CS 517: PH in terms of Oracle Classes

Writeup by Mike Rosulek

Theorem 1 For $k \geq 1$, $\Sigma_k = NP^{\Sigma_{k-1}}$

Proof (\subseteq) Suppose we are given an arbitrary language $L \in \Sigma_k$. That is, L can be written as

$$L = \{ x \mid \exists w_1 \forall w_2 \cdots Q w_k : M(x, w_1, \ldots, w_k) = 1 \}$$

for some polytime M. We want to show that L can be written as an $NP^{\Sigma_{k-1}}$ language.

Define the related language:

$$L' = \{ (x, w_1) \mid \exists w_2 \forall w_3 \cdots Q w_k : M(x, w_1, \ldots, w_k) = 0 \}$$

This language is clearly in Σ_{k-1}. Now observe:

$$x \in L \iff \exists w_1 \forall w_2 \cdots Q w_k : M(x, w_1, \ldots, w_k) = 1$$

$$\iff \exists w_1 [\exists w_2 \forall w_3 \cdots Q w_k : M(x, w_1, \ldots, w_k) = 0]$$

$$\iff \exists w_1 : (x, w_1) \notin L'$$

Hence we can rewrite L in an equivalent way, $L = \{ x \mid \exists w_1 : (x, w_1) \notin L' \}$. We have written L in terms of an existential quantifier followed by a condition that can be verified in polynomial time with an L'-oracle. Hence, $L \in NP^{L'} \subseteq NP^{\Sigma_{k-1}}$.

(\supseteq) Suppose we are given an arbitrary language $L \in NP^{\Sigma_{k-1}}$. That is, L can be written as

$$L = \{ x \mid \exists w^* : M^A(x, w^*) = 1 \},$$

where

$$A = \{ q \mid \exists w_1 \forall w_2 \cdots Q w_{k-1} : T(q, w_1, \ldots, w_{k-1}) = 1 \}$$

for some poly-time M and T. We want to show that L can be written as a Σ_k language.

We first introduce some helpful terminology. Let C be some oracle TM and let O be some oracle. We can think of the computation of $C^O(x)$ as an interaction, where C repeatedly sends a query q to O, and O sends a response $r \in \{0, 1\}$ back to C. Let $t = (q_1, r_1, \ldots, q_n, r_n)$ denote the transcript of such an interaction. We say that t is:

- **consistent with caller** $C(x)$ accepting if, when running on input x, the oracle TM C will indeed make the sequence of queries q_1, \ldots, q_n and finally accept, as long as it receives responses r_1, \ldots, r_n from those queries.

- **consistent with oracle** O if for all i: $r_i = 1 \Rightarrow q_i \in O$ and $r_i = 0 \Rightarrow q_i \notin O$.

Using this terminology, we can restate what it means for an oracle machine to accept a string:

$$C^O(x) = 1 \iff \exists t : t \text{ is consistent with caller } C(x) \text{ accepting and } t \text{ is consistent with oracle } O$$
We can now rewrite the language L in terms of this definition, and expand:

\[x \in L \iff \exists w^* : M^A(x, w^*) = 1 \]

\[\iff \exists w^*, t : t \text{ is consistent with caller } M(x, w^*) \text{ accepting and } t \text{ is consistent with oracle } A \]

\[\iff \exists w^*, t = (q_1, r_1, \ldots, q_n, r_n) : t \text{ is consistent with caller } M(x, w^*) \text{ accepting and } \]

\[\quad \left[r_1 = 1 \implies q_1 \in A \right] \text{ and } \left[r_1 = 0 \implies q_1 \notin A \right] \]

\[\vdots \]

\[\text{and } \left[r_n = 1 \implies q_n \in A \right] \text{ and } \left[r_n = 0 \implies q_n \notin A \right] \]

\[\iff \exists w^*, t = (q_1, r_1, \ldots, q_n, r_n) : t \text{ is consistent with caller } M(x, w^*) \text{ accepting and } \]

\[\quad \left[r_1 = 1 \implies [\exists w_{1,1} \forall w_{1,2} \cdots Q w_{1,k-1} : T(q_1, w_{1,1}, \ldots, w_{1,k-1}) = 1] \right] \]

\[\quad \left[r_1 = 0 \implies [\forall w'_{1,1} \exists w'_{1,2} \cdots Q w'_{1,k-1} : T(q_1, w'_{1,1}, \ldots, w'_{1,k-1}) = 0] \right] \]

\[\vdots \]

\[\text{and } \left[r_n = 1 \implies [\exists w_{n,1} \forall w_{n,2} \cdots Q w_{n,k-1} : T(q_n, w_{n,1}, \ldots, w_{n,k-1}) = 1] \right] \]

\[\quad \left[r_n = 0 \implies [\forall w'_{n,1} \exists w'_{n,2} \cdots Q w'_{n,k-1} : T(q_n, w'_{n,1}, \ldots, w'_{n,k-1}) = 0] \right] \]

\[\iff \exists w^*, t = (q_1, r_1, \ldots, q_n, r_n), w_{1,1}, \ldots, w_{n,1} : \]

\[\forall w_{1,2}, \ldots, w_{n,2}, w'_{1,1}, \ldots, w'_{n,1} : \]

\[\exists w_{1,3}, \ldots, w_{n,3}, w'_{1,2}, \ldots, w'_{n,2} : \]

\[\vdots \]

\[Q w_{1,k-1}', \ldots, w_{n,k-1} : \]

\[t \text{ is consistent with caller } M(x, w^*) \text{ accepting and } \]

\[\left[r_1 = 1 \implies T(q_1, w_{1,1}, \ldots, w_{1,k-1}) = 1 \right] \]

\[\left[r_1 = 0 \implies T(q_1, w'_{1,1}, \ldots, w'_{1,k-1}) = 0 \right] \]

\[\vdots \]

\[\text{and } \left[r_n = 1 \implies T(q_n, w_{n,1}, \ldots, w_{n,k-1}) = 1 \right] \]

\[\left[r_n = 0 \implies T(q_n, w'_{n,1}, \ldots, w'_{n,k-1}) = 0 \right] \]

This final expression consists of k alternating quantifiers (beginning with \exists), followed by a condition that can be checked in polynomial time. This shows that $L \in \Sigma_k$, as desired.