CS 427/519: Homework 1

Due: Friday January 20, 10pm; typed and submitted electronically.

1. I asked Alice to encrypt
 \[m = 110101100010110 \]
 using one-time pad, and I saw that the result was
 \[c = 100111011011111 \]
 If Alice encrypts
 \[m' = 001000000101111 \]
 using the same one-time pad key as before, what would be the result? Above all, show how you derived the answer.

2. Let \(0^\lambda \) denote the string of \(\lambda \) zeroes. In one-time pad, if \(0^\lambda \) is chosen as the key, then Alice ends up sending her plaintext in the clear! This can’t be good!

 So let’s imagine that Alice always avoids choosing \(0^\lambda \) as her key. In other words, she modifies the KeyGen algorithm so that instead of choosing \(k \) uniformly from \(\{0,1\}^\lambda \), she chooses uniformly from \(\{0,1\}^\lambda \setminus \{0^\lambda\} \) (the set of all strings other than the all-zeroes string).

 Show that this is a bad idea, as far as our security definition is concerned. Show that the following two libraries are not interchangeable:

 \[
 \begin{array}{c}
 \mathcal{L}_1 \\
 \text{VIEW}(m):
 \begin{align*}
 k &\leftarrow \{0,1\}^\lambda \setminus \{0^\lambda\} \\
 c &:= k \oplus m \\
 \text{return } c
 \end{align*}
 \\
 \mathcal{L}_2 \\
 \text{VIEW}(m):
 \begin{align*}
 c &\leftarrow \{0,1\}^\lambda \\
 \text{return } c
 \end{align*}
 \end{array}
 \]

 You must explicitly give a calling program and argue that its output probabilities are different in presence of the two libraries.

 \text{Hint:} Try to think about some event that can happen in one library but not the other.

3. Show that the following two libraries are interchangeable:

 \[
 \begin{array}{c}
 \mathcal{L}_1 \\
 \text{QUERY}(x \in \mathbb{Z}_n):
 \begin{align*}
 k &\leftarrow \mathbb{Z}_n \\
 c &:= (k + x) \mod n \\
 \text{return } c
 \end{align*}
 \\
 \mathcal{L}_2 \\
 \text{QUERY}(x \in \mathbb{Z}_n):
 \begin{align*}
 c &\leftarrow \mathbb{Z}_n \\
 \text{return } c
 \end{align*}
 \end{array}
 \]

 (Refer to chapter 0 for questions about any of this notation.)

grad. Let \(\Sigma \) be an encryption scheme with keyspace \(\mathcal{K} \) and plaintext space \(\mathcal{M} \). Prove that if \(|\mathcal{K}| < |\mathcal{M}| \) then the scheme cannot have one-time secrecy.