Hash Functions

Idea: $H : \{0, 1\}^* \rightarrow \{0, 1\}^n$

Strings of any (finite) length
Strings of some fixed length n

$n \in \{128, 256\}$

Instead of dealing with long strings, deal with hash of strings

Ex. MAC scheme that supports msgs of n bits extend it to strings of arbitrary length via $\text{MAC}(k, H(m))$

\Rightarrow If (m^*, t^*) is a forgery $\Leftrightarrow t^* = \text{MAC}(k, H(m^*))$

Case 1: previously saw m s.t. $H(m) = H(m^*)$
(shouldn't happen by hash property)

Case 2: never called MAC on $H(m^*)$ \Rightarrow forgery of underlying MAC (n-bit strings)
(shouldn't happen by MAC property)

Def: $x \neq y$ are a collision under H if $x \neq y$ and $H(x) = H(y)$
Obs: collisions exist unconditionally but we just need them to be "hard to find"

3 flavors

1. Target collision-resistance:
 - given $H(x)$, find x' (possibly $x' = x$) such that $H(x') = H(x)$

2. Second-preimage resistance
 - given $H(x)$ and x, find $x' \neq x$ such that $H(x') = H(x)$

3. Collision-resistance:
 - find any collision

How hard is it to brute-force each of these games?

hardest possible H to break would be one that's chosen uniformly from set of all $\mathbb{E}_0, \mathbb{E}^* \to \{0,1\}^m$

why? for each input x, $H(x)$ chosen indep. of everything else
 \Rightarrow no structure to exploit
 (can't expect real-world hash func to be harder than this)

1. Target C.R.
 - each time you evaluate $H(x')$ for a new x', have $\frac{1}{2^n}$ chance of "hitting" $H(x)$ \Rightarrow try expected 2^n times
2. Second-preimage

Same as above,
\(\frac{1}{2^n} \) prob. for each \(x \) tried
\[\Rightarrow \ 2^n \text{ expected trials} \]

3. Collision-resistance ("birthday problem")

Fact: In room of 23 people, have 50% chance of 2 sharing a birthday

Note: "prob that 2 people have birthday June 19?"
"prob that 2 people have same birthday?"

Idea: With \(N = 2^n \) possible outputs, need about \(\sqrt{N} \) trials to find collision
\[\approx 2^{n/2} \]