1. I used 2-out-of-10 Shamir secret sharing over \mathbb{Z}_{11} to share a secret. Alice’s share was (4, 6) and Bob’s was (7, 3). Two shares should be enough to reconstruct the secret. So, what was the secret, and what were the other 8 shares? **Show your work.**

2. Suppose there are 9 people on an important committee: Alice, Bob, Carol, David, Eve, Frank, Gina, Harold, & Irene. Alice, Bob & Carol form a subcommittee; David, Eve & Frank form another subcommittee; and Gina, Harold & Irene form another subcommittee. Suggest how a dealer can share a secret so that it can only be opened when a *majority of each subcommittee* is present. Clearly describe how the Share and Reconstruct algorithms work (not necessarily using actual code). Describe why a 6-out-of-9 threshold secret-sharing scheme does not suffice.

3. Suppose f and g are negligible functions.

 (a) Use the definitions to show that $f + g$ is also negligible.

 (b) Give an example f and g which are both negligible (and nonzero), but where $f(\lambda)/g(\lambda)$ is not negligible.

grad. Prove that the two libraries are indistinguishable.

More precisely, show that if an adversary makes q_1 number of calls to `avoid` and q_2 calls to `samp`, then its distinguishing advantage is at most $q_1q_2/2^\lambda$. For a polynomial-time adversary, both q_1 and q_2 (and hence their product) are polynomial functions of the security parameter, so the advantage is negligible.