CS 517: Complexity PH in terms of Oracle Classes Winter 2017

Theorem 1

Proof

CS 517: PH in terms of Oracle Classes

Writeup by Mike Rosulek

Fork > 1,3 = NPk

(S) Suppose we are given an arbitrary language L € ¥. That is, L can be written as
L={x]| 3w Vwy-- - Qwg : M(x,wy,...,wg) =1}

for some polytime M. We want to show that L can be written as an NP**-1 language.
Define the related language:

L = {(x,w1) | AwY¥ws - - Qwg : M(x,wy,...,wg) = 0}
This language is clearly in ¥} _;. Now observe:

x €L & AwYwy--- Qwg : M(x,wy,...,wg) =1
— Aw=[AwVws - - Qwg : M(x,wy,...,wi) = 0]

= Fw;:(x,w) gL

Hence we can rewrite L in an equivalent way, L = {x | dw; : (x,w;) ¢ L’}. We have
written L in terms of an existential quantifier followed by a condition that can be verified
in polynomial time with an L’-oracle. Hence, L € NPL" € NPZk-1,

(2) Suppose we are given an arbitrary language L € NP*+-1, That is, L can be written as

{x | Iw* : MA(x,w") = 1}, where

L=
A={q|ImVwy---Qwi_q : T(q,w1,...,Wk_1) = 1}
for some poly-time M and T. We want to show that L can be written as a ¥ language.

We first introduce some helpful terminology. Let C be some oracle TM and let O
be some oracle. We can think of the computation of C°(x) as an interaction, where C
repeatedly sends a query q to O, and O sends a response r € {0,1} back to C. Let t =
(q1,715- - - sqn,n) denote the transcript of such an interaction. We say that ¢ is:

» consistent with caller C(x) accepting if, when running on input x, the oracle TM
C will indeed make the sequence of queries qj,. . .,q, and finally accept, as long as
it receives responses r1,. . . ,r, from those queries.

» consistent with oracle O ifforalli:r;=1=¢g; € Oandr; =0= q; ¢ O. [|

Using this terminology, we can restate what it means for an oracle machine to accept a
string:

CO(x) =1 & 3t : tis consistent with caller C(x) accepting

and f is consistent with oracle O

CS 517: Complexity PH in terms of Oracle Classes Winter 2017

We can now rewrite the language L in terms of this definition, and expand:

xel & Iw: MAx,w*) =1
& dw",t : t is consistent with caller M(x,w*) accepting
and t is consistent with oracle A
— AWt =(q1,71,- - - Gn>Tn) ¢
t is consistent with caller M(x, w*) accepting

and[ri=1=gq; € Aland [r; =0 = q; ¢ A]

and[r,=1=>qp€Aland [r, = 0= g, ¢ A]
— AWt =(q1,71,- -+ qn>Tn) ¢
t is consistent with caller M(x, w") accepting
andr; = 1= [Aw Ywiz - - Qwy k-1 : T(q1, Wi1s- - -, Wi k—1) = 1]

andr; = 0= [Vw{,lfiw{’z e Qw{,k_1 :T(qu,wyqs- - - ,w{’k_l) =0]

and rpn=1= [3Wn,1VWn,2 Tt an,k—l : T(qmwn,la cee ,Wn,k—l) = 1]
and r, =0 = [Vw), ;Jw, ,- - QW;,k—1 T(qn, Whp- - - ’W;,k—1) = 0]
& AWt =(q1, 15 - - GnsTn)s Wilse - - sWn1
VW12, s W2 WY g5 e s Wy
AW13,. W3, Wy gy s Wy
Qe Wiy

t is consistent with caller M(x, w") accepting

and [r; = 1= T(q1, W11, .-, Wi,k-1) = 1]
and [r; = 0 = T(q1, W] 1. .. ’W{,k—l) =0]
and [r, = 1= T(qn, Wn1,- - Wnk-1) = 1]

and [r, = 0 = T(qn,w;, .. - ’W;z,k—l) =0]

This final expression consists of k alternating quantifiers (beginning with 3), followed by
a condition that can be checked in polynomial time. This shows that L € %, as desired.

