal hash of x is computed as follows:

206

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

h h h h MDh(x)
032

01100011 11001101 01000011 10010111 01010000 00000000 00000000 00101000

x︷ ︸︸ ︷ MD padding︷ ︸︸ ︷

We are presenting a simpli�ed version, in which MDh accepts inputs whose maxi-
mum length is 2t − 1 bits (the length of the input must �t into t bits). By using multiple
padding blocks (when necessary) and a suitable encoding of the original string length, the
construction can be made to accommodate inputs of arbitrary length (see the exercises).

The value y0 is called the initialization vector (IV), and it is a hard-coded part of the
algorithm.

As discussed above, we will not be making provable security claims using the library-
style de�nitions. However, we can justify the Merkle-Damgård construction with the fol-
lowing claim:

Claim 11.3 Suppose h is a compression function and MDh is the Merkle-Damgård construction applied
to h. Given a collision x ,x ′ in MDh , it is easy to �nd a collision in h. In other words, if it is
hard to �nd a collision in h, then it must also be hard to �nd a collision in MDh .

Proof Suppose that x ,x ′ are a collision under MDh . De�ne the values x1, . . . ,xk+1 and
y1, . . . ,yk+1 as in the computation of MDh(x). Similarly, de�ne x ′1, . . . ,x

′
k ′+1 and

y ′1, . . . ,y
′
k ′+1 as in the computation of MDh(x

′). Note that, in general, k may not equal
k ′.

Recall that:

MDh(x) = yk+1 = h(yk ‖xk+1)

MDh(x
′) = y ′k ′+1 = h(y

′
k ′ ‖x

′
k ′+1)

Since we are assuming MDh(x) = MDh(x
′), we have yk+1 = y ′k ′+1. We consider two cases:

Case 1: If |x | , |x ′ |, then the padding blocks xk+1 and x ′k ′+1 which encode |x | and |x ′ | are
not equal. Hence we have yk ‖xk+1 , y ′k ′ ‖x

′
k ′+1, so yk ‖xk+1 and y ′k ′ ‖x

′
k ′+1 are a collision

under h and we are done.

Case 2: If |x | = |x ′ |, then x and x ′ are broken into the same number of blocks, so k = k ′.
Let us work backwards from the �nal step in the computations of MDh(x) and MDh(x

′).
We know that:

yk+1 = h(yk ‖xk+1)
=

y ′k+1 = h(y ′k ‖x
′
k+1)

If yk ‖xk+1 and y ′k ‖x
′
k+1 are not equal, then they are a collision under h and we are done.

Otherwise, we can apply the same logic again to yk and y ′k , which are equal by our as-
sumption.

More generally, if yi = y ′i , then either yi−1‖xi and y ′i−1‖x
′
i are a collision under h (and

we say we are “lucky”), or elseyi−1 = y ′i−1 (and we say we are “unlucky”). We start with the

207

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

premise thatyk = y ′k . Can we ever get “unlucky” every time, and not encounter a collision
when propagating this logic back through the computations of MDh(x) and MDh(x

′)? The
answer is no, because encountering the unlucky case every time would imply that xi = x ′i
for all i . That is, x = x ′. But this contradicts our original assumption that x , x ′. Hence
we must encounter some “lucky” case and therefore a collision in h. �

11.3 Hash Functions vs. MACs: Length-Extension A�acks

When we discuss hash functions, we generally consider the salt s to be public. A natural
question is, what happens when we make the salt private? Of all the cryptographic
primitives we have discussed so far, a hash function with secret salt most closely resembles
a MAC. So, do we get a secure MAC by using a hash function with private salt?

Unfortunately, the answer is no in general (although it can be yes in some cases, de-
pending on the hash function). In particular, the method is insecure whenH is constructed
using the Merkle-Damgård approach. The key observation is that:

knowing H (x) allows you to predict the hash of any string that begins with
mdpad(x).

This concept is best illustrated by example.

Example Let’s return to our previous example, with a compression function h : {0, 1}48 → {0, 1}32.
Suppose we construct a Merkle-Damgård hash out of this compression function, and use the
construction MAC(k,m) = H (k ‖m) as a MAC.

Suppose theMAC key is chosen ask = 01100011 11001101, and an attacker sees theMAC
tag t of the message m = 01000011 10010111 01010000. Then t = H (k ‖m) corresponds
exactly to the example from before:

h h h h t
032

01100011 11001101 01000011 10010111 01010000 00000000 00000000 00101000

k︷ ︸︸ ︷ m︷ ︸︸ ︷ MD padding︷ ︸︸ ︷

The only di�erence from before is that the �rst block contains the MAC key, so its value
is not known to the attacker. We have shaded it in gray here. The attacker knows all other
inputs as well as the output tag t .

I claim that the attacker can now exactly predict the tag of:

m′ = 01000011 10010111 01010000 00000000 00000000 00101000

The correct MAC tag t ′ of this value would be computed by someone with the key as:

208

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

same computation as in MAC(k,m)

h h h h h

(t)
t ′

032

01100011 11001101 01000011 10010111 01010000 00000000 00000000 00101000 00000000 01000000

k︷ ︸︸ ︷ m′︷ ︸︸ ︷ MD padding︷ ︸︸ ︷

The attacker can compute the output t ′ in a di�erent way, without knowing the key. In
particular, the attacker knows all inputs to the last instance of h. Since the h function itself is
public, the attacker can compute this value herself as t ′ = h(t ‖00000000 01000000). Since
she can predict the tag ofm′, having seen only the tag ofm, she has broken the MAC scheme.

Discussion

I In our example, the attacker sees the MAC tag form (computed asH (k ‖m)) and then
forges the tag for m′ = m‖p, where p is the padding you must add when hashing
k ‖m. Note that the padding depends only on the length of k , which we assume is
public.

I The same attack works to forge the tag of anym′ that begins withm‖p. The attacker
would simply have to compute the last several rounds (not just one round) of Merkle-
Damgård herself.

I This is not an attack on collision resistance! Length-extension does not result
in collisions! We are not saying that k ‖m and k ‖m‖p have the same hash under H ,
only that knowing the hash of k ‖m allows you to also compute the hash of k ‖m‖p.

Knowing how H (k ‖m) fails to be a MAC helps us understand better ways to build a
secure MAC from a hash function:

I The Merkle-Damgård approach su�ers from length-extension attacks because it out-
puts its entire internal state. In the example picture above, the value t is both the
output of H (k ‖m) as well as the only information about k ‖m needed to compute the
last call to h in the computation H (k ‖m‖p).

One way to avoid this problem is to only output part of the internal state. In Merkle-
Damgård, we computeyi := h(yi−1‖xi) until reaching the �nal outputyk+1. Suppose
instead that we only output half of yk+1 (the yi values may need to be made longer
in order for this to make sense). Then just knowing half of yk+1 is not enough to
predict what the hash output will be in a length-extension scenario.

The hash function SHA-3 was designed in this way (often called a “wide pipe” con-
struction). One of the explicit design criteria of SHA-3 was that H (k ‖m) would be a
secure MAC.

I Length extension with Merkle-Damgård is possible because the computation of
H (k ‖m) exactly appears during the computation of H (k ‖m‖p). Similar problems

209

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

appear in plain CBC-MAC when used with messages of mixed lengths. To avoid
this, we can “do something di�erent” to mark the end of the input. In a “wide pipe”
construction, we throw away half of the internal state at the end. In ECBC-MAC,
we use a di�erent key for the last block of CBC chaining.

We can do something similar to the H (k ‖m) construction, by doing H (k2‖H (k1‖m)),
with independent keys. This change is enough to mark the end of the input.
This construction is known as NMAC, and it can be proven secure for Merkle-
Damgård hash functions, under certain assumptions about their underlying com-
pression function. A closely related (and popular) construction calledHMAC allows
k1 and k2 to even be related in some way.

Exercises

11.1. Sometimes when I verify an MD5 hash visually, I just check the �rst few and the last few
hex digits, and don’t really look at the middle of the hash.

Generate two �les with opposite meanings, whose MD5 hashes agree in their �rst 16 bits
(4 hex digits) and in their last 16 bits (4 hex digits). It could be two text �les that say
opposite things. It could be an image of Mario and an image of Bowser. I don’t know, be
creative.

As an example, the strings “subtitle illusive planes” and “wantings premises

forego” actually agree in the �rst 20 and last 20 bits (�rst and last 5 hex digits) of their
MD5 hashes, but it’s not clear that they’re very meaningful.

$ echo -n "subtitle illusive planes" | md5sum

4188d4cdcf2be92a112bdb8ce4500243 -

$ echo -n "wantings premises forego" | md5sum

4188d209a75e1a9b90c6fe3efe300243 -

Describe how you generated the �les, and how many MD5 evaluations you had to make.

11.2. Let h : {0, 1}n+t → {0, 1}n be a �xed-length compression function. Suppose we forgot
a few of the important features of the Merkle-Damgård transformation, and construct a
hash function H from h as follows:

I Let x be the input.

I Split x into pieces y0,x1,x2, . . . ,xk , where y0 is n bits, and each xi is t bits. The last
piece xk should be padded with zeroes if necessary.

I For i = 1 to k , set yi = h(yi−1‖xi).

I Output yk .

Basically, it is similar to the Merkle-Damgård except we lost the IV and we lost the �nal
padding block.

1. Describe an easy way to �nd two messages that are broken up into the same number
of pieces, which have the same hash value under H .

210

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

2. Describe an easy way to �nd two messages that are broken up into di�erent number
of pieces, which have the same hash value under H .

Hint:

Pickanystringoflengthn+2t,then�ndashorterstringthatcollideswithit.

Neither of your collisions above should involve �nding a collision in h.

11.3. I’ve designed a hash function H : {0, 1}∗ → {0, 1}n . One of my ideas is to make H (x) = x
if x is an n-bit string (assume the behavior of H is much more complicated on inputs of
other lengths). That way, we know with certainty that there are no collisions among n-bit
strings. Have I made a good design decision?

11.4. Same as above, but now if x is n bits long, then H (x) = x ⊕m, where m is a �xed, public
string. Can this be a good hash function?

11.5. Let H be a hash function and let t be a �xed constant. De�ne H (t) as:

H (t)(x) = H (· · ·H (H︸ ︷︷ ︸
t times

(x)) · · ·).

Show that if you are given a collision under H (t) then you can e�ciently �nd a collision
under H .

11.6. In this problem, if x and y are strings of the same length, then we write x v y if x = y or
x comes before y in standard dictionary ordering.

Suppose a function H : {0, 1}∗ → {0, 1}n has the following property. For all strings x and
y of the same length, if x v y then H (x) v H (y). Show that H is not collision resistant
(describe how to e�ciently �nd a collision in such a function).

Hint:

Binarysearch,alwaysrecursingonarangethatisguaranteedtocontainacollision.

? 11.7. Suppose a function H : {0, 1}∗ → {0, 1}n has the following property. For all strings x
and y of the same length, H (x ⊕ y) = H (x) ⊕ H (y). Show that H is not collision resistant
(describe how to e�ciently �nd a collision in such a function).

? 11.8. Let H be a salted hash function with n bits of output, and de�ne the following function:

H ∗(x1‖x2‖x3‖ · · · ‖xk):
return H (1,x1) ⊕ H (2,x2) ⊕ · · · ⊕ H (k,xk)

Note that H ∗ can take inputs of any length (k). Show how to �nd collisions in H ∗ when
k > n.

11.9. Generalize the Merkle-Damgård construction so that it works for arbitrary input lengths
(and arbitrary values of t in the compression function). Extend the proof of Claim 11.3 to
your new construction.

? 11.10. Let F be a secure PRF with n-bit inputs, and let H be a collision-resistant (salted) hash
function with n-bit outputs. De�ne the new function F ′((k, s),x) = F (k,H (s,x)), where
we interpret (k, s) to be its key. Prove that F ′ is a secure PRF with arbitrary-length inputs.

211

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

? 11.11. Let MAC be a secure MAC algorithm with n-bit inputs, and let H be a collision-resistant
(salted) hash function with n-bit outputs. De�ne the new function MAC

′((k, s),x) =
MAC(k,H (s,x)), where we interpret (k, s) to be its key. Prove that MAC

′ is a secure MAC
with arbitrary-length inputs.

11.12. More exotic issues with the Merkle-Damgård construction:

(a) Let H be a hash function with n-bit output, based on the Merkle-Damgård construc-
tion. Show how to compute (with high probability) 4 messages that all hash to the
same value under H , using only ∼ 2 · 2n/2 calls to H .

Hint: The4messagesthatcollidewillhavetheformx‖y,x‖y
′
,x
′
‖yandx

′
‖y
′
.Usealength-

extensionideaandperform2birthdayattacks.

(b) Show how to construct 2d messages that all hash to the same value under H , using
only O(d · 2n/2) evaluations of H .

(c) Suppose H1 and H2 are (di�erent) hash functions, both with n-bit output. Consider the
function H ∗(x) = H1(x)‖H2(x). Since H ∗ has 2n-bit output, it is tempting to think that
�nding a collision in H ∗ will take 2(2n)/2 = 2n e�ort.
However, this intuition is not true when H1 is a Merkle-Damgård hash. Show that
when H1 is Merkle-Damgård, then it is possible to �nd collisions in H ∗ with only
O(n2n/2) e�ort. The attack should assume nothing about H2 (i.e., H2 need not be
Merkle-Damgård).

Hint: Applyingpart(b),�rst�ndasetof2n/2messagesthatallhavethesamehashunderH1.Among
them,�nd2thatalsocollideunderH2.

11.13. Let H be a collision-resistant hash function with output length n. Let H ∗ denote iterating
H in a manner similar to CBC-MAC:

H ∗(x1 · · · x`):
// each xi is n bits
y0 := 0n

for i = 1 to `:
yi := H (xi ⊕ yi−1)

return yi

H H H

⊕ ⊕

x1 x2 x`

H ∗(x)

· · ·

· · ·

· · ·

Show that H ∗ is not collision-resistant. Describe a successful attack.

11.14. Show that a bare PRP is not collision resistant. In other words, if F is a secure PRP, then
show how to e�ciently �nd collisions in H (x ‖y) = F (x ,y).

11.15. Show that the CBC-MAC construction applied to a PRP is not collision-resistant. More
precisely, let F be a secure PRP. Show how to e�ciently �nd collisions in the following

212

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

salted hash function H :
H (k,m1‖m2‖m3):
c1 := F (k,m1)

c2 := F (k,m2 ⊕ c1)
c3 := F (k,m3 ⊕ c2)
return c3

Here we are interpreting k as the salt. This is yet another example of how collision-
resistance is di�erent than authenticity (MAC).

11.16. Let H : {0, 1}λ → {0, 1}λ be any function, and de�ne the following function H ∗ :
{0, 1}2λ → {0, 1}λ :

H ∗(x ‖y):
z := H (x) ⊕ y
return H (z) ⊕ x

Show how to succeed in an e�cient second-preimage attack on H ∗.

11.17. Adding a plain hash to a plaintext does not result in CCA security. Consider the following
approach for encryption, that uses a plain (unsalted) hash functionH . To encrypt plaintext
m, simply encrypt m‖H (m) under CTR mode. To decrypt, use normal CTR mode decryp-
tion but return err if the plaintext does not have the form m‖H (m) (i.e., if the last n bits
are not a hash of the rest of the CTR-plaintext).

Show that the scheme does not have CCA security.

11.18. In the discussion of length-extension attacks, we noted that a natural way to stop them is to
“do something di�erent” for the last block of Merkle-Damgård. Suppose after performing
the �nal call toh in Merkle-Damgård, we complement the value (yk+1). Does this modi�ed
scheme still have length-extension properties?

213

