5.1

Pseudorandom Generators

One-time pad requires a key that’s as long as the plaintext. Let’s forget that we know
about this limitation. Suppose Alice & Bob share only a short A-bit secret k, but they
want to encrypt a 24-bit plaintext m. They don’t know that (perfect) one-time secrecy is
impossible in this setting (Exercise 2.11), so they try to get it to work anyway using the
following reasoning:

» The only encryption scheme they know about is one-time pad, so they decide that
the ciphertext will have the form ¢ = m @ ?? . This means that the unknown value
?? must be 21 bits long.

» In order for the security of one-time pad to apply, the unknown value ?? should be
uniformly distributed.

» The process of obtaining the unknown value ?? from the shared key k should be
deterministic, so that the sender and receiver compute the same value and decryption
works correctly.

Let G denote the process that transforms the key k into this mystery value. Then G :
{0,1}* = {0,1}?, and the encryption scheme is Enc(k, m) = m & G(k).

It is not hard to see that if G is a deterministic function, then there are only 2* possible
outputs of G, so the distribution of G(k) cannot be uniform in {0, 1}?*. We therefore cannot
argue that the scheme is secure in the same way as one-time pad.

However, what if the distribution of G(k) values is not perfectly uniform but only
“close enough” to uniform? Suppose no polynomial-time algorithm can distinguish the
distribution of G(k) values from the uniform distribution. Then surely this ought to be
“close enough” to uniform for practical purposes. This is exactly the idea of pseudoran-
domness. It turns out that if G has a pseudorandomness property, then the encryption
scheme described above is actually secure (against polynomial-time adversaries, in the
sense discussed in the previous chapter).

Definitions

A pseudorandom generator (PRG) is a deterministic function G whose outputs are
longer than its inputs. When the input to G is chosen uniformly at random, it induces a
certain distribution over the possible output. As discussed above, this output distribution
cannot be uniform. However, the distribution is pseudorandom if it is indistinguishable
from the uniform distribution. More formally:

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Definition 5.1
(PRG security)

LetG : {0,1}* — {0, 1}**(be a deterministic function with £ > 0. We say that G is a secure

pseudorandom generator (PRG) if ng_rea| e ng_ra 4> Where:
@ ©
Lprg—real ‘Lprg—rand
QUERY(): QUERY():
s «— {0,1}* r « {0, 1}4*¢
return G(s) return r

The value € is called the stretch of the PRG. The input to the PRG is typically called a seed.

Below is an illustration of the distributions sampled by these libraries, for a length-
doubling (£ = 1) PRG (not drawn to scale) :

y
f/'
v
|
2
I
{o,1}4
{o,1)}* {o,1}%
pseudorandom distribution uniform distribution

Lprgreal samples from distribution of red dots, by first sampling a uniform element of
{0, 1}* and performing the action of G on that value to get a red result in {0, 1}**. The other
library Lprg rand directly samples the uniform distribution on {0, 1}%* (in green above).

To understand PRGs, you must simultaneously appreciate two ways to compare the
PRG’s output distribution with the uniform distribution:

» From a relative perspective, the PRG’s output distribution is tiny. Out of the 2%
strings in {0, 1}**, only 2% are possible outputs of G. These strings make up a
24 /2% = 1/2% fraction of {0, 1}** — a negligible fraction!

» From an absolute perspective, the PRG’s output distribution is huge. There are 2%
possible outputs of G, which is an exponential amount!

The illustration above only captures the relative perspective (comparing the red dots to
the entire extent of {6, 1}?%), so it can lead to some misunderstanding. Just looking at this
picture, it is hard to imagine how the two distributions could be indistinguishable. How
could a calling program not notice whether it’s seeing the whole set or just a negligible
fraction of the whole set? Well, if you run in polynomial-time in A, then 2% and 2%/ are
both so enormous that it doesn’t really matter that one is vastly bigger than the other.
The relative sizes of the distribution don’t really help distinguish, since it is not a viable
strategy for the distinguisher to “measure” the size of the distribution it’s sampling.

86

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Consider: there are about 27° molecules in a teaspoon of water, and about 227°
molecules of water in Earth’s oceans. Suppose you dump a teaspoon of water into the
ocean and let things mix for a few thousand years. Even though the teaspoon accounts for
only 1/27° of the ocean’s contents, that doesn’t make it easy to keep track of all 27> water
molecules that originated in the teaspoon! If you are small enough to see individual water
molecules, then a teaspoon of water looks as big as the ocean.

Discussion & Pitfalls

» Do not confuse the interface of a PRG (it takes in a seed as input) with the interface
of the security libraries L« (their QUERY subroutine doesn’t take any input)! A
PRG is indeed an algorithm into which you can feed any string you like. However,
security is only guaranteed when the PRG is being used exactly as described in
the security libraries — in particular, when the seed is chosen uniformly/secretly
and not used for anything else.

Nothing prevents a user from putting an adversarially-chosen s into a PRG, or re-
vealing a PRG seed to an adversary, etc. You just get no security guarantee from
doing it, since it’s not the situation reflected in the PRG security libraries.

» It doesn’t really make sense to say that “0010110110 is a random string” or
‘0000000001 is a pseudorandom string” Randomness and pseudorandomness are
properties of the process used to generate a string, not properties of the indi-
vidual strings themselves. When we have a value z = G(s) where G is a PRG and s is
chosen uniformly, you could say that z was “chosen pseudorandomly.” You could say
that the output of some process is a “pseudorandom distribution.” But it is slightly
sloppy (although common) to say that a string z “is pseudorandom”.

» There are common statistical tests you can run, which check whether some data
has various properties that you would expect from a uniform distribution." For
example, are there roughly an equal number of 0s and 1s? Does the substring 01010
occur with roughly the frequency I would expect? If T interpret the string as a series
of points in the unit square [0, 1)?, is it true that roughly /4 of them are within
Euclidean distance 1 of the origin?

The definition of pseudorandomness is kind of a “master” definition that encom-
passes all of these statistical tests and more. After all, what is a statistical test, but a
polynomial-time procedure that obtains samples from a distribution and outputs a
yes/no decision? Pseudorandomness means that every statistical test that “passes”
uniform data will also “pass” pseudorandomly generated data.

5.2 Pseudorandom Generators in Practice

You are probably expecting to now see at least one example of a secure PRG. Unfortunately,
things are not so simple. We have no examples of secure PRGs! If it were possible to prove

For one list of such tests, see http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22revia.pdf.

87

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Example

that some function G is a secure PRG, it would resolve the famous P vs NP problem —
the most famous unsolved problem in computer science (and arguably, all of mathematics).

The next best thing that cryptographic research can offer are candidate PRGs, which
are conjectured to be secure. The best examples of such PRGs are the ones that have been
subjected to significant public scrutiny and resisted all attempts at attacks so far.

In fact, the entire rest of this book is based on cryptography that is only conjectured
to be secure. How is this possible, given the book’s stated focus on provable security? As
you progress through the book, pay attention to how all of the provable security claims
are conditional — if X is secure then Y is secure. You will be able to trace back through
this web of implications and discover that there are only a small number of underlying
cryptographic primitives whose security is merely conjectured (PRGs are one example of
such a primitive). Everything else builds on these primitives in a provably secure way.

With that disclaimer out of the way, surely now you can be shown an example of a
conjectured secure PRG, right? There are indeed some conjectured PRGs that are simple
enough to show you at this point, but you won’t find them in the book. The problem is that
none of these PRG candidates are really used in practice. When you really need a PRG in
practice, you would actually use a PRG that is built from something called a block cipher
(which we won’t see until Chapter 6). A block cipher is conceptually more complicated
than a PRG, and can even be built from a PRG (in principle). That explains why this book
starts with PRGs. In practice, a block cipher is just a more useful object, so that is what
you would find easily available (even implemented with specialized CPU instructions in
most CPUs). When we introduce block ciphers (and pseudorandom functions), we will
discuss how they can be used to construct PRGs.

How NOT to Build a PRG

We can appreciate the challenges involved in building a PRG “from scratch” by first looking
at an obvious idea for a PRG and understanding why it’s insecure.

Let’s focus on the case of a length-doubling PRG. It should take in A bits and output 21 bits.
The output should look random when the input is sampled uniformly. A natural idea is for
the candidate PRG to simply repeat the input twice. After all, if the input s is random, then
s||s is also random, too, right?

G(s) :

return s||s

To understand why this PRG is insecure, first let me ask you whether the following strings
look like they were sampled uniformly from {0, 1}8:

11011101, 01010101, 01110111, 010001060, - - -

Do you see any patterns? Every string has its first half equal to its second half. That is a
conspicuous pattern because it is relatively rare for a uniformly chosen string to have this

property.

88

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Of course, this is exactly what is wrong with this simplistic PRG G defined above. Every
output of G has equal first/second halves. But it is rare for uniformly sampled strings to have
this property. We can formalize this observation as an attack against the PRG-security of G:

A
x|ly := QUERY()
?

return x = y

The first line means to obtain the result of QUERY and set its first half to be the string x and
its second half to be y. This calling program simply checks whether the output of QUERY has
equal halves.

To complete the attack, we must show that this calling program has non-negligible bias
distinguishing the Ly « libraries.

» When linked to Lg real, the calling program receives outputs of G, which always have

matching first/second halves. So Pr[A o LpGrg-real = 1] = 1. Below we have filled in

Lprg-real With the details of our G algorithm:

G
A Lprg—real
x|ly := QUERY() | o | QUERY():
? A
return x = y s < {6,1}
return s||s

» When linked to L rand, the calling program receives uniform samples from {0, 1324,

G
A ‘£prg-rand
x|y := QUERY() | o | QUERY():
A
return x = y r—{o,1}*
return r

A outputs 1 whenever we sample a string from {0, 1}** with equal first/second halves.
What exactly is the probability of this happening? There are several ways to see that
the probability is 1/2* (this is like asking the probability of rolling doubles with two

. . A . . G _ A
dice, but each die has 2” sides instead of 6). Therefore, Pr[A ¢ 'Eprg—rand = 1] =1/2~

The advantage of this adversary is 1 — 1/2* which is certainly non-negligible — it does not
even approach 0 as A grows. This shows that G is not a secure PRG.

This example illustrates how randomness/pseudorandomness is a property of the en-
tire process, not of individual strings. If you take a string of 1s and concatenate it with
another string of 1s, you get a long string of 1s. “Containing only 1s” is a property of
individual strings. If you take a “random string” and concatenate it with another “random
string,” you might not get a “random long string” Being random is not a property of an
individual string, but of the entire process that generates it.

Outputs from this G have equal first/second halves, which is an obvious pattern. The
challenge of desiging a secure PRG is that its outputs must have no discernable pattern!
Any pattern will lead to an attack similar to the one shown above.

89

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

5.3

Construction 5.2
(Pseudo-OTP)

Definition 5.3

Related Concept: Random Number Generation

The security of a PRG requires the seed to be chosen uniformly. In practice, the seed has to
come from somewhere. Generally a source of “randomness” is provided by the hardware
or operating system, and the process that generates these random bits is (confusingly)
called a random number generator (RNG).

In this course we won’t cover low-level random number generation, but merely point
out what makes it different than the PRGs that we study:

» The job of a PRG is to take a small amount of “ideal” (in other words, uniform)
randomness and extend it.

» By contrast, an RNG usually takes many inputs over time and maintains an internal
state. These inputs are often from physical/hardware sources. While these inputs
are “noisy” in some sense, it is hard to imagine that they would be statistically uni-
form. So the job of the RNG is to “refine” (sometimes many) sources of noisy data
into uniform outputs.

Application: Shorter Keys in One-Time-Secret Encryption

We revisit the motivating example from the beginning of this chapter. Alice & Bob share
only a A-bit key but want to encrypt a message of length A +£. The main idea is to expand
the key k into a longer string using a PRG G, and use the result as a one-time pad on the
(longer) plaintext. More precisely, let G : {0,1}* — {0, 1}**{ be a PRG, and define the
following encryption scheme:

K = {0, 1} KeyGen: Enc(k, m): Dec(k, c):
M = {0, 1} k%X return G(k) ® m return G(k) @ ¢
C = {0, 1}M*¢ return k

The resulting scheme will not have (perfect) one-time secrecy. That is, encryptions of
mp, and mg will not be identically distributed in general. However, the distributions will
be indistinguishable if G is a secure PRG. The precise flavor of security obtained by this
construction is the following.

Let 3 be an encryption scheme, and let .Lgts_]_ and LgtS_R be defined as in Definition 2.6 (and
repeated below for convenience). Then 3 has (computational) one-time secrecy if Lfts_L X
Lfts_R. That is, if for all polynomial-time distinguishers A, we have Pr[A o LEts-L = 1] =

Pr[Ao L> . =1].

ots-R
L(E):ts-L ‘L:(E):ts—R
EAVESDROP(my,mg € X.M):| |EAVESDROP(m, mg € X.M):
k « X.KeyGen k < 3.KeyGen
¢ « 2.Enc(k,mp) ¢ « X.Enc(k, mg)
return ¢ return ¢

90

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

This is essentially the same as Definition 2.6, except we are using % (indistinguisha-
bility) instead of = (interchangeability).

Claim 5.4 Let pOTP denote Construction 5.2. If pOTP is instantiated using a secure PRG G then pOTP
has computational one-time secrecy.

pOTP ,pOTP

Proof =~ We must show that £ =" & L . Asusual, we will proceed using a sequence of hybrids

that begins at LES_TLP and ends at ng _TRP . For each hybrid library, we will demonstrate that
it is indistinguishable from the previous one. Note that we are allowed to use the fact
that G is a secure PRG. In practical terms, this means that if we can express some hybrid
library in terms of ng_real (one of the libraries in the PRG security definition), we can
replace it with its counterpart ng_ran d

such a change will be indistinguishable.

(or vice-versa). The PRG security of G says that

pOTP
Lots—L
EAVESDROP(my, mg € {0, 1}4+0):
LPOTP, (mi,mg € {6, 11777) The starting point is .ng _TLP, shown here with
ots-L k — {0,1}* the details of pOTP filled in.
c:=G(k)® mg
return c¢

EAVESDROP(mp, mg): . .
(me, mp) The first hybrid step is to factor out the
Lhyb-1: z < QUERY() computations involving G, in terms of the
c:i=z ®&mg L& library.
prg-rea
return ¢ return G(s)
-LG _ d .
EAVESDROP(m[, mp): prg-ran From the PRG security of G, we may re-
s ' Z < QUERY() . QUERY(): place the instance of ng_real with ng_ran d
hyb-2: c:=z®my r— {0, 1)+ The resulting hybrid library Lyyp-2 is indis-
return ¢ ’ tinguishable from the previous one.
return r
0P A subroutine has been inlined. Note that the
oL resulting library is precisely LStI-F;_ involv-
EAVESDROP(mp, mg): ing standard one-time pad on plaintexts
Lhyb-3: z « {0, 1}*¢ of size A + £. We have essentially proven
ci=z@om that pOTP is indistinguishable from standard
return ¢ OTP, and therefore we can apply the security
of OTP.

91

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

oTpP
‘Eots—R
EAVESDROP(my, mg): The (perfect) one-time secrecy of rOTP al-
Lhyba: z — {0, 1}7*7 lows us to replace L(?;_PL with LS;_PR ; they are

ci=2z® mpg interchangeable.

return ¢

The rest of the proof is essentially a “mirror image” of the previous steps, in which we
perform the same steps but in reverse (and with mpg being used instead of mp).

. LS
EAVESDROP(mp, mg): . .
(me, me) prg-rand A statement has been factored out into a
Lhyb-s: z < |QUERE() o | QUERY(): subroutine, which happens to exactly match
cC:=2 mgR ro— {0’ 1}/1+€ ng_rand'
return ¢ return r
G
EAVESDROP(my, mg): Lorgrea ,
0 0 From the PRG security of G, we can replace
— ERY(): . N
Lhybs: z . Q“;ERY o| ZERYV: ng_ran 4 With LPGr real The resulting library
€= ZVMR s — {0, 1} is indistinguishable from the previous one.
return ¢
return G(s)
pOTP
‘Lots—R
pOTP EAVESDROP(mL, MR): A subroutine has been inlined. The result is
‘Lots-R : k < {o, 1}/1 LEST;
c:= G(k) & mg
return ¢

Summarizing, we showed a sequence of hybrid libraries satisfying the following:

pOTP _ ~ _ _ _ ~ _ pOTP
Lot = Lhyp1 ® Liyb2 = Lhybs = Liyb-a = Lhybs & Luybs = L g -
OTP ., ,pOTP . .
Hence, Lgts_l_ X Lgts_R , and pOTP has (computational) one-time secrecy.]

5.4 Extending the Stretch of a PRG

The stretch of a PRG measures how much longer its output is than its input. Can we use
a PRG with small stretch to construct a PRG with larger stretch? The answer is yes, but
only if you do it the right way!

Two Approaches to Increase Stretch

Suppose G : {0, 1}* — {0, 1}*} is a length-doubling PRG (i.e., a PRG with stretch 1). Below
are two ideas for constructing a PRG with longer stretch:

92

Draft: January 3, 2021

CHAPTER 5. PSEUDORANDOM GENERATORS

Hi(s): Hy(s):
xlly = G(s) xlly = G(s)
ullv = G(y) ullv == G(y)
return x||u||v return x|| y ||ul|v

Although the constructions are similar, only one of them is secure. Before reading any
further, can you guess which of H;, H; is a secure PRG and which is insecure? By carefully
comparing these two approaches, I hope you develop a better understanding of the PRG
security definition.

A Security Proof

I think it’s helpful to illustrate the “stragey” of security proofs by starting from the desired
conclusion and working backwards. What better way to do this than as a Socratic dialogue
in the style of Galileo?”

SALVIATI:

SIMPLICIO:

SALVIATI:

SIMPLICIO:

SALVIATTI:

SIMPLICIO:

I’'m sure that H; is the secure PRG.

If I understand the security definition for PRGs correctly, you mean that the
output of H; looks indistinguishable from uniform, when the input to H; is
uniform. Why do you say that?

Simple! H;’s output consists of segments called x, u, and v. Each of these are
outputs of G, and since G itself is a PRG its outputs look uniform.

I wish I had your boldness, Salviati. I myself am more cautious. If G is a secure
PRG, then its outputs are indeed indistinguishable from uniform, but surely
only when its input is uniform! Are you so sure that’s the case here?

You raise a good point, Simplicio. In these endeavors it is always preferable to
err on the side of caution. When we want to claim that H; is a secure PRG, we
consider the nature of its outputs when its seed s is uniform. Since H; sends that
seed s directly into G, your concern is addressed.

Yes, I can see how in the expression x|y := G(s) the input to G is uniform, and
so its outputs x and y are indistinguishable from random. Since x is part of
H;’s output, we are making progress towards showing that the entire output of
Hi is indistinguishable from random! However, the output of H; also contains
terms u and v. When I examine how they are generated, as u||v := G(y), I
become concerned again. Surely y is not uniform, so I see no way to apply the
security if G!

2Don’t answer that.

93

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Clai

L

m 5.5

Proof

H .
prg-real’

SALVIATI: Oh, bless your heart. The answer could not be any more obvious! It is true that
y is not uniformly distributed. But did you not just convince yourself that y is
indistinguishable from uniform? Should that suffice?

Simpricio: Incredible! I believe I understand now. Let me try to summarize: We suppose
the input s to H; is chosen uniformly, and examine what happens to H;’s out-
puts. In the expression x|y := G(s), the input to G is uniform, and thus x
and y are indistinguishable from uniform. Now, considering the expression
ul|lv := G(y), the result is indistinguishable from a scenario in which y is truly
uniform. But if y were truly uniform, those outputs u and v would be indistin-
guishable from uniform! Altogether, x, u, and v (the outputs of H;) are each
indistinguishable from uniform!

I hope that was as fun for you as it was for me.” The formal security proof and its sequence
of hybrids will follow the outline given in Simplicio’s summary. We start by applying the
PRG security definition to the first call to G, and replace its outputs with truly uniform
values. After this change, the input to the second call to G becomes uniform, allowing us
to apply the PRG security definition again.

If G is a secure length-doubling PRG, then H; (defined above) is a secure (length-tripling)
PRG.

One of the trickier aspects of this proof is that we are using a secure PRG G to prove
the security of another PRG H;. That means both Lglg_* and ng_ , Will appear in this
proof. Both libraries/interfaces have a subroutine named “QUERY”, and we will rename

these subroutines QUERYy, and QUERY to disambiguate.

We want to show that £ | & L5 Asusual, we do so with a hybrid sequence.
prg-rea prg-rand
Since we assume that G is a secure PRG, we are allowed to use the fact that Lﬁgireal X
G
'Lprg-rand'
H;
‘Eprg—real
QUERY, (): . o .
s — {0, 1} The starting point is Lprlg—real’ shown here with
xlly = G(s) the details of H filled in.
ullv = G(y)
return x||u||v

G
QUERY, (): Lprg_real The first invocation of G has been factored out
x|ly = Quervg() | QUERYG(): into a subroutine. The resulting hybrid library
ullv := G(y) s — {0,1}* includes an instance of LS —real”
return x||u||v return G(s) e

3If you're wondering what the hell just happened: In Galileo’s 1632 book Dialogue Concerning the Two
Chief World Systems, he lays out the arguments for heliocentrism using a dialog between Salviati (who advo-
cated the heliocentric model) and Simplicio (who believed the geocentric model).

94

Draft: January 3, 2021

CHAPTER 5. PSEUDORANDOM GENERATORS

L

H, .
prg-rand’

QUERYp, 0:

x|ly := QUERY()
ullv == G(y)
return x||u||v

Q;JERYHl():
xlly « {o,1}*
ullv = G(y)
return x||u||v

QUERY, ():
x « {0,1}*
y — {0,1}*
ullv == G(y)
return x||u||v

QUERY, ():

x — {0, 1}
ullv := QUERYG()
return x||u||v

QUERY, ():

x — {0, 1}
ul|lv « {0,1}?
return x||u||v

QUERY, ():

L

prg-rand

r < {0, 1}3’1
return r

G
prg-rand
QUERY5():
r « {o, 1}2’1
return r

LG

prg-real

o | QUERYGO:

s — {0,1}4
return G(s)

-LG
QUERYp, () prg-rand
TR
X {0, 1} o QlJERYG():
ul|v :== QUERY() r — {0,1}*
return x||ullv return r

From the PRG security of G, we can replace the
instance of £¢ with LS . The result-
prg-real prg-rand

ing hybrid library is indistinguishable.

A subroutine has been inlined.

Choosing 24 uniformly random bits and then
splitting them into two halves has exactly the
same effect as choosing A uniformly random
bits and independently choosing A more.

The remaining appearance of G has been fac-
tored out into a subroutine. Now ng_real
makes its second appearance.

Again, the PRG security of G lets us replace
'EpGrg—reaI with ng_ran 4 The resulting hybrid
library is indistinguishable.

A subroutine has been inlined.

Similar to above, concatenating A uniform bits
with 24 independently uniform bits has the
same effect as sampling 314 uniform bits. The

. . pH
result of this change is .Eprg_ran d

95

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Through this sequence of hybrid libraries, we showed that:

H; = =~ = = = =~ = = H,
Lrgreal = Lhyb1 ® Liybz = Lhybs = Lhyb-a = Lhybs ¥ Lhybs = Lhybr = Lo o0

Hence, H; is a secure PRG. |

Where the Proof Breaks Down for H,

The only difference between H; and H; is that the variable y is included in the output.
How does that minor change affect the reasoning that we applied to H;?

Hz(S)Z
xlly = G(s)
ullo = G(y)
return x|| y ||ul|v

We argued that outputs u and v are indistinguishable from uniform since its input y is also
indistinguishable from random. But it’s not quite so simple: A PRG’s output is indistin-
guishable from random if (1) its seed is uniform, and (2) the seed is not used for anything
else! This construction H, violates condition (2) because it includes the “seed” y in the
output.

We can see this idea reflected in the formal PRG definition. In Ly real, the seed s is
chosen uniformly, given as input to G, and then goes out of scope! If we try to reproduce
the security proof for H; with H; instead, we’ll get stuck when we are trying to factor out
the second call to G in terms of Lprg real®

QUERY, (): ©
x — {20 14 QUERY, (): Loigrea
’ x — {0,1}* UERY():
y o {0,110 ~ - =
ullv = G(y) ullv := QuERYG() s — {0, 1}
return x|| y [|u|lv return G(s)
return x||y||ul|v

scope error! y undefined

We are trying to factor out the two highlighted lines into a separate library, renaming y
into s in the process. But s can only exist inside the private scope of the new library, while
there still exists a “dangling reference” y in the original library.

Speaking more generally about PRGs, suppose we have a call to G somewhere and
want to argue that its outputs are pseudorandom. We can only express this call to G in
terms of ng_real if the input to G is uniform and is used nowhere else. That’s not true
here — we can’t express one of the calls to G in terms of chrg_real,
the outputs of that call to G look random.

These subtle issues are not limited to PRGs. Every hybrid security proof in this course
includes steps where we factor out some statements in terms of some pre-existing library.
Don’t take these steps for granted! They will fail (often because of scoping issues) if the
construction isn’t using the building block correctly. You should always treat such “fac-
toring out” steps as “sanity checks” for your proof.

so we can’t be sure that

96

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Claim 5.6

Proof

A Concrete Attack on H,

So far, we’'ve only demonstrated that we get stuck when trying to prove the security of
H,. But that doesn’t necessarily mean that H; is insecure - it could mean that we’re just
not clever enough to see a different security proof. To show that H; is actually insecure,
we must demonstrate a successful distinguishing attack.

Attacking a PRG amounts to finding “patterns” in their outputs. Does H, have a pat-
tern in its outputs? Yes, in this case the pattern is that if you write the output in the
form x||y||u||v, then ul|v is always equal to G(y). The calling program can check for this
condition, which is unlikely to happen for truly uniform values.

You may wonder, is it legal for the calling program to compute G(y)? Well, G is a
publicly known algorithm (Kerckhoffs’ principle!), and y is right there as part of the input.
Nothing prevents the calling program from running G “in its head.”*

Construction H is not a secure PRG, even if G is.

Consider the following distinguisher A:

x[lyllullv := QUERY()

return G(y) Z ullv

When A is linked to ngg_real, the outputs indeed satisfy the condition G(y) = u||v, so A
outputs true with probability 1.

When A is linked to ngg —rand> the outputs are truly uniform. It is helpful to imagine
x and y being chosen before u and v. As soon as y is chosen, the value G(y) is uniquely
determined, since G is a deterministic algorithm. Then A will output true if u||v is chosen
exactly to equal this G(y). Since u and v are chosen uniformly, and are a total of 2x bits
long, this event happens with probability 1/2%*.

A’s advantage is the difference in these probabilities: 1 — 1/22%, which is non-

negligible.]

Discussion

In the attack on H,, we never tried to distinguish the output of G from uniform. Hj is
insecure even if G is the best PRG in the world! It’s insecure because of the incorrect way
it uses G.

From now on in this book, we’ll be studying higher-level constructions that are assem-
bled from various building blocks — in this chapter, fancy PRGs constructed from simpler
PRGs. “Security” means: if the building blocks are secure then the construction is secure.
“Insecurity” means: even if the building blocks are secure, the construction can be insecure.
So when you’re showing insecurity, you shouldn’t directly attack the building blocks! You
should assume the building blocks are secure and attack the way that the building blocks
are being used.

4Compare to the case of distinguishing G(s) from uniform, for a secure G. The calling program knows
the algorithm G but doesn’t have the seed s — it only knows the output G(s). In the case of Ha, the calling
program learns both y and G(y)!

97

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

*x 5.5

Claim 5.7

Definition 5.8
(Stream cipher)

Applications: Stream Cipher & Symmetric Ratchet

The PRG-feedback construction can be generalized in a natural way, by continuing to
feed part of G’s output into G again. The proof works in the same way as for the previous
construction — the security of G is applied one at a time to each application of G.

If G is a secure length-doubling PRG, then for any n (polynomial function of A) the following
construction H,, is a secure PRG with stretch nA:

Hy(s):
So ‘=S
fori=1ton: : <« n copies of G
sillti == G(si-1)
return] - [l il

A+nA bits

The fact that this chain of PRGs can be extended indefinitely gives another useful
functionality:

A stream cipher is an algorithm G that takes a seed s and length € as input, and outputs a
string. It should satisfy the following requirements:

1. G(s,?) is a string of length €.
2. Ifi < j, then G(s, i) is a prefix of G(s, j).
3. For each n, the function G(-, n) is a secure PRG.

Because of the 2nd rule, you might want to think about a single infinitely long string that is
the limit of G(s, n) as n goes to infinity. The finite-length strings G(s, n) are all the prefixes
of this infinitely long string.

The PRG-feedback construction can be used to construct a secure stream cipher in the
natural way: given seed s and length ¢, keep iterating the PRG-feedback main loop until
¢ bits have been generated.

Symmetric Ratchet

Suppose Alice & Bob share a symmetric key k and are using a secure messaging app to
exchange messages over a long period of time. Later in the course we will see techniques
that Alice & Bob could use to securely encrypt many messages using a single key. How-
ever, suppose Bob’s device is compromised and an attacker learns k. Then the attacker
can decrypt all past, present, and future ciphertexts that it saw!

98

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Alice & Bob can protect against such a key compromise by using the PRG-feedback
stream cipher to constantly “update” their shared key. Suppose they do the following,
starting with their shared key k:

» They use k to seed a chain of length-doubling PRGs, and both obtain the same stream
of pseudorandom keys ty, t,,

» They use t; as a key to send/receive the ith message. The details of the encryption
are not relevant to this example.

» After making a call to the PRG, they erase the PRG input from memory, and only
remember the PRG’s output. After using #; to send/receive a message, they also
erase it from memory.

This way of using and forgetting a sequence of keys is called a symmetric ratchet.

Construction 5.9 so =k
(Symm Ratchet) for i =1 to co: {
sillti == G(si-1)
erase s;_; from memory

use t; to encrypt/decrypt the ith message

erase t; from memory 2]

Suppose that an attacker compromises Bob’s device after n ciphertexts have been sent. The
only value residing in memory is s,, which the attacker learns. Since G is deterministic, the
attacker can now compute t,,11, tp42, . - . in the usual way and decrypt all future ciphertexts
that are sent.

However, we can show that the attacker learns no information about t4, ..., t, from
sn, which implies that the previous ciphertexts remain safe. By compromising the key sy,
the adversary only compromises the security of future messages, but not past messages.
Sometimes this property is called forward secrecy, meaning that messages in the present
are protected against a key-compromise that happens in the future.

This construction is called a ratchet, since it is easy to advance the key sequence in the
forward direction (from s, to s,.;) but hard to reverse it (from s, to s,). The exercises
explore the problem of explicitly reversing the ratchet, but the more relevant property
for us is whether the attacker learns anything about the ciphertexts that were generated
before the compromise.

Claim 5.10 If the symmetric ratchet (Construction 5.9) is used with a secure PRG G and an encryption
scheme ¥. that has uniform ciphertexts (and =.K = {0, 1}*), then the first n ciphertexts are
pseudorandom, even to an eavesdropper who compromises the key s,.

Proof = We are considering an attack scenario in which n plaintexts are encrypted, and the adver-
sary sees their ciphertexts as well as the ratchet-key s,. This situation is captured by the
following library:

99

Draft: January 3, 2021

CHAPTER 5. PSEUDORANDOM GENERATORS

As we have seen, the shaded box (the process that computes t;,

ATTACK(my, . .

L Mp):

Sy {0, 1})'
fori=1ton:

sillti == G(si-1)

c; « 2.Enc(t;, m;)
return (ci,...,Cn,Sn)

G

t \ 4 t \ 4 I3 \ 4

Iny

’EncHEncHEnc‘)

o ’Enc‘

C1 C2 C3

a PRG. Let us rewrite the library in terms of this PRG H,,:

Now, we can apply the PRG security of H, and instead choose t;,

ATTACK(My, . .., My):
so « {0,1}*
tl” T ”tn”sn = Hn(SO)

fori=1ton:

return (cq, .

¢; « 2.Enc(t;, m;)

--,Cn,sn)

So

}

Cn Si

..., ty from sp) is actually

Hy

hy) B

’EncHEncHEnc‘

C1 C2 C3

..., ty and s, uniformly.

This change is indistinguishable, by the security of the PRG. Note that we have not written
out the standard explicit steps (factor out the first two lines of ATTACK in terms of Lpg reals
replace with £,s rand, and inline).

ATTACK(my, ..., my):

fori=1ton:
t; — {0, 1}*
sp < {0, 1}’1

fori=1ton:

return (cq, .

c; « 2.Enc(t;, m;)

oy CnsSn)

ATTACK(my, ..., my):

fori=1ton:

sp — {0,1}*
return (cq, . .

t; — {0,114
¢i « X.Enc(t;, m;)

-7cn’sn)

At this point, the encryption scheme is being used “as intended,” meaning that we generate
its keys t; uniformly/indepenendtly, and use each key only for one encryption and nothing
else. Formally speaking, this means we can factor out the body of the for-loop in terms of

‘Lotsfﬁ— real*

ATTACK(my, . .

w’nny

fori=1ton:

¢; « CTXT(m;)
sn < {0,]-})L
return (cq, . .

-’cn’sn)

_£Z

ots$-real

cTxT(m € . M):

return ¢

® | k « X.KeyGen
¢ « X.Enc(k,

m)

100

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

5.1.

5.2.

We can now replace Lotss-real With Lotsg-rand and inline the subroutine (without showing
the intermediate library). The result is:

ATTACK(my, ..., my):
fori=1ton:
ci —2.C
sp — {0,1}%
return (¢, ..., Cpn,Sp)

This final library is indistinguishable from the first one. As promised, we showed that the
attacker cannot distinguish the first n ciphertexts from random values, even when seeing
Sp.]

This proof used the uniform-ciphertexts property, but the same logic applies to basi-
cally any encryption property you care about — just imagine factoring out the encryption
steps in terms of a different library than Ls¢-real-

Exercises

Let G : {0,1}* — {0,1}**¢ be an injective (i.e., 1-to-1) PRG. Consider the following
distinguisher:

A
X := QUERY()
for all s” € {0, 1}*:
if G(s”) = x then return 1
return 0

(a) What is the advantage of A in distinguishing ng_real and .LpGrg_ran 47 Is it negligible?
(b) Does this contradict the fact that G is a PRG? Why or why not?

(c) What happens to the advantage if G is not injective?

Let G : {0,1}* — {0, 1}**¢ be an injective PRG, and consider the following distinguisher:

A

x := QUERY()
s — {0,1}*

)
return G(s”) = x

What is the advantage of A in distinguishing Lﬁg_real from ng_ran 4

101

Draft: January 3, 2021

CHAPTER 5. PSEUDORANDOM GENERATORS

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

For any PRG G : {0,1}} — {0, 1}**(there will be many strings in {0, 1}**¢ that are
impossible to get as output of G. Let S be any such set of impossible G-outputs, and
consider the following adversary that has S hard-coded:

A
X := QUERY()

?
returnx € S

What is the advantage of A in distinguishing .Ef from L& ?

rg-real prg-rand
versary like this one not automatically break every PRG?

Why does an ad-

Show that the scheme from Section 5.3 does not have perfect one-time secrecy, by showing
that there must exist two messages m; and m; whose ciphertext distributions differ.

10O

The proof of Claim 5.5 applies the PRG security rule to both of the calls to G, starting with
the first one. Describe what happens when you try to apply the PRG security of G to these
two calls in the opposite order. Does the proof still work, or does it work only in the order
that was presented?

Let ¢’ > ¢ > 0. Extend the “PRG feedback” construction to transform any PRG of stretch
¢ into a PRG of stretch ¢’. Formally define the new PRG and prove its security using the
security of the underlying PRG.

Prove that if G is a secure PRG, then so is the function H(s) = G(s).

Let G : {0,1}* — {0, 1}*” be a secure length-tripling PRG. For each function below, state
whether it is also a secure PRG. If the function is a secure PRG, give a proof. If not, then
describe a successful distinguisher and explicitly compute its advantage. When we write

al|bl|c := G(s), each of a, b, ¢ have length A.

@ H(s):
@ | xllyllz := G(s) @ *= G(s)
return G(x)[|G(2) y = G(e")
return x|y
(b) | xllyllz := G(s)
return x||y
H(s): H(s):
x = G(s) x = G(s)
(C) y = G(S) (e) y = G(O/l)
return x||y return x ® y

102

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

5.9.

* 5.10.

5.11.

/I H:{0,1}** — {0,1}* /1 H : {0, 1}%* — {0,1}6*
H(st|Isr): H(st|Isr):
O %= G(sL) ® %= G(sr)
y := G(sr) y = G(sr)
return x @ y return x||y

Let G : {0,1}* — {0, 1}* be a secure length-tripling PRG. Prove that each of the follow-
ing functions is also a secure PRG:

// H:{0,1}** - {0,1}**

(a) | HGselIsr):
y = G(sr)
return s ||y

Note that H includes half of its input directly in the output. How do you reconcile this
fact with the conclusion of Exercise 5.14(b)?

/] H:{0,1}** > {0,1}34

®) | sy llse):
return G(sy)

Let G be a secure length-doubling PRG. One of the following constructions is a secure PRG
and one is not. Which is which? Give a security proof for one and an attack for the other.

Hl(S)I HZ(S): Hz
x[ly := G(s) x|ly := G(s)
G
ullv == G(y) ullv == G(y) 3
return (x @ y)||ul|v return x||(y @ u)||v o

vy

A frequently asked question in cryptography forums is whether it’s possible to determine
which PRG implementation was used by looking at output samples.

Let G; and G, be two PRGs with matching input/output lengths. Define two libraries

G1 GZ .
Lwhich_prg and Lwhich_prg as follows:
G1 GZ
Lwhich—prg ‘Ewhich—prg
QUERY(): QUERY():
s —{0,1}* s — {0,1}4
return Gj (s) return G (s)

103

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Prove that if G; and G, are both secure PRGs, then Lg;}ich_prg & Lgﬁich_prg — that is, it is

infeasible to distinguish which PRG was used simply by receiving output samples.

5.12. Let G; and G, be deterministic functions, each accepting inputs of length A and producing
outputs of length 31.

(a) Define the function H(s1||sz) = Gi(s1) ® Ga(sz). Prove that if either of G; or G; (or
both) is a secure PRG, then so is H.

(b) What can you say about the simpler construction H(s) = G;(s) ® Ga(s), when one of
G1, G, is a secure PRG?

x 5.13. Prove that if PRGs exist, then P # NP.

5.14. (a) Let f be any function. Show that the following function G is not a secure PRG, no
matter what f is. Describe a successful distinguisher and explicitly compute its ad-
vantage:

return s|| f(s)

(b) Let G : {0,1}* — {0, 1}**(be a candidate PRG. Suppose there is a polynomial-time
algorithm V with the property that it inverts G with non-negligible probability. That
is,

Pr [V(G(s)) = s] is non-negligible.
s—{0,1}*
Show that if an algorithm V exists with this property, then G is not a secure PRG. In
other words, construct a distinguisher contradicting the PRG-security of G and show
that it achieves non-negligible distinguishing advantage.
Note: Don’t assume anything about the output of V other than the property shown
above. In particular, V might very frequently output the “wrong” thing.

5.15. Let sg, s1, ... and t1, f2, . . . be defined as in the symmetric ratchet (Construction 5.9).

(a) Prove that if G is a secure PRG then the following two libraries are indistinguishable,
for any polynomial-time algorithm A:

Lieft Liight
TEST(): TEST():
sn1 e {0,114 sn e {6,114
snlltn = G(sp-1) t= Alsy)
f=A(sp) tp — {0,1}*
return ; [return f ; Iy

(b) What is Pr[TEST outputs true] in Lyight?

(c) Prove that for any polynomial-time algorithm A, Pr[A(s,) = t,] is negligible, where
Sn, tn are generated as in the symmetric ratchet construction.

104

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

(d) Prove that for any polynomial-time algorithm A, Pr[A(s,) = s,—1] is negligible. In
other words, “turning the ratchet backwards” is a hard problem.

105

