
CS 517: Complexity PH in terms of Oracle Classes Winter 2017

CS 517: PH in terms of Oracle Classes

Writeup by Mike Rosulek

Theorem 1 For k ≥ 1, Σk = NPΣk−1

Proof (⊆) Suppose we are given an arbitrary language L ∈ Σk . That is, L can be written as

L = {x | ∃w1∀w2 · · ·Qwk : M (x ,w1, . . . ,wk ) = 1}

for some polytime M . We want to show that L can be written as an NPΣk−1 language.
De�ne the related language:

L′ = {(x ,w1) | ∃w2∀w3 · · ·Qwk : M (x ,w1, . . . ,wk ) = 0}

This language is clearly in Σk−1. Now observe:

x ∈ L ⇐⇒ ∃w1∀w2 · · ·Qwk : M (x ,w1, . . . ,wk ) = 1
⇐⇒ ∃w1¬[∃w2∀w3 · · ·Qwk : M (x ,w1, . . . ,wk ) = 0]
⇐⇒ ∃w1 : (x ,w1) < L

′

Hence we can rewrite L in an equivalent way, L = {x | ∃w1 : (x ,w1) < L′}. We have
written L in terms of an existential quanti�er followed by a condition that can be veri�ed
in polynomial time with an L′-oracle. Hence, L ∈ NPL′ ⊆ NPΣk−1 .

(⊇) Suppose we are given an arbitrary language L ∈ NPΣk−1 . That is, L can be written as

L = {x | ∃w∗ : MA(x ,w∗) = 1}, where
A = {q | ∃w1∀w2 · · ·Qwk−1 : T (q,w1, . . . ,wk−1) = 1}

for some poly-time M and T . We want to show that L can be written as a Σk language.

We �rst introduce some helpful terminology. Let C be some oracle TM and let O
be some oracle. We can think of the computation of CO (x ) as an interaction, where C
repeatedly sends a query q to O , and O sends a response r ∈ {0,1} back to C . Let t =
(q1,r1, . . . ,qn,rn ) denote the transcript of such an interaction. We say that t is:

I consistent with callerC (x ) accepting if, when running on input x , the oracle TM
C will indeed make the sequence of queries q1, . . . ,qn and �nally accept, as long as
it receives responses r1, . . . ,rn from those queries.

I consistent with oracle O if for all i: ri = 1⇒ qi ∈ O and ri = 0⇒ qi < O . �

Using this terminology, we can restate what it means for an oracle machine to accept a
string:

CO (x ) = 1 ⇐⇒ ∃t : t is consistent with caller C (x ) accepting
and t is consistent with oracle O

1



CS 517: Complexity PH in terms of Oracle Classes Winter 2017

We can now rewrite the language L in terms of this de�nition, and expand:

x ∈ L ⇐⇒ ∃w∗ : MA(x ,w∗) = 1
⇐⇒ ∃w∗,t : t is consistent with caller M (x ,w∗) accepting

and t is consistent with oracle A
⇐⇒ ∃w∗,t = (q1,r1, . . . ,qn,rn ) :

t is consistent with caller M (x ,w∗) accepting
and [r1 = 1⇒ q1 ∈ A] and [r1 = 0⇒ q1 < A]
...

and [rn = 1⇒ qn ∈ A] and [rn = 0⇒ qn < A]
⇐⇒ ∃w∗,t = (q1,r1, . . . ,qn,rn ) :

t is consistent with caller M (x ,w∗) accepting
and r1 = 1⇒ [∃w1,1∀w1,2 · · ·Qw1,k−1 : T (q1,w1,1, . . . ,w1,k−1) = 1]
and r1 = 0⇒ [∀w ′1,1∃w

′
1,2 · · ·Qw

′
1,k−1 : T (q1,w

′
1,1, . . . ,w

′
1,k−1) = 0]

...

and rn = 1⇒ [∃wn,1∀wn,2 · · ·Qwn,k−1 : T (qn,wn,1, . . . ,wn,k−1) = 1]
and rn = 0⇒ [∀w ′n,1∃w

′
n,2 · · ·Qw

′
n,k−1 : T (qn,w ′n,1, . . . ,w

′
n,k−1) = 0]

⇐⇒ ∃w∗,t = (q1,r1, . . . ,qn,rn ),w1,1, . . . ,wn,1 :
∀w1,2, . . . ,wn,2,w

′
1,1, . . . ,w

′
n,1 :

∃w1,3, . . . ,wn,3,w
′
1,2, . . . ,w

′
n,2 :

...

Qw ′1,k−1, . . . ,w
′
n,k−1 :

t is consistent with caller M (x ,w∗) accepting
and [r1 = 1⇒ T (q1,w1,1, . . . ,w1,k−1) = 1]
and [r1 = 0⇒ T (q1,w

′
1,1, . . . ,w

′
1,k−1) = 0]

...

and [rn = 1⇒ T (qn,wn,1, . . . ,wn,k−1) = 1]
and [rn = 0⇒ T (qn,w

′
n,1, . . . ,w

′
n,k−1) = 0]

This �nal expression consists of k alternating quanti�ers (beginning with ∃), followed by
a condition that can be checked in polynomial time. This shows that L ∈ Σk , as desired.

2


