Malleability continued, integrity

Idea: Given $Enc(k,m)$ for unknown m
adversary can produce another ciphertext
that decrypts to m' that is "related" to m
(in a predictable way)

Demo:

base 64 encoding

3 raw data bytes \rightarrow 4 printable characters

In Javascript:

```
$\begin{align*}
&\text{btoa} \\
&\text{atob}
\end{align*}$
```

"Ascii to Binary"

"Binary to Ascii"

In Linux:

```
$\text{echo "base64 encoded stuff" | base64 -d | xxd}$
```

ECB mode:

change 1 byte in ciphertext

\Rightarrow entire block of plaintext changed

other blocks unchanged

remove block of ciphertext \Rightarrow that block disappears from plaintext

rearrange / duplicate blocks
Change 1 byte of ciphertext ⇒ only that byte of plaintext changes
(except if 1 change IV ⇒ totally different plaintext)

CBC:
Dec Mode:
change 1 byte ⇒ clobbers 1 block completely & flips 1 byte in following block

XML encryption:
W3C standard for XML encryption, uses CBC

Attack scenario:
- Server receive CBC-encrypted XML command
- Decrypts ciphertext
- Gives an error if not well formatted
- Else executes command quietly
Attack: given C containing unknown m construct lots of related ciphertexts send to server, use responses to recover m in entirety!