
15 Public-Key Encryption

So far, the encryption schemes that we’ve seen are symmetric-key schemes. The same
key is used to encrypt and decrypt. In this chapter we introduce public-key (sometimes
called asymmetric) encryption schemes, which use di�erent keys for encryption and de-
cryption. The idea is that the encryption key can be made public, so that anyone can send
an encryption to the owner of that key, even if the two users have never spoken before
and have no shared secrets. The decryption key is private, so that only the designated
owner can decrypt.

We modify the syntax of an encryption scheme in the following way. A public-key
encryption scheme consists of the following three algorithms:

KeyGen: Outputs a pair (pk, sk) where pk is a public key and sk is a private/secret key.

Enc: Takes the public key pk and a plaintextm as input, and outputs a ciphertext c .

Dec: Takes the secret key sk and a ciphertext c as input, and outputs a plaintextm.

We modify the correctness condition similarly. A public-key encryption scheme satis�es
correctness if, for allm ∈ M and all (pk, sk) ← KeyGen, we have Dec(sk, Enc(pk,m)) =m
(with probability 1 over the randomness of Enc).

15.1 Security Definitions

We now modify the de�nition of CPA security to �t the setting of public-key encryption.
As before, the adversary calls a challenge subroutine with two plaintexts — the di�er-
ence between the two libraries is which plaintext is actually encrypted. Of course, the
encryption operation now takes the public key.

Then the biggest change is that we would like to make the public key public. In other
words, the calling program should have a way to learn the public key (otherwise the library
cannot model a situation where the public key is known to the adversary). To do this, we
simply add another subroutine that returns the public key.

Definition 15.1 Let Σ be a public-key encryption scheme. Then Σ is secure against chosen-plaintext at-

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

tacks (CPA secure) if LΣ
pk-cpa-L

∼∼∼ L
Σ
pk-cpa-R

, where:

LΣ
pk-cpa-L

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
return Σ.Enc(pk,mL)

LΣ
pk-cpa-R

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
return Σ.Enc(pk,mR)

to-do Re-iterate how deterministic encryption still can’t be CPA-secure in the public-key setting.

Pseudorandom Ciphertexts

We can modify/adapt the de�nition of pseudorandom ciphertexts to public-key encryption
in a similar way:

Definition 15.2 Let Σ be a public-key encryption scheme. Then Σ has pseudorandom ciphertexts in the
presence of chosen-plaintext a�acks (CPA$ security) if LΣ

pk-cpa$-real

∼∼∼ L
Σ
pk-cpa$-rand

,
where:

LΣ
pk-cpa$-real

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(m ∈ Σ.M):
return Σ.Enc(pk,m)

LΣ
pk-cpa$-rand

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(m ∈ Σ.M):
c ← Σ.C
return c

As in the symmetric-key setting, CPA$ security (for public-key encryption) implies
CPA security:

Claim 15.3 Let Σ be a public-key encryption scheme. If Σ has CPA$ security, then Σ has CPA security.

The proof is extremely similar to the proof of the analogous statement for symmetric-
key encryption (Theorem 7.3), and is left as an exercise.

15.2 One-Time Security Implies Many-Time Security

So far, everything about public-key encryption has been directly analogous to what we’ve
seen about symmetric-key encryption. We now discuss a peculiar property that is di�erent
between the two settings.

261

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

In symmetric-key encryption, we saw examples of encryption schemes that are secure
when the adversary sees only one ciphertext, but insecure when the adversary sees more
ciphertexts. One-time pad is the standard example of such an encryption scheme.

Surprisingly, if a public-key encryption scheme is secure when the adversary sees just
one ciphertext, then it is also secure for many ciphertexts! In short, there is no public-key
one-time pad that is weaker than full-�edged public-key encryption — there is public-key
encryption or nothing.

To show this property formally, we �rst adapt the de�nition of one-time secrecy (Def-
inition 2.6) to the public-key setting. There is one small but important technical subtlety:
in De�nition 2.6 the encryption key is chosen at the last possible moment in the body of
challenge. This ensures that the key is local to this scope, and therefore each value of
the key is only used to encrypt one plaintext.

In the public-key setting, however, it turns out to be important to allow the adver-
sary to see the public key before deciding which plaintexts to encrypt. (This concern is
not present in the symmetric-key setting precisely because there is nothing public upon
which the adversary’s choice of plaintexts can depend.) For that reason, in the public-key
setting we must sample the keys at initialization time so that the adversary can obtain the
public key via getpk. To ensure that the key is used to encrypt only one plaintext, we
add a counter and a guard condition to challenge, so that it only responds once with a
ciphertext.

Definition 15.4 Let Σ be a public-key encryption scheme. Then Σ has one-time secrecy if LΣ
pk-ots-L

∼∼∼

LΣ
pk-ots-R

, where:

LΣ
pk-ots-L

(pk, sk) ← Σ.KeyGen

count := 0

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count > 1: return null
return Σ.Enc(pk,mL)

LΣ
pk-ots-R

(pk, sk) ← Σ.KeyGen

count := 0

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count > 1: return null
return Σ.Enc(pk,mR)

Claim 15.5 Let Σ be a public-key encryption scheme. If Σ has one-time secrecy, then Σ is CPA-secure.

Proof Suppose LΣ
pk-ots-L

∼∼∼ L
Σ
pk-ots-R

. Our goal is to show that LΣ
pk-cpa-L

∼∼∼ L
Σ
pk-cpa-R

. The proof
centers around the following hybrid libraryLhyb-h , which is designed to be linked to either

262

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

Lpk-ots-L or Lpk-ots-R:
Lhyb-h

count = 0
pk := getpk()

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count < h :

return Σ.Enc(pk,mR)

elsif count = h :
return challenge′(mL,mR)

else:
return Σ.Enc(pk,mL)

Here the value h is an unspeci�ed value that will be a hard-coded constant, and
challenge′ (called by the “elsif” branch) and getpk refer to the subroutine in Lpk-ots-?.
Note that Lhyb-h is designed so that it only makes one call to challenge′ — in particular,
only when its own challenge subroutine is called for the h th time.

We now make a few observations:

Lhyb-1 � Lpk-ots-L ≡ Lpk-cpa-L: In both libraries, every call to challenge en-
crypts the left plaintext. In particular, the �rst
call to challenge in Lhyb-1 triggers the “elsif”
branch, so the challenge is routed to Lpk-ots-L,
which encrypts the left plaintext. In all other
calls to challenge, the “else” branch is trig-
gered and the left plaintext is encrypted explic-
itly.

Lhyb-h � Lpk-ots-R ≡ Lhyb-(h + 1) � Lpk-ots-L, for all h . In both of these libraries, the �rst h
calls to challenge encrypt the right plaintext,
and all subsequent calls encrypt the left plain-
text.

Lhyb-h � Lpk-ots-L

∼∼∼ Lhyb-h � Lpk-ots-R, for all h . This simply follows from the fact
that Lpk-ots-L

∼∼∼ Lpk-ots-R.

Lhyb-q � Lpk-ots-R ≡ Lpk-cpa-R, where q is the number of times the calling pro-
gram calls challenge. In particular, every call
to challenge encrypts the right plaintext.

Putting everything together, we have that:

Lpk-cpa-L ≡ Lhyb-1 � Lpk-ots-L

∼∼∼ Lhyb-1 � Lpk-ots-R

≡ Lhyb-2 � Lpk-ots-L

∼∼∼ Lhyb-2 � Lpk-ots-R

...

263

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

≡ Lhyb-q � Lpk-ots-L

∼∼∼ Lhyb-q � Lpk-ots-R

≡ Lpk-cpa-R,

and so Lpk-cpa-L

∼∼∼ Lpk-cpa-R. �

The reason this proof goes through for public-key encryption but not symmetric-key
encryption is that anyone can encrypt in a public-key scheme. In a symmetric-key scheme,
it is not possible to generate encryptions without the key. But in a public-key scheme, the
encryption key is public.

In more detail, the Lhyb-h library can indeed obtain pk from Lpk-ots-?. It therefore has
enough information to perform the encryptions for all calls to challenge. Indeed, you
can think of Lhyb-0 as doing everything that Lpk-cpa-L does, even though it doesn’t know
the secret key. We let Lhyb-h designate the h th call to challenge as a special one to be
handled by Lpk-ots-?. This allows us to change the h th encryption from usingmL tomR .

15.3 ElGamal Encryption

ElGamal encryption is a public-key encryption scheme that is based on DHKA.

Construction 15.6

(ElGamal)

The public parameters are a choice of cyclic group G with n elements and generator д.

M = G

C = G2

KeyGen:
sk := a ← Zn
pk := A := дa
return (pk, sk)

Enc(A,M ∈ G):
b ← Zn
B := дb
return (B,M · Ab)

Dec(a, (B,X)):
return X (Ba)−1

The scheme satis�es correctness, since for all M :

Dec(sk, Enc(pk,M)) = Dec(sk, (дb ,M · Ab))

= (M · Ab)((дb)a)−1

= M · (дab)(дab)−1 = M .

Security

Imagine an adversary who is interested in attacking an ElGamal scheme. This adversary
sees the public key A = дa and a ciphertext (дb ,M дab) go by. Intuitively, the Decisional
Di�e-Hellman assumption says that the value дab looks random, even to someone who
has seen дa and дb . Thus, the message M is masked with a pseudorandom group element
— as we’ve seen before, this is a lot like masking the message with a random pad as in
one-time pad. The only change here is that instead of the xor operation, we are using the
group operation in G.

More formally, we can prove the security of ElGamal under the DDH assumption:

Claim 15.7 If the DDH assumption in group G is true, then ElGamal in group G is CPA$-secure.

264

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

Proof It su�ces to show that ElGamal has pseudorandom ciphertexts when the calling program
sees only a single ciphertext. In other words, we will show that Lpk-ots$-real

∼∼∼ Lpk-ots$-rand,
where these libraries are the Lpk-cpa$-? libraries from De�nition 15.2 but with the single-
ciphertext restriction used in De�nition 15.4. It is left as an exercise to show that
Lpk-ots$-real

∼∼∼ Lpk-ots$-rand implies CPA$ security (which in turn implies CPA security);
the proof is very similar to that of Claim 15.5.

The sequence of hybrid libraries is given below:

Lpk-ots$-real

a ← Zn
A := дa
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
b ← Zn
B := дb
X := M · Ab

return (B,X)

The starting point is the
Lpk-ots$-real library, shown here
with the details of ElGamal �lled
in.

a ← Zn ; b ← Zn
A := дa ; B := дb ; C := Ab

count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M · C
return (B,X)

The main body of qery com-
putes some intermediate values
B and Ab . But since those lines
are only reachable one time, it
does not change anything to pre-
compute them at initialization
time.

265

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

(A,B,C) ← dhqery()
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M ·C
return (B,X)

�

Ldh-real

dhqery():
a,b ← Zn
return (дa ,дb ,дab)

We can factor out the genera-
tion of A,B,C in terms of the
Ldh-real library from the De-
cisional Di�e-Hellman security
de�nition (De�nition 14.5).

(A,B,C) ← dhqery()
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M ·C
return (B,X)

�

Ldh-rand

dhqery():
a,b, c ← Zn
return (дa ,дb , дc)

Applying the security of DDH,
we can replace Ldh-real with
Ldh-rand.

a,b, c ← Zn
A := дa ; B := дb ; C := дc

count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M ·C
return (B,X)

The call to dhqery has been in-
lined.

266

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

a ← Zn
A := дa
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
b, c ← Zn
B := дb ; C := дc

X := M ·C
return (B,X)

As before, since the main body of
qery is only reachable once, we
can move the choice of B and C
into that subroutine instead of at
initialization time.

Lpk-ots$-rand

a ← Zn
A := дa
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
b, x ← Zn
B := дb ; X := дx

return (B,X)

When b is sampled uniformly
from Zn , the expression B = дb

is a uniformly distributed ele-
ment of G. Also recall that when
C is a uniformly distributed el-
ement of G, then M · C is uni-
formly distributed — this is anal-
ogous to the one-time pad prop-
erty (see Exercise 2.5). Applying
this change gives the library to
the left.

In the �nal hybrid, the response to qery is a pair of uniformly distributed group
elements (B,X). Hence that library is exactly Lpk-ots$-rand, as desired. �

15.4 Hybrid Encryption

As a rule, public-key encryption schemes are much more computationally expensive than
symmetric-key schemes. Taking ElGamal as a representative example, computing дb in a
cryptographically secure cyclic group is considerably more expensive than one evaluation
of AES. As the plaintext data increases in length, the di�erence in cost between public-key
and symmetric-key techniques only gets worse.

A clever way to minimize the cost of public-key cryptography is to use a method
called hybrid encryption. The idea is to use the expensive public-key scheme to encrypt
a temporary key for a symmetric-key scheme. Then use the temporary key to (cheaply)
encrypt the large plaintext data.

267

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

To decrypt, one can use the decryption key of the public-key scheme to obtain the
temporary key. Then the temporary key can be used to decrypt the main payload.

Construction 15.8

(Hybrid Enc)

Let Σpub be a public-key encryption scheme, and let Σsym be a symmetric-key encryption
scheme, where Σsym.K ⊆ Σpub.M — that is, the public-key scheme is capable of encrypting
keys of the symmetric-key scheme.

Then we de�ne Σhyb to be the following construction:

M = Σsym.M

C = Σpub.C × Σsym.C

KeyGen:
(pk, sk) ← Σpub.KeyGen

return (pk, sk)

Enc(pk,m):
tk ← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk)
csym ← Σsym.Enc(tk,m)
return (cpub, csym)

Dec(sk, (cpub, csym)):
tk := Σpub.Dec(sk, cpub)

return Σsym.Dec(tk, csym)

Importantly, the message space of the hybrid encryption scheme is the message space of
the symmetric-key scheme (think of this as involving very long plaintexts), but encryption
and decryption involves expensive public-key operations only on a small temporary key
(think of this as a very short string).

The correctness of the scheme can be veri�ed via:

Dec(sk, Enc(pk,m)) = Dec

(
sk,

(
Σpub.Enc(pk, tk), Σsym.Enc(tk,m)

))
= Σsym.Dec

(
Σpub.Dec

(
sk, Σpub.Enc(pk, tk)

)
, Σsym.Enc(tk,m)

)
= Σsym.Dec

(
tk, Σsym.Enc(tk,m)

)
=m.

To show that hybrid encryption is a valid way to encrypt data, we prove that it provides
CPA security, when its two components have appropriate security properties:

Claim 15.9 If Σsym is a one-time-secret symmetric-key encryption scheme and Σpub is a CPA-secure public-
key encryption scheme, then the hybrid scheme Σhyb (Construction 15.8) is also a CPA-secure
public-key encryption scheme.

Note that Σsym does not even need to be CPA-secure. Intuitively, one-time secrecy
su�ces because each temporary key tk is used only once to encrypt just a single plaintext.

Proof As usual, our goal is to show thatLΣhyb

pk-cpa-L

∼∼∼ L
Σhyb

pk-cpa-R
, which we do in a standard sequence

of hybrids:

268

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

L
Σhyb

pk-cpa-L

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge(mL,mR):
tk ← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk)
csym ← Σsym.Enc(tk,mL)

return (cpub, csym)

The starting point is Lpk-cpa-L, shown here with the details
of Σhyb �lled in.

Our only goal is to somehow replacemL withmR . SincemL
is only used as a plaintext for Σsym, it is tempting to simply
apply the one-time-secrecy property of Σsym to argue that
mL can be replaced with mR . Unfortunately, this cannot
work because the key used for that ciphertext is tk , which
is used elsewhere. In particular, it is used as an argument
to Σpub.Enc.

However, using tk as the plaintext argument to Σpub.Enc should hide tk to the calling
program, if Σpub is CPA-secure. That is, the Σpub-encryption of tk should look like a Σpub-
encryption of some unrelated dummy value. More formally, we can factor out the call to
Σpub.Enc in terms of the Lpk-cpa-L library, as follows:

challenge(mL,mR):
tk ← Σsym.KeyGen

tk ′← Σsym.KeyGen

cpub ← challenge′(tk, tk ′)
csym ← Σsym.Enc(tk,mL)

return (cpub, csym)

�

L
Σpub

pk-cpa-L

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge′(tkL, tkR):
return Σpub.Enc(pk, tkL)

Here we have changed the variable names of the arguments of challenge′ to avoid un-
necessary confusion. Note also that challenge now chooses two temporary keys — one
which is actually used to encryptmL and one which is not used anywhere. This is because
syntactically we must have two arguments to pass into challenge′.

Now imagine replacingLpk-cpa-L withLpk-cpa-R and then inlining subroutine calls. The
result is:

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge(mL,mR):
tk ← Σsym.KeyGen

tk ′← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk ′)
csym ← Σsym.Enc(tk,mL)

return (cpub, csym)

At this point, it does now work to factor out the call to Σsym.Enc in terms of the Lots-L

library. This is because the key tk is not used anywhere else in the library. The result of

269

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

factoring out in this way is:

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge(mL,mR):
tk ′← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk ′)

csym ← challenge′(mL,mR)

return (cpub, csym)

�

L
Σsym

ots-L

challenge′(mL,mR):
tk ← Σsym.KeyGen

return Σsym.Enc(tk,mL)

At this point, we can replace Lots-L with Lots-R. After this change the Σsym-ciphertext
encrypts mR instead of mL . This is the “half-way point” of the proof, and the rest of the
steps are a mirror image of what has come before. In summary: we inline Lots-R, then
we apply CPA security to replace the Σpub-encryption of tk ′ with tk . The result is exactly
Lpk-cpa-R, as desired. �

Exercises

15.1. Prove Claim 15.3.

15.2. Show that a 2-message key-agreement protocol exists if and only if CPA-secure public-key
encryption exists.

In other words, show how to construct a CPA-secure encryption scheme from any 2-
message KA protocol, and vice-versa. Prove the security of your constructions.

15.3. (a) Suppose you are given an ElGamal encryption of an unknown plaintext M ∈ G. Show
how to construct a di�erent ciphertext that also decrypts to the same M .

(b) Suppose you are given two ElGamal encryptions, of unknown plaintexts M1,M2 ∈ G.
Show how to construct a ciphertext that decrypts to their product M1 ·M2.

15.4. Suppose you obtain two ElGamal ciphertexts (B1,C1), (B2,C2) that encrypt unknown plain-
texts M1 and M2. Suppose you also know the public key A and cyclic group generator д.

(a) What information can you infer about M1 and M2 if you observe that B1 = B2?

(b) What information can you infer about M1 and M2 if you observe that B1 = д · B2?

? (c) What information can you infer about M1 and M2 if you observe that B1 = (B2)
2?

270

