CS 321: Homework #4

Due: Monday Oct 23 at 9am, on Canvas

Homeworks should be typed. You can describe a DFA by giving its transition table (don’t forget to indicate start state and accept states), or by drawing a state diagram. You can easily draw state diagrams using this web-based tool: http://madebyevan.com/fsm/.

For reference, here is the pumping lemma game (for language A):

1. Adversary picks a number \(p \geq 0 \).
2. You pick a string \(w \in A \), such that \(|w| \geq p\).
3. Adversary breaks \(w \) into \(w = xyz \), such that \(|xy| \leq p\) and \(y \neq \epsilon \).
4. You pick a number \(i \geq 0 \). If \(xy^iz \not\in A \), then you win.

If you can describe a strategy in which you always win, then \(A \) is not regular.

1. Show that the following languages are not regular. You can use the pumping lemma game, or you can use closure properties (or both).

 (a) \(\{w \in \{a, b, c\}^* \mid \text{num}(a, w) = \text{num}(b, w) + \text{num}(c, w)\} \)
 In this problem \(\text{num}(a, w) \) means the number of \(a \) characters in the string \(w \).

 (b) \(\{a^n b^m c^k \mid n = m \text{ or } m = k\} \)

 (c) \(\{w \in \{a, b\}^* \mid \text{the length of } w \text{ is a square number}\} \)
 This language contains all strings of length 1, 4, 9, 16, etc. \textit{Hint:} after you pump, you’ll want to show that the length of the resulting string is \textit{not} a square. The best way to do this is to show that its length is \textit{strictly} between consecutive squares \(n^2 \) and \((n + 1)^2 \) for some appropriate \(n \).

 (d) \(\{w \in \{a, b\}^* \mid w \neq \text{rev}(w)\} \).
 In this problem \(\text{rev}(w) \) denotes the reverse of \(w \) (i.e., characters put in opposite order).