Integrity: MACs & CCA security

Malleability: get $C = Enc(k, m)$ for unknown m, transform it into C' so that $Dec(k, c')$ is related to m in a predictable way

Ex: ECB, CBC, OFB

Attacks:
1. Server sends "authentication token" $C = Enc(k, m)$, Attacker obtains c' which is authentication token for another user!
2. Server can tell you whether $Dec(k, c)$ is a valid XML file. Can send many related ciphertexts c' to server and actually learn entire contents of $Dec(k, c)$

MAC: message authentication code

$MAC(k, m) \rightarrow \text{"tag"}$

Idea: only the person who knows k can come up with (m, tag) s.t. $MAC(k, m) = tag$ "symmetric key analog of signatures"
Security game:

Adv gets to see $\text{MAC}(k, x)$ for many x of its choice.

Adv outputs (x^*, t^*) and wins the game if:

1. $\text{MAC}(k, x^*) = t^*$
2. x^* was not queried earlier

MAC is secure \iff No Adv can win this game except w/ exponential effort.

Note: t doesn't hide x.

Constructions:

CBC-MAC:

Do CBC encryption with all-zeros IV, output last block only.

Only for same-length messages (seeing MACs on 1-block messages, can forge MAC on 2-block message).
HMAC: uses hash function
\[H(K_1 \ || \ H(K_2 \ || \ m)) \]
- derived from master key \(K \)

Naive MAC: \(H(k \ || \ m) \)
- depending on \(H \), suffers from length-extension attack
 - seeing MAC of \(m \) \(\Rightarrow \) can forge MAC on a longer msg that has \(m \) as prefix.

Why does CPA security not capture the XML-enc attack?

CPA:
- Adv can request \(Enc(k,m) \) for any \(m \)
- Adv asks for \((m_0, m_1)\)
 - receives \(C^* = \begin{cases} \text{Enc}(k,m_0) \text{ or } \text{Enc}(k,m_1) \end{cases} \)
- Adv can request \(Enc(k,m) \) for any \(m \)
- Adv tries to guess contents of \(C^* \)

XML attack: Server's behavior depends on result of decrypting adversarially-generated ciphertexts
Adv learns partial information about dec.

CCA:
- Adv can request $\text{Enc}(k, m)$ for any m
- Adv can request $\text{Dec}(k, c)$ for any c
- Adv asks for (m_0, m_1)
 - receives $C^* = \begin{cases} \text{Enc}(k, m_0) \quad \text{or} \\ \text{Enc}(k, m_1) \end{cases}$
- Adv can request $\text{Enc}(k, m)$ for any m
- Adv can request $\text{Dec}(k, c)$ for any $c \neq C^*$
- Adv tries to guess contents of C^*

Note: Can combine CPA-secure enc + MAC = CCA secure enc

Can use block cipher modes that directly give CCA security (authenticated modes)

CPA

"Semantic security"

CCA

"Authenticated encryption"