CS 427/519: Homework 4

Due: Friday February 10, 10pm; typed and submitted electronically.

1. Let $F : \{0,1\}^\lambda \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF.

 (a) Let H be a 1-round Feistel network of F:

 $H(k,X_0\|X_1)$:

 $X_2 := F(k,X_1) \oplus X_0$

 return $X_1\|X_2$

 Show that H is not a secure PRF.

 (b) Let H be a 2-round Feistel network of F:

 $H((k_1,k_2),X_0\|X_1)$:

 $X_2 := F(k_1,X_1) \oplus X_0$

 $X_3 := F(k_2,X_2) \oplus X_1$

 return $X_2\|X_3$

 Show that H is not a secure PRF.

2. Let F be a secure PRF with λ-bit outputs, and let G be a length-doubling PRG. Define

 $F'(k,r) = G(F(k,r))$.

 So F' has outputs of length 2λ. Prove that F' is a secure PRF. Show the sequence of hybrid libraries and briefly justify each step.

3. Let F be a secure PRP with blocklength λ. Below is the Enc algorithm of an encryption scheme with $\mathcal{K} = \mathcal{M} = \{0,1\}^\lambda$ and $\mathcal{C} = \{0,1\}^{2\lambda}$.

 Enc(k,m) :

 $s_1 \leftarrow \{0,1\}^\lambda$

 $s_2 := s_1 \oplus m$

 $x := F(k,s_1)$

 $y := F(k,s_2)$

 return (x,y)

 Note: the idea is to secret-share the plaintext in the 2-out-of-2 secret-sharing scheme, and send each share through the PRP.

 ◀ Describe the corresponding Dec algorithm.

 ◀ Show that the scheme is not CPA-secure, by describing an attack.

grad. In all of the CPA-secure encryption schemes that we’ll ever see, ciphertexts are at least λ bits longer than plaintexts. This problem shows that such ciphertext expansion is essentially unavoidable for CPA security.

Let Σ be an encryption scheme with plaintext space $\mathcal{M} = \{0,1\}^n$ and ciphertext space $\mathcal{C} = \{0,1\}^{n+\ell}$. Show that there exists a distinguisher that distinguishes the two CPA libraries with advantage $\Omega(1/2^\ell)$.

Hint: As a warmup, consider the case where each plaintext has exactly 2^ℓ possible ciphertexts. However, this need not be true in general. For the general case, choose a random plaintext m and argue that with “good probability” (that you should precisely quantify) m has at most $2^{\ell+1}$ possible ciphertexts.