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Abstract

Secure multi-party computation is a conceptual framework in which distrusting parties engage in a protocol to
securely perform a computational task. Depending on the precise model of security, different sets of tasks admit
secure protocols. We take a complexity-theoretic approach to studying the inherent difficulty of securely realizing
tasks in various standard security models.

• We give the first alternate characterization of secure realizability in the framework of universally composable
(UC) security. This is the first characterization in any model to consider completely arbitrary computational
tasks and completely arbitrary communication channels.

• The most long-standing class of computational tasks studied are those in which two parties evaluate a
deterministic function. For these tasks, we give the first complete, combinatorial characterizations of secure
realizability in the passive, standalone, and universally composable security models, against computationally
unbounded adversaries.

• Say that a task G has “as much cryptographic complexity” as another task F if there is a secure protocol for
F that uses access to a secure implementation of G. We show that there is an infinite hierarchy of tasks with
strictly increasing cryptographic complexities, with respect to computationally unbounded security. We also
show that there exist tasks whose cryptographic complexities are incomparable.

• In contrast, we show that under a standard cryptographic assumption, there exist only two distinct levels of
cryptographic complexity with respect to polynomial-time security. Every task either has a trivial protocol using
plain communication channels, or is complete (i.e., given access to a secure implementation of this task, there
are secure protocols for all other tasks). This is the first result to derive a characterization of completeness for
a class of arbitrary interactive tasks.

In light of these characterizations, the only tasks which are securely realizable in the demanding framework of
universal composition are those related to secure communication. Indeed, the framework has been used to define
the security of encryption schemes, which has allowed for modular design and analysis of protocols. We consider a
similar approach for homomorphic encryption schemes. A homomorphic scheme is one in which anyone can obtain
an encryption of f(m1, . . . ,mn), given only the encryptions of unknown messages m1, . . . ,mn, for a specific set of
functions f .

• We give a construction of a homomorphic encryption scheme in which the allowed homomorphic operation
is as full-featured as possible — namely, one can derive a correctly-distributed encryption of f(m) given an
encryption of unknown message m, for some functions f — yet it is computationally infeasible to generate
a ciphertext that is related to other ciphertexts in any other way. Our contributions involve developing new
appropriate security definitions as well as new constructions.

• We show that schemes with such powerful security guarantees can be used to build conceptually simple,
efficient, UC-secure protocols for verifiable computations on encrypted data. We show protocols for two tasks
related to aggregating encrypted data.
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CHAPTER 1

Introduction

How can several mutually distrusting parties perform a computational task together on the Internet, without
compromising the security of their information? This very general question is the focus of secure multi-party
computation (MPC), introduced by Yao [96]. For example, the computational task in question may be something
as simple as implementing a private communication channel in the presence of an eavesdropper, or evaluating a
function on the parties’ combined datasets. Or the task might be randomized and interactive, like an Internet poker
game, to be played without a trusted dealer.

Security guarantees for MPC protocols are formulated using the real/ideal paradigm, introduced by Goldreich,
Micali, and Wigderson [41]. In this paradigm, we consider a real world in which parties engage in a protocol
(in the presence of an adversary) as well as an ideal world in which parties simply send their inputs to a trusted
party who performs the task on their behalf (also in the presence of an adversary). For example, in the case of secure
communication, the trusted party simply relays messages to the desired recipient; in the case of evaluating a function,
the trusted party receives inputs, performs the desired computation, and gives outputs to each of the parties; in the
case of a poker game, the trusted party is the dealer who shuffles and deals cards, elicits and verifies actions from
the parties, and determines a winner. We say that the protocol is a secure realization of the task if the real world is
“as secure as” the ideal world; or, more formally, if for every adversary attacking the real world interaction, there is a
corresponding adversary attacking the ideal world interaction that achieves the same effect. How the details of this
definition are specified determines a concrete model of MPC security.

Note that the behavior of the trusted party (formally defined as an interactive computer program) completely
specifies an MPC task and all of its implicit security guarantees. For instance, implicit in the function evaluation
example is that all parties’ inputs are chosen independently of other parties’ inputs, and that each party learns no
more about another party’s input than can be legitimately inferred from that party’s output. Implicit in the poker
example is the requirement that no party can influence how the cards are dealt, or have an unfair advantage in
guessing another player’s cards. Thus, multi-party computation provides a unified way of modelling many kinds of
cryptographic security requirements.

1.1 Cryptographic Complexity

In this dissertation, we classify MPC tasks using an approach inspired by modern computational complexity theory.
Instead of studying the inherent complexity of solving decision problems, we study the complexity of securely
realizing MPC tasks. Like computational complexity, our cryptographic complexity approach classifies tasks according
to two main themes: alternately characterizing complexity classes, and comparing tasks using reductions.

1.1.1 Understanding a Model via Complexity Classes

Whether a cryptographic task has a secure protocol depends on the precise security model being considered. For
instance, every MPC security model must address the following important questions:

Tasks: Which possible tasks are considered in the model? Can tasks be randomized or must they be deterministic;
general multi-party or only two-party; interactive or only non-reactive (i.e., simply evaluating a single function)?

Resource bound: Are adversaries and protocols allowed to have unbounded computational power, or must they be
computationally bounded? In the latter case, probabilistic polynomial time is usually considered.

Adversarial capabilities: What are adversaries allowed to do? Can they deviate from the protocol (active corrup-
tion) or are they bound to follow it (passive corruption)? Can they choose which parties to corrupt “on the
fly” (adaptive corruption), or must they choose once and for all at the beginning of the interaction (static
corruption)?

Context: In what context is the protocol’s security analyzed? Can the protocol be executed in the presence of
arbitrary other protocols, on possibly correlated inputs (universally composable (UC) setting); can it be executed
only in the presence of other copies of the same protocol (concurrent self-composition); or can the protocol be
executed only in isolation of other concurrent instances (standalone setting)?

1



CHAPTER 1: INTRODUCTION

Each concrete security model naturally defines a “complexity class” consisting of the tasks which have secure
protocols in that model (the securely realizable tasks), analogous to how computational complexity classes consist
of the decision problems computable within a particular machine model. The expressivity and limitations of a
security model are better understood by finding alternate characterizations of its associated complexity class, and by
comparing its complexity class with those of other security models.

Related work. Some of the first results related to the complexity of MPC were to show that in some security models,
all tasks have secure protocols.1 Yao [97] and Goldreich, Micali, and Wigderson [41] constructed protocols for
every multi-party task, secure against passive, computationally bounded adversaries, under standard cryptographic
assumptions. Goldreich, Micali, and Wigderson also gave protocols for every task secure against active adversaries in
the standalone setting. Ben-Or, Goldwasser, and Wigderson [9] and Chaum, Crépeau, and Damgård [25] constructed
protocols for every MPC task, secure against unbounded adversaries that are allowed to corrupt a strict minority of
parties. Since secure realizability is a trivial property of tasks in these models, research in these models has focused
more on efficiency than on feasibility.

In security models where not all tasks have secure protocols, there are far fewer complete characterizations
known. Kushilevitz [67] and Beaver [4] independently gave a combinatorial characterization of the symmetric-
output secure function evaluation (SFE) tasks that have perfectly secure protocols against computationally un-
bounded, passive adversaries. In the same setting, Chor and Kushilevitz [28] also showed an alternative charac-
terization for the special case of boolean-output functions.

In the UC framework, Canetti [15] demonstrated in the seminal work on the framework that not all tasks are
securely realizable. Canetti, Kushilevitz, and Lindell [22] showed several broad impossibility results for many
classes of two-party SFE in the framework. For several of these special classes of SFE tasks, their results provide
a complete characterization of realizability. Beyond these results, there were no complete characterizations known
for realizability in the UC setting.

1.1.2 Comparing Tasks via Reductions

In addition to comparing whole classes of tasks, it is often instructive to compare specific individual tasks. As an
example, one might wonder whether bit-commitment is a more sophisticated task than coin-tossing (these two tasks
are defined formally in Section 2.4). We can compare the cryptographic complexity of individual tasks, just as in
computational complexity, by demonstrating a reduction between the two. The most natural reduction in the context
of cryptographic complexity is whether there is a secure protocol for one task using an ideal black-box (i.e., access to
a trusted party) which securely implements another task.

Reductions also provide a succinct way to understand larger complexity classes, by identifying complete tasks. A
task is complete if all other tasks reduce to it; thus, complete tasks embody the essence of a complexity class.

As before, the precise reduction depends crucially on the security model enforced on the secure protocol. A
more restrictive security model yields a reduction that can make finer complexity distinctions among tasks. In this
work, we consider two reductions, both defined using the strongest natural security model available: security in the
universal composition framework. We say that F reduces to G (written F v G) if there is a UC-secure protocol for F
which uses access to an ideal G functionality (or in standard UC parlance, a secure protocol for F in the “G-hybrid”
setting). We obtain two natural reductions of different strengths by considering the UC security requirement against
computationally unbounded and computationally bounded (probabilistic polynomial-time) adversaries. We refer
to these two concrete reductions as vu and vp, respectively. Being based on a composable security notion, these
reductions are both symmetric and transitive, and are therefore useful tools for comparing complexity.

Related work. Strictly speaking, feasibility results in a security model can be viewed as a reduction to a base
task like a simple communication channel, which is usually provided “for free” in the model. We call a task trivial
if it reduces to the model’s basic communication channel. In some security models (for example, standalone or
passive security against polynomial-time adversaries), all tasks are trivial (under certain cryptographic hardness
assumptions), and thus are all equivalent under the kind of reduction we consider.

Even in security models with more than one level of complexity, almost all previous work has focused on the
extremes of complexity: namely, identifying trivial tasks and complete tasks. The related work described in the
previous section can be interpreted as classifying the trivial tasks in several security settings. Intermediate levels of
complexity have rarely been considered, apart from demonstrating that such levels do exist. Furthermore, most of

1Technically, only well-formed tasks can have secure protocols, in any model. For example, the task of determining which parties are corrupted
is not well-formed. To simplify the exposition in this introduction, we consider only well-formed tasks.
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the results on completeness have not considered a strong reduction based on UC security. One notable exception
is Canetti et al. [23], who showed that the bit commitment and coin-tossing tasks are complete under the vp
reduction. Kidron and Lindell [60] also showed that the impossibility results of Canetti, Kushilevitz, and Lindell [22]
for secure realizability in the UC model can be extended to show impossibility of a v-reduction to several natural
key-registration tasks.

One of the first tasks observed to be complete against active adversaries (though not in the UC framework)
was oblivious transfer (Section 2.4), as shown by Kilian [61]. Later, Ishai, Prabhakaran, and Sahai [56] showed
that oblivious transfer is also complete under the more demanding vu reduction. Many other variants of oblivious
transfer were studied and found to be equivalent to the original [32, 14].

Kilian [62, 63] also gave a combinatorial characterization of the two-party SFE tasks that are complete against
computationally unbounded, active adversaries. His result for deterministic functions was later extended to the vu
reduction by Kraschewski and Müller-Quade [65].

In some security settings, there are only two levels of complexity: the trivial tasks and the complete tasks. Kilian et
al. [64] (building on [62, 68]) showed this to be the case for secure evaluation of boolean-output, symmetric functions,
with respect to unbounded, passive adversaries. They also show an example of a non-boolean function which is
neither complete nor trivial. In the case of two-party SFE in which only one party receives output, Kilian [62], and
also Beimel, Malkin, and Micali [5], showed that every task is either trivial or complete with respect to unbounded
active adversaries. However, the completeness definition in [5] is unique in not being based on black-box reductions.
Harnik et al. [50] gave a characterization for completeness for the same class of functions, but against bounded,
passive adversaries.

1.2 Our Results

In this dissertation, we present several new results furthering the understanding of cryptographic complexity for MPC
tasks.

1.2.1 Structural Cryptographic Complexity

Universally composable (UC) security [16] is a strong notion in which a protocol can be safely used regardless of
the context (i.e., other protocol instances) in which it executes. It was previously known [15, 17, 22] that this very
strong security requirement precluded secure protocols for most tasks. However, no complete characterization of UC
security was known for any class of tasks apart from several subclasses of SFE tasks.

In Chapter 3, we give the first alternative characterization of UC security. Intuitively, a task is securely realizable in
the UC setting if and only if it is possible to “synchronize” two independent instances of the task. Most importantly, the
characterization does not rely on any internal properties or representation of the task; instead, the characterization
treats an MPC task as a black box, and secure realizability is determined based on the task’s input/output behavior.
As such, this characterization is the first in any non-trivial security model (let alone the demanding setting of UC
security) to classify realizability of arbitrary multi-party, interactive tasks. We call this general characterization a
“structural” result since it depends only on the structure of interactions among parties in the UC framework, and
not on the details of the computational model. Indeed, this general characterization can be specialized to either the
computationally unbounded or the probabilistic polynomial-time setting.

By applying this characterization, we can re-derive elementary proofs for all previously known impossibility
results in the UC framework, as well as extend these impossibility results to more general communication channels.
For the special case of 2-party tasks, we give the first characterization of UC-secure realizability for non-reactive tasks,
as well as a completely combinatorial characterization for the special case of (deterministic) SFE tasks.

This result is joint work with Manoj Prabhakaran, and appeared in CRYPTO 2008 [84].

1.2.2 Unbounded Cryptographic Complexity

In Chapter 4, we give several new results classifying cryptographic complexity of two-party symmetric-output secure
function evaluation (SSFE), in several different security settings involving computationally unbounded adversaries.
SSFE tasks are the most fundamental class of tasks, having been studied since the first MPC paper by Yao [96].

A SSFE task is completely specified by a function F : X × Y → Z, where X, Y , and Z are finite sets. The task is
for Alice, who holds input x ∈ X, and Bob, who holds input y ∈ Y , to both obtain the value F(x, y).

Unifying all of our results for SSFE tasks is a new technical tool for proving the impossibility of secure realization
in a variety of settings. Namely, we show that F is securely realizable in any of the security settings we consider if
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and only if a very simple “canonical” protocol for F is secure in that setting. Thus, we are able to give conceptually
simple proofs of impossibility for SSFE tasks by simply showing an attack against a single canonical protocol that
violates security in the desired setting. More specifically, we give new results for the following security settings:

• Against passive adversaries: Recall that a passive adversary is one that is not allowed to deviate from the
prescribed protocol, but is “curious” and tries to infer as much as possible about the other party’s input, based
on what it sees during the interaction. Although this model has been studied for over 20 years, no complete
characterization of SSFE tasks was known. However, Beaver [4] and Kushilevitz [67] independently gave a
complete combinatorial characterization of the functions that have a secure protocol in a variant of this model,
when the protocol is required to be error-free. We show that their characterization extends to the more natural
case where the protocol is allowed to have negligible error.

We also show an alternate characterization of this class in terms of the vu reduction. Namely, an SSFE task
F has a secure protocol against passive, unbounded adversaries if and only if F vu FCOM, where FCOM is the
bit-commitment functionality, a natural cryptographic task.

• Against active adversaries in the standalone setting: In this model, adversaries are allowed to arbitrarily deviate
from the prescribed protocol, but the protocol is assumed to execute in isolation of all other protocol instances.
We give the first complete combinatorial characterization of the SSFE tasks with secure protocols in this model.

• Against active adversaries under concurrent self-composition: In this model, we analyze the protocol in a setting
where each party may be participating in several concurrent instances of the same protocol. Lindell [70] showed
that for a large class of tasks (including all SSFE tasks), security under self-composition implies UC security
(security in the presence of arbitrary other protocols). We give a simpler and tighter proof of Lindell’s result for
the SSFE case. In particular, we show an optimal result: that security against two concurrent protocol instances
is equivalent to UC security.

Finally, we also use our main technical tool to show that the vu reduction (defined in terms of UC security against
unbounded adversaries) can make very fine distinctions among cryptographic complexities. We prove a completely
combinatorial sufficient condition for SSFE tasks F and G which implies that F 6vu G, and use it to show the following
results:

• There exists an infinite hierarchy of strictly increasing cryptographic complexities. That is, there is an infinite
sequence of tasks G1,G2, . . . such that Gi vu Gj if and only if i ≤ j.

• There exist tasks with incomparable complexities — that is, tasks F and G such that F 6vu G and G 6vu F .

All previous results relevant to cryptographic complexity (in any security setting) focused on the extremes of
complexity: the securely realizable tasks and the complete tasks. In some settings, intermediate complexities were
identified but not studied in detail. Our new results are the first to make fine distinctions among these intermediate
levels of complexity. Indeed, these distinctions are visible only using the extremely strong vu reduction, which was
never previously studied in great detail. As we show in Chapter 5, even the slightly weaker vp reduction cannot
make any of these fine complexity distinctions.

Interestingly, one theme underlying our results is to incorporate ideas from the passive security setting, and apply
them to much stricter settings. We show in our main new technical tool that “canonical” protocols, which are defined
very naturally in terms of passive security, also play an important role in active corruption settings. One of our
two results classifying passive security shows that passive security has a natural characterization in the seemingly
unrelated language of UC security. Finally, we show that if G has a lower round complexity than F against passive
adversaries, then F 6vu G; again, a consequence in a much more demanding security setting.

These results represent joint work with Hemanta Maji and Manoj Prabhakaran, and appeared in Theory of
Computation Conference 2009 [73]. The combinatorial characterizations for passive security and standalone
security were also independently discovered by Künzler, Müller-Quade, and Raub [66], who also extended the
characterization to non-symmetric SFE tasks.

1.2.3 Polynomial-Time Cryptographic Complexity

In Chapter 5, we study cryptographic complexity in the setting of computationally bounded (probabilistic polynomial-
time) adversaries. In particular, we explore the complexity of MPC tasks under thevp reduction. As alluded to above,
the vp reduction cannot resolve as many fine distinctions between tasks as the stronger vu reduction.

Any results demonstrating the different resolution strengths of the vp and vu reductions must necessarily depend
on a cryptographic hardness assumption. We show that under a reasonable and natural hardness assumption, the
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two reductions are astonishingly different in their power: all of the diverse cryptographic complexities evident under
the vu reduction collapse under the vp reduction. More formally, there are only two distinct levels of cryptographic
complexity: the trivial tasks (those that have a UC-secure protocol using simple communication channels) and those
which are complete under the vp reduction. We call this result the zero-one law.

We prove the zero-one law for deterministic, finite, two-party tasks. Importantly, our results are the first to
consider completeness for arbitrary, interactive tasks, in any security setting. We model such arbitrary tasks as
finite automata, and one important technical contribution is to develop new automata-theoretic tools. In particular,
we identify cryptographically non-trivial behaviors of an arbitrary task, which leads to the first combinatorial
characterization of interactive tasks in the UC framework. However, to show that a task is complete, we also construct
new protocols which exploit the non-trivial behaviors of arbitrary tasks.

Interestingly, the hardness assumption that we consider is not only sufficient but also necessary for the zero-one
law. That is, if the zero-one law holds, then the hardness assumption is also true.

This result is joint work with Hemanta Maji and Manoj Prabhakaran, currently in preparation [74].

1.2.4 Reconciling Non-Malleability & Homomorphic Encryption

Although most tasks do not have UC-secure protocols, tasks related to secure communication have proven a useful
way to define security for encryption schemes and signature schemes [15, 81, 19]. These definitions in the UC
framework are important for motivating the use of standard encryption schemes and signature schemes as modular
components in a larger protocol. In Chapter 6, we explore this avenue for the case of homomorphic encryption
schemes.

In a homomorphic encryption scheme, given encryptions of unknown messages m1, . . . ,mn, anyone can obtain
a “fresh” encryption of f(m1, . . . ,mn) for some functions f , as a feature of the scheme. Perhaps surprisingly,
homomorphic encryption schemes are not frequently used as modular components in larger protocols, even though
they appear well-suited to the task of manipulating encrypted data. This discrepancy stems from the fact that all
existing security definitions for homomorphic encryption — and indeed, schemes themselves — address only the
question of which homomorphic operations are possible as features; they do not consider preventing additional
homomorphic operations that might be possible as vulnerabilities.

Intuitively, an ideal homomorphic encryption scheme should provide both guarantees: first, that certain ho-
momorphic operations f are available as features, and second, a guarantee of non-malleability, that it should be
infeasible for an adversary to generate ciphertexts that are related to other ciphertexts in any way other than the
provided features. Previous security definitions for encryption could not capture such sharp requirements — they
either disallowed all homomorphic features, or left open the possibility for arbitrary homomorphic vulnerabilities.

In this work, we develop new ways to define and achieve such robust security for homomorphic encryption.

• We give several new security definitions, of both the standard game-based variety and in terms of MPC tasks
defined in the UC framework. We show the equivalence between these two kinds of definitions, and also show
how our new definitions unify all previous definitions of non-malleability.

• We construct the first public-key encryption schemes satisfying our strong definitions, and show how such
schemes can be used to construct simple, yet UC-secure protocols that involve computation on encrypted
data. Previous comparable protocols that used homomorphic encryption were forced to employ costly zero-
knowledge proofs to prevent adversaries from manipulating ciphertexts in undesired ways. However, our
new security definitions on the encryption scheme already limit an adversary’s capabilities in manipulating
ciphertexts; thus our simple protocols can provide security against active adversaries without costly zero-
knowledge proofs.

• We show that a large desirable class of homomorphic operations are impossible to achieve in any encryption
scheme, under our strong security definitions.

These results represent joint work with Manoj Prabhakaran which appeared in CRYPTO 2007 [83], ICALP 2008 [85],
and ASIACRYPT 2008 [86]; and also unpublished joint work with Anna-Lisa Ferrara and Manoj Prabhakaran.
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CHAPTER 2

Preliminaries

In this chapter, we present some preliminary notions and definitions. Even readers who are already familiar with
the UC framework may wish to quickly skim our summary of the framework given below — some of our conventions
differ slightly from the original work of Canetti [16]. For convenience, we have provided in Section 2.2.2 a brief
summary of these technical differences. We recommend reading the subsequent sections, however, which describe
important terminology and notation used throughout this work.

2.1 Basic Notation

We say that a function ν : N → [0, 1] is negligible if ν(k) = k−ω(1); that is, if ν approaches zero asymptotically faster
than any inverse polynomial. We write ν ≈ µ to mean that |ν(k) − µ(k)| is a negligible function in k. We say that a
probability p(k) is overwhelming (in k) if 1− p(k) is a negligible function in k (i.e., p ≈ 1).

When X is a finite set, we write x← X to mean that x is chosen uniformly at random from X.
When D1 and D2 are two discrete probability distributions with supports in the set S, we write ∆(D1,D2) to

denote the statistical distance between them, defined as:

∆(D1,D2) =
1

2

∑

x∈S

∣∣∣D1(x)−D2(x)
∣∣∣ = max

T⊆S

∑

x∈T

(
D1(x)−D2(x)

)
.

We say that two probability ensembles D = {Dk | k ∈ N} and D′ = {D′k | k ∈ N} are statistically indistinguishable
if ∆(Dk,D′k) is negligible in k. We say that the two ensembles are computationally indistinguishable if for all
polynomial-time algorithms M ,

∣∣∣ Pr
x←Dk

[M(x) = 1]− Pr
x←D′k

[M(x) = 1]
∣∣∣ is negligible in k.

2.2 Universal Composition Framework

The Universal Composition (UC) framework was first introduced by Canetti [16] as a realistic model for analyzing
protocols in complex network environments like the Internet. The full details of the framework are well beyond the
scope of this work. We provide a self-contained overview of the relevant technical details of the model, and refer the
reader to [16] for the a complete treatment.

Entities and their interaction. The network is a collection of interactive Turing Machines1 (ITMs), who commu-
nicate with each other by writing on shared communication tapes. For simplicity, we assume that communication
tapes are write-once, and that all messages written to communication tapes have unambiguous delimiters, and that
ITMs do not take action on a message written to a communication tape until the message is complete, and that only
one machine can write to the tape at a time.2 We say that a communication tape is linked to two machines in an
execution if both have access to it; i.e., if the two machines can use it to communicate.

We identify 4 different types of entities:

Functionalities model trusted parties in the network. The code of a functionality completely defines a MPC
task (e.g., the functionality may be the dealer in a poker game, or a party that performs a particular fixed
computation on given data).

An n-party functionality has a communication tape for each of the n parties, and a communication tape for
the adversary. The functionality also has an input tape which contains a list of which of the parties (if any)

1The choice of the interactive Turing Machine model is not crucial. One may define an equivalent model using, say, I/O automata, as in [87].
2One may wish to model each communication tape as a pair of tapes, one for each direction of communication, with appropriate read/write

privileges. For simplicity, we consider each communication line to be a single tape.
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are corrupt. Sometimes it is convenient to consider functionalities which also receive a security parameter as
input, though we most frequently consider functionalities which do not.

We call a functionality non-reactive if it simply waits for inputs from each of the parties, then gives output to
one or more of the parties, then stops responding. Otherwise we say that the functionality is reactive.

Protocols prescribe a way of interacting with a functionality. A protocol ITM has a communication tape for the
environment and another communication tape for a functionality. A protocol also has an input tape on which
it will receive a security parameter and an index (i.e., the identity of the party).

An important protocol in the framework is the dummy protocol, denoted πdummy. It prescribes the same behavior
for each party, so we do not need to specify the number of parties. πdummy simply keeps its two communication
tapes synchronized; it relays every message appearing on one communication tape to the other, and vice-versa.
In essence, πdummy effects a channel for the environment and functionality to directly communicate.

Environments model arbitrary contexts in which a protocol might be asked to execute. An environment has a
communication tape for each party, as well as one for the adversary. An environment also has an input tape
and a (without loss of generality) single-bit output tape.

Adversaries model arbitrary deviation from protocols by corrupt parties. In this work, we exclusively consider a
setting where corruptions are chosen statically. That is, an adversary is parameterized by the indices of parties
that it wishes to corrupt. An adversary that corrupts m parties has m + 1 separate communication tapes for
communicating with the functionality (i.e., on behalf of the m corrupt parties and on its own behalf), and a
final communication tape for communicating with the environment. An adversary also has an input tape on
which it receives a security parameter.

An important specific adversary is called the dummy adversary. Like the dummy protocol, a dummy adversary
relays all of its communication with the functionality to/from the environment. It expects inputs from the
environment to be labeled with the index of one of the adversary’s many communication tapes with the
functionality. Similarly, it labels its outputs to the environment with the index of the communication tape
on which it received the message from the functionality. Alternatively, it is sometimes convenient to consider
that the adversary has m+ 1 communication tapes shared with the environment as well.

Execution. Let Z be an environment, A be an adversary, π be a protocol, and F be a functionality. We define
EXEC[Z,A, π,F , k] to be the random variable of the environment Z ’s output when executing the collection of
machines as described above, with security parameter k.

More formally, EXEC[Z,A, π,F , k] is defined as follows. Each ITM in the system is initialized with the security
parameter on its input tape, where appropriate. The functionality F is initialized with a list of indices of the
parties corrupted by A. For each uncorrupted party, an instance of π is included in the system, initialized with
the corresponding party’s index. The shared communication tapes of the ITMs are linked as described above. Finally,
the system is executed until the environment Z writes to its output tape. The environment’s input tape is provided
to allow non-uniform computation to be considered.

We do not formally define the order in which individual ITMs are activated during the execution; the details are
not crucial to our results.

Resource bounds; admissible machines. We consider two different variants of the UC framework, to model
computationally unbounded settings and polynomial-time settings. In the unbounded setting, the entities defined
above are allowed to be arbitrary ITMs; we say that all ITMs are admissible.

In the probabilistic polynomial-time (PPT) setting, defining admissibility is a non-trivial task whose subtleties are
beyond the scope of this work. We adopt the definition given by Hofheinz, Unruh, and Müller-Quade [53], which we
summarize as follows:

• An environment is admissible if it runs in (a priori) probabilistic polynomial time3 in the security parameter.

• A functionality F , adversary A, and protocol π are jointly admissible if, for all admissible environments Z,
the execution considered in EXEC[Z,A, π,F , k] halts in polynomial time (in the security parameter k) with
overwhelming probability (in the security parameter).

Even though these admissibility requirements seem complicated, we mostly focus on subclasses of functionalities
which perform a constant amount of work in each activation. Thus it is usually quite easy to see that a particular
adversary or protocol is admissible for all such functionalities.

3That is, there is a fixed polynomial p such that the environment halts after p(k) steps when the security parameter is k
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Secure realization. Let π be a protocol and F and G be functionalities. We say that π is a secure realization of F in
the G-hybrid setting if for all admissible real-world adversaries A, there exists another admissible adversary (called
a simulator) S such that for all admissible environments Z, we have

Pr
[
EXEC[Z,A, π,G, k] = 1

]
≈ Pr

[
EXEC[Z,S, πdummy,F , k] = 1

]
(2.1)

We refer to the execution involving π and G as the real world (where parties run the protocol), and the execution
involving πdummy as F as the ideal world.

Intuitively, the environment’s output defines a condition for an adversarial attack. The definition implies that no
adversary can succeed in a given attack against the protocol π any more than is possible in the ideal world. Thus, the
real world is “as secure as” the ideal world. Since the semantics of the ideal world are simpler and easy to interpret
from the specification of F , security guarantees of this form are satisfactory.

For simplicity, we often let the security parameter be implicit, and exclude it from our notation. Then we simply
write:

EXEC[Z,A, π,G] ≈ EXEC[Z,S, πdummy,F ]

as a shorthand for Equation 2.1.
We note that since we consider only static security (the adversary cannot adaptively decide which parties to

corrupt), the security requirement is trivially true for adversaries which corrupt all parties. The simulator can simply
internally run the real-world adversary and ignore the functionality.

Dummy adversary. We note that, without loss of generality, the definition of secure realization can be restricted
to consider only real-world adversaries A which are dummy adversaries. If Z is some environment and A is not
a dummy adversary, then the effect of executing a protocol in the presence of A and Z can also be achieved by a
dummy adversary and an environment that simulates both A and Z together.

Universal composition. We have the following fundamental result in the UC framework, due to Canetti:

Theorem 2.1 (Universal Composition [16]). If π is a secure realization of F in the G-hybrid world, and ρ is a secure
realization of G in the H-hybrid world, then πρ is a secure realization of F in the H-hybrid world, where πρ is the
protocol π in which each external interface to an instance of G is replaced with an instance of ρ.

In other words, no matter how π might interact with G, it is always safe to replace G with its secure
implementation ρ.

2.2.1 Other Security Models as Special Cases

By appropriately restricting the UC security definition, we can achieve other important security models as special
cases:

Standalone security. Call an environment a standalone environment if it does not interact with the adversary
during the execution of the protocol. If in the definition of UC security, we quantify only over standalone
environments, we achieve the standard notion of standalone security. In practical terms, standalone security means
that the simulator is allowed to rewind the adversary, not just execute the adversary in a straight line.

Security under concurrent self-composition. In the concurrent self-composition setting [70], we consider the
security of protocols in the presence of other concurrent instances of the same protocol only. A simple way to define
this is to slightly modify the model to allow parties to invoke several instances of the protocol, and then consider
only standalone environments (so that the adversary does not communicate with the environment while any of the
protocol instances are executing). We further restrict the multiple protocol instances so that each party plays the
same role in all instances (i.e., each time a party invokes a protocol instance, it runs the protocol’s ITM with the same
party index/identity as input).

Although this natural definition of concurrent self-composition requires a slight modification to the model and
security definition (not just a restriction in its quantifiers), we can achieve the same effect by simply restricting the
standard UC security definition to the class of environments which internally simulate a standalone environment, a
concurrent-self-composition adversary, and all but one of the protocol instances in the self-composition interaction.
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Passive security. Call an adversary passive with respect to a protocol π if during the interaction, it runs the π
protocol honestly (in the role of the corrupt party) on inputs provided by the environment, and reports back the
protocol outputs to the environment. Note that we allow the adversary to interact arbitrarily with the environment
throughout the execution, although the environment cannot influence the adversary’s honest execution of π.

If in the definition of UC security, we quantify over only passive adversaries and simulators, we achieve the
standard definition of passive security. Note that in the ideal world, the simulator must be passive with respect to the
dummy protocol. It is easy to see that without loss of generality, a real-world passive adversary simply reports its
entire internal state (i.e., the adversary’s view: random tape and transcript of the π-interaction) to the environment.
Then the corresponding simulator must run the dummy protocol and output a simulated view of the real-world
protocol π.

2.2.2 Differences from Canetti’s Model

The model presented above is conceptually the same as the one originally presented by Canetti in [16]. However, for
technical reasons, we have deviated slightly from that presentation in some technical respects:

• In addition to the standard definition, we also consider a variant of the UC framework in which all entities can
be computationally unbounded.

• We use the definition of polynomial runtime from Hofheinz, Unruh, and Müller-Quade [53]. They point out
some deficiencies with the definition of polynomial runtime from [16] and other works, and also carefully
reprove a universal composition theorem for their new notion.

• We allow individual entities in the model (protocols, functionalities, environments, adversaries) to communi-
cate via completely ideal, synchronous channels. That is, the adversary cannot directly control delivery of such
communication between honest entities, nor is the adversary even notified of such communication. Instead,
we suppose that any adversarial control of the network is specifically modeled within the functionality itself
(i.e., it directly interacts with the adversary each time it intends to deliver an output or process an input); see
the discussion in Section 2.2.4.

• For simplicity, we avoid the use of session- and process-IDs. We assume that the various instances of system
entities can reliably communicate among each other. One exception is that it is often convenient to allow the
environment to masquerade as another entity instance (provided that this masquerade does not conflict with
the actual entities in the execution).

We also do not consider the details of how individual ITMs are activated in the execution, the precise details of
which are not crucial to our results.

• We exclusively consider protocols which use only one instance of a functionality. To simulate the effect
of multiple instances, we consider a “wrapper” around a functionality that provides an interface to several
independent sessions; see the following section.

2.2.3 Cryptographic Complexity Notation

In our model, separate instances of the protocol ITM cannot communicate directly with each other. Indeed, for
maximum flexibility, we assume that all communication must be facilitated by the functionality. We have also made
a restriction that there be only one functionality instance throughout an execution.

It is most natural to allow protocols to use many independent instances of a functionality, and to provide a
dedicated communication channel for the protocol. We define the private channel functionality FPVT to have the
following behavior:

• On input (P,m) from party P ′, generate delayed output (P ′,m) for party P .4

Let F be a functionality. We define F̃ to be its “augmented” version, which simulates access to independent
(asynchronous) instances of F as well as access to an instance of FPVT, as follows:

• Internally simulate independent instances of F and an instance of FPVT. Associate with each instance of F a
unique session ID.

4Delayed outputs are defined later in Section 2.2.4.
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• Upon receiving an input of the form (F , sid, cmd) from party P , begin internally simulating a fresh instance
of F associated with session ID sid unless one already exists. Then hand input cmd to that instance of F on
behalf of party P .

• On input (FPVT, P,m) from P ′, give output (FPVT, P
′,m) to party P .

• Whenever an instance sid of F produces an output m for party P , deliver output (F , sid,m) to party P .

Definition 2.2. When F is securely realizable in the G-hybrid setting, we write F vstrict G. When F is securely realizable
in the G̃-hybrid setting, we write F v G.

Thus F vstrict G means that F can be securely realized via a protocol that uses access to a single instance of G,
and without any additional communication channels. F v G means that F can be securely realized via a protocol
that uses access to any number of instances of G, and also access to FPVT. The v relation is transitive, by the universal
composition theorem.

We superscript the v and vstrict relations with either u or p (i.e., vu, vp) when referring specifically to the
unbounded or PPT settings, respectively. We use the bare notations v and vstrict in results that apply to both
settings (including when constructing secure protocols).

2.2.4 Asynchronous Output Delivery & Non-Trivial Protocols

In our model of UC security, the communication between an honest party and the functionality is completely ideal:
private (from the adversary) and instantaneous. In this way, the UC framework can be used to model important
requirements like fairness (namely, that it is not possible for one party to learn its output without the other party also
learning its own output).

However, it is most common to consider communication that is asynchronous, and under the control of the
adversary. Following [16], we use a standard idiom for defining asynchronous delivery in the description of a
functionality. When we say that a functionality generates a delayed output m for party P , we mean the following:

1. The functionality internally maintains a queue of outputs for every party P . The message m is entered into the
queue at this time.

2. The functionality sends (OUTPUT, P ) to the adversary at this time.

3. Later, whenever receiving an input of the form (DELIVER, P ′) from the adversary, the functionality removes the
first message in the queue for P ′, and if such a message exists, immediately writes it to the communication
tape of P ′.

We assume that the functionality’s other communication with the adversary does not conflict with messages of the
form (OUTPUT, P ) and (DELIVER, P ). Delayed outputs model a network in which the adversary has total control over
timings, but does not get to see the contents of the communications.

A functionality whose outputs are all delayed provides no guarantee that honest parties will ever receive any
output. Consequently, the protocol which does nothing is a secure realization of any such functionality. To avoid
this undesirable breakdown of the security definition, Canetti et al. [23] defined the following refinement of secure
realization:

Definition 2.3 (Non-trivial protocols). Suppose π is a secure realization of F in the G-hybrid world. We say that π is a
non-trivial realization, and write F vnt G, if for every real-world adversary that corrupts no one and eventually delivers
all delayed outputs of G, the corresponding simulator also eventually delivers all delayed outputs in F .

In a non-trivial protocol, it is still possible that a party does not receive output. However, non-triviality implies
that a party receives no output only when the ideal functionality does not specify an output, or when the adversary
interferes (either by corrupting a party or by refusing to deliver some messages of the protocol). Note that a
corresponding universal composition theorem immediately holds for non-trivial protocols. Again, we superscript
the relation as vunt and vpnt when referring specifically to the unbounded or PPT setting, respectively.

2.3 Two-Party Functionalities

We highlight two special classes of 2-party functionalities that are relevant for this work. In the two-party setting,
we refer to the parties by their traditional names Alice and Bob.
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2.3.1 Secure Function Evaluation

Most works studying MPC have been restricted to the special class of functionalities called secure function evaluation
functionalities, also sometimes called non-reactive functionalities.

Definition 2.4 (Secure Function Evaluation). A 2-party functionality F is a (deterministic) secure function evaluation
(SFE) functionality if it behaves as follows, for some pair of functions fA, fB : X×Y → Z, where X, Y , and Z are finite
sets:

1. Wait for input x ∈ X from Alice and input y ∈ Y from Bob.

2. When both x and y have been received, send delayed output fA(x, y) to Alice and delayed output fB(x, y) to Bob.

We often abuse notation slightly and identify F itself with the pair of functions (fA, fB). We note that F is
deterministic and provides only one evaluation of its function. Furthermore, F provides no fairness guarantee –
because of the delayed outputs, an adversary who corrupts a party may learn its own output and never deliver the
other party’s output, so our definition does not provide a guarantee of fairness.

We restrict our attention to finite functions. One might also consider functions whose complexity (including input
and output domains) depends on the global security parameter. When this is the case, we state it explicitly.

When fA = fB , we say that the corresponding SFE functionality has symmetric output (SSFE). The case where one
of {fA, fB} is a constant function is (somewhat unfortunately) often called asymmetric SFE throughout the literature.
We instead refer to this class of SFE functionalities as one-sided output SFE.

We can specify a symmetric-output SFE functionality by its function table. The table is a matrix with each row
associated with an input for Alice and each column associated with an input for Bob. Each entry in the table specifies
the function’s output on the corresponding pair of inputs. The labels of the inputs themselves are not important, so
the functionality is completely specified by its table. For example, the boolean XOR functionality can be written as
0 1
1 0 , and the boolean AND functionality can be written as 0 0

0 1 .

Definition 2.5 (Redundant Inputs). Let F = (fA, fB) be a 2-party SFE functionality. We say that x is a redundant
input for Alice if there exists x′ 6= x such that:

fA(x, y) 6= fA(x, y′)⇒ fA(x′, y) 6= fA(x′, y′) and fB(x, ·) ≡ fB(x′, ·).

That is, by changing her input from x to x′, Alice learns no less about Bob’s input, but Bob’s output is unaffected. We
define redundancy for Bob’s inputs symmetrically.

It is easy to see that if x is a redundant input, then any ideal-world adversary can be made to never supply input
x to F , without loss of generality.

Definition 2.6 (Function Isomorphism). Let F = (fA, fB) and G = (gA, gB) be 2-party SFE functionalities. We say
that F and G are isomorphic if G can be obtained from F via repeated applications of the following operations:

• Adding or removing a redundant input (for either party),

• Permuting a party’s input domain,

• Consistently re-labeling the outputs of fA(x, ·) for any x, or of fB(·, y) for any y,

• Reversing the roles of Alice and Bob.

In the above definition, we say that f is a consistent re-labeling of g if f(z) 6= f(z′) ⇔ g(z) 6= g(z′); that is,
if the outputs have simply been renamed. For example, the symmetric-output XOR functionality 0 1

1 0 is a consistent

re-labeling of the functionality 1 2
3 4 ; thus the two are isomorphic.

It is easy to see that if F and G are isomorphic, then F and G are equivalent under vp and vu reductions. Thus
without loss of generality, we usually consider only functions that are free of redundant inputs.

2.3.2 Deterministic Finite-Memory Functionalities

In addition to SFE functionalities, we also deal extensively with reactive functionalities. The following special class
of reactive functionalities plays an important role in our results:

Definition 2.7. A deterministic finite functionality (DFF) is a tuple F = (Q,X, Y, δ, fA, fB , q0), where

11
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• Q is a finite set of states,

• X and Y are finite input sets,

• δ : Q×X × Y → Q is the (partial) state transition function,

• fA, fB : Q×X × Y → {0, 1}∗ are two output functions, and

• q0 ∈ Q is the start state.

The behavior of F as an ideal functionality is as follows:

1. Set variable q to be the initial state q0. Then repeatedly do:

2. Wait for input x ∈ X from Alice and input y ∈ Y from Bob. If δ(q, x, y) is undefined, then simply stop responding.

3. Send delayed output fA(q, x, y) to Alice and delayed output fB(q, x, y) to Bob.

4. Update variable q ← δ(q, x, y) and repeat from step (2).

For simplicity, we often use the above standard variable names (Q, X, Y , δ, fA, fB , q0) when the context of F is clear.

It is easy to see that SFE functionalities are special class of DFFs. We point out that in the most general terms,
a functionality need not execute in a sequence of rounds that consist of inputs from both parties and outputs to
both parties. The UC framework allows for more arbitrary functionalities that take inputs and give outputs without
restriction. However, to the best of our knowledge, no finite-memory reactive functionalities considered in the
literature require more generality than our DFF definition. Also, the constructions in [41, 23] of protocols for
arbitrary reactive functionalities explicitly model functionalities as having “rounds” of interaction as in a DFF.

We also note that even though a DFF induces a kind of synchronous delivery of inputs from the parties and
outputs to the parties, we still consider DFFs within the standard (asynchronous) communication model. That is,
the inputs and outputs are delivered asynchronously between the functionality and parties; the functionality simply
chooses to wait until receiving input from both parties, and to give outputs to both parties in the same activation.

2.4 Important Functionalities

For reference, we include here formal definitions of some commonly used ideal functionalities in the UC framework.

Private channels, FPVT. We have already mentioned the private channel functionality above, but repeat it here (in
its delayed-output formulation), in Figure 2.1.

On input (P,m) from party P ′, give delayed output (P ′,m) to party P .

Figure 2.1: Private channel functionality FPVT.

Oblivious transfer, FOT. Oblivious transfer was first introduced Rabin [88] as a generalization of a noisy com-
munication channel. It is known to be a complete functionality in many settings [61, 56], and there are many
equivalent variants [14, 32]. Throughout this work we will use the standard 1-out-of-2 oblivious bit transfer, defined
in Figure 2.2.

On input (x0, x1) ∈ {0, 1}2 from Alice, and input b ∈ {0, 1} from Bob, give delayed output xb to Bob, and delayed
output ⊥ to Alice.

Figure 2.2: Oblivious transfer functionality FOT.

Commitment, FCOM. The commitment functionality is the cryptographic equivalent of a locked box, and is defined
in Figure 2.3. The sender gives an input to the functionality, which is stored and not revealed to the receiver until
the sender instructs. Once the input is given to the functionality, the sender cannot change it.

We have defined FCOM to be parameterized by a domain of m-bit strings. However, it is easy to see that m copies
of 1-bit FCOM can be used in parallel to securely realize a single m-bit FCOM. Thus when showing a protocol for FCOM,
it suffices to show a protocol for the single-bit case.

Coin-tossing, FCOIN. The coin-tossing functionality samples a fair coin and gives it to both parties (Figure 2.4).
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The functionality is parameterized by an integer m > 0.

1. On input (COMMIT, x) from Alice, where x ∈ {0, 1}m, and no value x has yet been recorded, internally
record x and send delayed output (COMMITTED,m) to Bob.

2. On input REVEAL from Alice, if a value x has been internally recorded, send delayed output (REVEAL, x) to
Bob.

Figure 2.3: Commitment functionality FCOM.

After receiving input OK from both Alice and Bob, randomly sample a fair coin r ← {0, 1} and send delayed
output r to both Alice and Bob.

Figure 2.4: Coin-tossing functionality FCOIN.
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CHAPTER 3

Structural Cryptographic Complexity

3.1 Overview

The Universal Composition (UC) framework [16] is the most realistic framework for modelling security of protocols
in the presence of malicious adversaries and complex networked contexts like the Internet. UC security for a protocol
implies that the protocol may be safely used in any context.

It is known that the strong requirement of UC security implies that most functionalities do not have UC-secure
protocols, if only simple communication channels are provided for the protocol (i.e., no additional setup assumption).
Canetti and Fischlin [17] showed that the commitment functionality FCOM is not securely realizable. Canetti,
Kushilevitz, and Lindell [22] proved that most 2-party SFE functionalities are also not securely realizable.

The common theme in both of these impossibility results is that the simulator has no advantage when the protocol
uses only a simple communication channel. More formally, any information about Alice’s input that a simulator
can compute by interacting with a passively corrupt Alice could also be computed by a corrupt Bob interacting in
the protocol with an honest Alice. Thus, if the definition of a functionality requires the simulator to extract more
information from Alice than is legitimate for Bob to learn in the ideal interaction, then that functionality is not
securely realizable.

3.1.1 Our Results

In this chapter, we develop and apply a new technical framework called splittability which greatly generalizes these
previous impossibility results in the UC framework. First, splittability provides a complete characterization of secure
realizability, instead of just being useful as a necessary condition as in the previous results. Next, our new techniques
apply to completely arbitrary functionalities, even multi-party, randomized, and reactive functionalities. Indeed, any
functionality which can be expressed in the UC model can be considered in our framework. Furthermore, our results
apply uniformly to the PPT and computationally unbounded settings. Finally, while the previous works considered
protocols that used only authenticated private channels, we model the communication channel itself as an arbitrary
functionality.

Splittability. We first motivate the definitions of splittability in the simpler setting for 2-party functionalities of a
certain form, which we present in Section 3.2. We say that a 2-party functionality F is splittable if, informally, there
is a way to synchronize two independent instances of F (by interacting as Alice in one instance and Bob in the
other instance) so that together they behave as a single instance of F . We express this requirement formally in the
language of the UC framework by demanding that no environment can distinguish between a single instance of F
and two independent instances synchronized in this way.

Our more general definition is as follows. Let F and G be two (m-party) functionalities. We view G as a potential
“communication channel” for a protocol, and say that F is splittable with respect to G (written F ≺ G) if no
environment can distinguish between a single instance of F and many independent instances of F appropriately
synchronized, where the synchronization must take place across the channel G. Like our formulation of the UC
framework itself, this definition is general and can be specialized to either the PPT or computationally unbounded
setting. Likewise, our results involving splittability apply uniformly to both computational settings.

Our main technical result is that splittability characterizes secure realizability, for a large class of channels G. In
particular, call a channel G self-splittable if G ≺ G. We motivate self-splittability as follows. A private channel between
Alice and Bob can freely be replaced by private channels between Alice and Eve, and Eve and Bob, if Eve honestly
relays messages. Similarly, the self-splittability condition implies that a “direct” channel can be decomposed into
several “hops” on the same kind of channel, given the appropriate routing/synchronization. Self-splittable channels
are exactly those for which we characterize secure realizability. More formally, we prove:

Theorem. G is self-splittable if and only if for all F , F vstrict G ⇔ F ≺ G.

Interestingly, the proof of this theorem explicitly reflects the intuition that these natural communication channels
“give no advantage” to a simulator. We use the fact that F ≺ G to construct a protocol for F whose simulator
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faithfully simulates an honest instance of G. Thus, we suggest that self-splittability is a useful formalization of the
intuitive requirement of being a “natural” communication channel.

Our characterization can accommodate functionalities F which interact directly with the adversary. However,
when considering functionalities that utilize delayed outputs, we generally restrict our attention to non-trivial
protocols. Recall that a non-trivial protocol provides some guarantee that delayed outputs will eventually be
delivered, provided that the adversary does not interfere with the protocol execution. Since splittability does not
directly imply any such guarantee, we define an analogous condition for non-trivial splittability. Then we prove an
analog of Theorem 3.13, showing that non-trivial splittability characterizes non-trivial realizability.

Impossibility results. In Section 3.4, we show several applications of splittability to demonstrate its power. Our
first result is to re-derive and extend the impossibility results of Canetti and Fischlin [16, 17]:

Theorem. There is no non-trivial UC-secure realization for the coin-tossing, commitment, or oblivious transfer function-
alities, using any self-splittable communication channel (in the PPT or unbounded settings).

Furthermore, there is no UC-secure realization of zero-knowledge proofs for any language in NP \ BPP, using any
self-splittable communication channel, in the PPT setting.

It is easy to use splittability to show the impossibility of securely realizing a functionality, with respect to all self-
splittable channels. These proofs all follow the same general outline of showing that the given functionality F is not
splittable with respect to any channel G. The splittability definition requires that two instances of F be synchronizable
so that they act indistinguishably from a single instance of F . However, since this statement involves reasoning about
only ideal functionalities, we can easily apply the security properties of the ideal functionality and show that such
a synchronization must fail. For instance, any two independent instances of the coin-tossing functionality FCOIN

will output differing bits with probability 1/2 by definition, so they cannot be synchronized to behave like a single
instance (which always outputs the same bit to both parties).

We can also easily re-derive and extend the impossibility results of Kidron and Lindell [60]. They generalized
the impossibility results from Canetti, Kushilevitz, and Lindell [22], by considering protocols which used private
channels as well as access to various key-registration “set-up” functionalities. We can subsume their results by simply
observing that the set-up functionalities they consider are all self-splittable.

Characterization of non-reactive functionalities. We use splittability to complete the partial characterization
of 2-party non-reactive functionalities initiated by Canetti, Kushilevitz, and Lindell [22]. We give a complete
characterization of secure realizability for this class of functionalities, which includes randomized functionalities
and functionalities whose behavior (including input/output domain) depends on the global security parameter.

For the special case of SFE functionalities (non-reactive functionalities which are deterministic and whose
behavior does not depend on the security parameter), we obtain the following simple combinatorial characterization:

Theorem. Let F be a 2-party SFE functionality. Then F vnt FPVT if and only if F is isomorphic to a function of the form
F(x, y) = x. Furthermore, if F is not isomorphic to such a function, then F 6vnt G for any self-splittable channel G.

Thus, only the absolute simplest SFE functionalities are UC-securely realizable. Again, the proof of this
characterization crucially uses splittability.

Results for multi-party functionalities. We use the 2-party characterization and a well-known partitioning
argument to derive some necessary conditions for multi-party SFE functionalities. Namely, if F is a securely realizable
m-party SFE functionality, then all of its 2-party restrictions (SFE functionalities obtained by partitioning {1, . . . ,m}
into A∪B, and collapsing the parties in each part into a single party) are also securely realizable. From this, we can
see that every such multi-party SFE functionality has one of the following two forms: a party’s output depends only
on that party’s input, for all but one of the parties; or, a party’s input influences only that party’s output, for all but
one of the parties.

We do not know whether this necessary condition is also sufficient for secure realizability. As a step towards
resolving this question, we show that for a special class of 3-party functionalities, this partitioning argument is both
necessary and sufficient.

3.2 Splittability of Regular 2-Party Functionalities

For expositional clarity, first we present a special case of our splittability definitions and results, which nonetheless
captures the essential intuition of our more general results. The simplified case involves functionalities of the
following special form.
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Definition 3.1 (Regular functionalities). We say that a functionality F is regular if it does not directly interact with
the adversary (when no parties are corrupted), and its behavior does not depend on which parties are corrupted.

More formally, F is regular if its transition function is insensitive to the contents of its corruption input tape and its
communication tape with the adversary, and it never writes to its communication tape with the adversary.

We now develop the theory of splittability for the special case of regular 2-party functionalities. Splittability
will provide a complete characterization of secure realizability for these functionalities. Note that this class of
functionalities includes even randomized and reactive functionalities, and captures many functionalities of practical
interest, though it does not yet allow us to consider functionalities that give delayed outputs.

We first define a specific kind of “compound” functionality, which internally simulates the interaction among
several ITMs. This approach of considering such compound entities is used throughout our more general splittability
characterization as well.

Definition 3.2. Let F be a regular 2-party functionality and T be an ITM with two communication tapes. Define FTSPLIT

as the compound functionality that does the following (See Figure 3.1):
FTSPLIT internally simulates an instance of T and two independent instances of F , which we call FL and FR. The

functionality FTSPLIT is a 2-party functionality, and thus has two external communication tapes, associated with parties 1
and 2.1 We link the external party-1 tape with the party-1 tape of FL, and the external party-2 tape with the party-2
tape of FR. The other communication tapes of FL and FR are linked to the two communication tapes of T , respectively.

F

Z

FL FR

T

Z
F functionality FTSPLIT functionality

Figure 3.1: 2-party splittability (for regular 2-party F). The shaded box shows FTSPLIT.

Intuitively, FTSPLIT defines an interaction in which T is playing as a man-in-the-middle between two instances of
F . We define splittability of F in terms of FTSPLIT.

Definition 3.3. Let F be a regular 2-party functionality. We say that F is splittable if there exists an ITM T
such that FTSPLIT is admissible and indistinguishable from F . That is, for all admissible environments Z, we have
EXEC[Z,A0, πdummy,F ] ≈ EXEC[Z,A0, πdummy,FTSPLIT], where A0 is the dummy adversary that corrupts no one.

We call T the translator corresponding to this splitting of F .

In other words, F is splittable if there is a way to synchronize the two independent instances of F (i.e., construct
a strategy for T ) so that the two instances behave together as a single instance (i.e., are indistinguishable from a
single copy of F).

Our main result is that splittability completely characterizes realizability, though on a stronger communication
channel.

Theorem 3.4. Let F∗PVT be the 2-party private channel functionality FPVT, except without delayed outputs. That is,
messages are delivered immediately, and F∗PVT does not interact with the adversary.

Let F be a regular 2-party functionality. Then F v F∗PVT if and only if F is splittable.

The restriction to F∗PVT is natural, and in keeping with our consideration of regular functionalities in this section.
Since regular functionalities do not interact with the adversary, an adversary who corrupts no one gets no information
about the honest parties’ outputs. Thus regular functionalities cannot be securely realized on FPVT, in which the
adversary learns (at least) if and when the parties are communicating.

Since the definition of splittability can be specialized for either the unbounded or the PPT setting, the above
theorem should be interpreted with vu in the unbounded setting, and vp in the PPT setting (with the appropriate
notion of admissibility substituted into the theorem statement).

To prove the theorem, we first make the following simple but useful observation:
1For uniformity with the subsequent sections, which deal with multi-party functionalities, we do not refer to the two parties as Alice in Bob in

this section.
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Observation 3.5. Let D be a “dummy” ITM with two communication tapes, meaning that it does nothing but copy
every new message from one tape to the other. In any execution involving two ITMs M1 and M2 with a shared
communication tape, an identical outcome is achieved by executing M1, M2, and an instance of D, where M1 and
D share a communication tape, and M2 and D share a communication tape.

The standard dummy adversary is such a machine D, but note that so is F∗PVT. In fact, it is for this reason that
F∗PVT has a special status in our results.

Proof (of Theorem 3.4). (⇒) Suppose π is a secure protocol for F in the F∗PVT-hybrid setting, where SX is the
simulator for the dummy adversary which leaves parties X ⊆ {1, 2} uncorrupted.

(1)

F

Z
(2)

π π

Z
(3)

Z ′
π

πA

Z

(4)

Z ′

F

π

S2

Z
(5)

Z ′′

F

π A S2

Z

(6)
Z ′′

FF

S1 S2

Z
(7)

FF
T

S1 S2

Z

Figure 3.2: Steps in the proof of Theorem 3.4. Instances of F∗PVT drawn as double arrows.

Take any environment Z and consider an ideal-world execution defined by EXEC[Z,A0, π,F∗PVT], where A0 is the
dummy adversary that corrupts no one. Since F∗PVT is regular, it does not communicate withA0. Since communicating
with the functionality is the only role of such a dummy adversary, we can assume without loss of generality that Z
does not communicate with A0.

By the security of π, this execution is indistinguishable from EXEC[Z,S{1,2}, πdummy,F ]. Again, since F is regular,
S{1,2} does not communicate with F ; nor does it communicate with Z, so without loss of generality S{1,2} = A0.
Thus we have

EXEC[Z,A0, π,F∗PVT] ≈ EXEC[Z,A0, πdummy,F ].

To complete the proof, it suffices to construct T such that FTSPLIT is admissible and EXEC[Z,A0, π,F∗PVT] ≈
EXEC[Z,A0, πdummy,FTSPLIT].

Let Z ′ be the environment that internally simulates Z and the instance of π executed by party 1. Environment Z ′
uses the external communication tape of π (designed for communicating with the functionality) as its communication
tape for communicating with an adversary. Let A′ be the dummy adversary that corrupts party 1 alone. Then

EXEC[Z,A0, π,F∗PVT] = EXEC[Z ′,A′, π,F∗PVT],

since in the latter execution, we have simply re-packaged the ITMs, moving party 1 inside the environment, and
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replaced a single communication tape with a dummy adversary. By the security of π, we have

EXEC[Z ′,A′, π,F∗PVT] ≈ EXEC[Z ′,S{2}, πdummy,F ].

Now let us consider an environment Z ′′ which does the following: It internally simulates instances of Z, S{2}, F ,
and party 2 executing πdummy. The communication tapes of these instances are linked in the natural way. The two
unlinked communication tapes are: the environment-side communication tape of S{2}, which Z ′′ uses as its tape for
communicating with the adversary; and the party-1 communication tape of Z, which Z ′′ uses for the same purpose.
If A′′ is the dummy adversary which corrupts party 2 alone, then we have

EXEC[Z ′,S{2}, πdummy,F ] = EXEC[Z ′′,A′′, π,F∗PVT].

As before, the executions are identical except that several ITMs have been re-packaged into the environment, and a
dummy adversary and F∗PVT have replaced a single communication tape.

Again, by the security of π, we have:

EXEC[Z ′′,A′′, π,F∗PVT] ≈ EXEC[Z ′′,S{1}, πdummy,F ].

We finally define T as an ITM which internally simulates instances of S{1} and S{2}, linking their environment-side
communication tapes together. T uses the remaining communication tape of S{1} as its communication tape for FL,
and the remaining tape of S{2} as the communication tape for FR. Then we finally have that

EXEC[Z ′′,S{1}, πdummy,F ] = EXEC[Z,A0, πdummy,FTSPLIT],

since the latter execution is simply a re-packaging of the former.
Admissibility: We must show that FTSPLIT is an admissible functionality. Admissibility is trivial in the unbounded

setting. In this proof, we have applied the security of π against dummy adversaries only, which are always admissible
in the PPT setting. By the security of π, substituting an ideal interaction involving the simulator for a real-world
interaction involving an admissible adversary preserves the property that the entire system’s execution is polynomial-
time with overwhelming probability. The other steps in the proof involve only repackagings, so indistinguishability
holds, and the running time of the execution is not affected. Thus, the final interaction involving FTSPLIT executes
in polynomial time with overwhelming probability. Since the environment Z was arbitrary, we have that FTSPLIT is
admissible, as desired.

(⇐) Suppose F is splittable using translator ITM T ; then the following is a secure protocol for F (see Figure 3.3)
in the F∗PVT-hybrid setting:

π1 π2

F F

T

Z

Figure 3.3: Secure protocol (in the
F∗PVT-hybrid setting) for a splittable
functionality F . Instance of F∗PVT de-
noted by a double arrow.

• Party 1 internally simulates instances of FL and T , with linked communication tape as in the splittability
definition. He treats the unlinked communication tape of FL as his environment-side communication tape, and
the unlinked communication tape of T as his functionality-side communication tape.

• Party 2 simply runs FR, interpreting its party-1-side tape as the protocol’s functionality-side tape, and its party-
2-side tape as the protocol’s environment-side tape.

It is easy to see that when neither party is corrupt, the execution of this protocol over F∗PVT is simply a re-packaging
of EXEC[Z,A0, πdummy,FTSPLIT]. As such, it is indistinguishable from the ideal world by the guarantee of splittability.
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The simulators for corrupt parties are quite simple: For a dummy adversary that corrupts party 1, the simulator
is also a dummy adversary; for a dummy adversary that corrupts party 2, the simulator is T itself. It is easy to see
that in both of these cases, the simulation is perfect since the ideal world is a repackaging of the real world.

3.3 General Theory of Splittability

Protocols in the UC framework are generally modeled to use less idealized channels than the one considered in the
previous section (F∗PVT). For instance, even the standard model of a private channel reveals to the adversary the
fact that a message was sent, and typically its length. The UC framework also allows one to define functionalities
which interact directly with the adversary, or whose behavior depends on which parties are corrupted. Indeed, this
flexibility is often useful in obtaining correct definitions of functionalities.

In this section, we generalize the theory to apply to secure realizability of completely arbitrary functionalities,
considering completely arbitrary functionalities as the “communication channel” for the protocol. Furthermore, our
theory extends to multi-party (instead of only 2-party) functionalities.

3.3.1 Notational Conventions

In our proofs relating to splittability, we will often construct and manipulate “compound” ITMs which simulate other
ITMs and their communication. In this section, we develop a convenient notation for reasoning about such compound
ITMs, which allows for simple symbolic manipulation. Using this notation, we can carry out the proof at a reasonably
high level.

Let F be an m-party functionality. F has communication tapes for the parties {1, . . . ,m}, as well as one for the
adversary. By convention, we consider the adversary to be the (m+ 1)th party to the functionality. If X ⊆ {1, . . . ,m}
are the indices of uncorrupted parties in some execution, then we denote by X = {1, . . . ,m + 1} \X the indices of
the corrupted parties (always containing party m+ 1).

We use labeled arrows to denote different sets of communication tapes for the ITMs in our system. For instance,
an expression of the form “ a←→ M b←→” will denote an ITM M with its set of communication tapes partitioned into
two sets, labeled by a and b. In our notation, the left-to-right ordering is significant, and the labels will be arranged
so that if ITMM1 has communication tapes “ a←→” to its right, andM2 has communication tapes “ a←→” to its left, then
it will be natural for these tapes to be linked, allowingM1 andM2 to communicate.

• If F is an m-party functionality, then it has m + 1 communication tapes. For X ⊆ {1, . . . ,m}, we write
X:←→ F :X←→ to denote F as initialized in the case where the adversary corrupts parties with indices X. The

arrow “ X:←→” denotes the set of communication tapes for parties indexed by X; likewise, the arrow “ :X←→”
denotes the communication tapes for parties indexed by X.

Thus in our notation, a functionality will always communicate with honest parties to its left and corrupt parties
to its right. The colons in our notation are important to distinguish the “parity” of communication tapes. More
concretely, the colon will always be “in the direction of” the functionality (or away from the environment).
Thus, in N X:←→ M, the ITM M is expecting to interact externally with parties indexed by X, and N is
interacting in the role of those parties.

• A protocol ITM π has two communication tapes, one intended for the environment and one intended for the
functionality. We write i:←→ π

i:←→ to denote the protocol initialized with party index i. The arrow on the left
is associated with the protocol’s environment-side communication tape, and the arrow on the right with its
functionality-side communication tape. This keeps with our convention of the “:” symbol pointing away from
the environment and towards the functionality.

• An adversary/simulator S has communication tapes intended for the environment and for the functionality. Let

X ⊆ {1, . . . ,m}. Then we write :X←→ S :X←→ to denote an adversary who corrupts the parties indexed by X.
On the left are its communication tapes for the functionality, and on the right are its communication tapes for
the environment. Note that this follows our convention of a functionality interacting with corrupt parties on its
right side.

• Finally, in our definition of splittability, we introduce a new type of ITM called a translator. We write :X←→ T X:←→
to denote a translator T . It will have communication tapes on the left indexed by a set of corrupt parties X,
and communication tapes on the right indexed by the complementary set X.
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Compound ITMs. These notational conventions allow us to express compositions and of several ITMs in the
following ways:

• When we have two ITMs a←→M1
b←→ and b←→M2

c←→ whose labels b match completely (both their set of indices
and their “parity”), we may write a←→M1

b←→M2
c←→ to denote the natural “compound” ITM which internally

simulates both M1 and M2, linking the communication tapes labeled by b. The compound ITM leaves the
remaining communication tapes (labeled by a and c) unlinked.

• Let X = {1, . . . , k} without loss of generality, and let b be any label in our notation. When we have ITMs
X:←→M b←→ and { i:←→ π

i:←→| i ∈ X}, we may write:

X:←→





1:←→ π
1:←→

...
k:←→ π

k:←→





X:←→M b←→

to denote the compound ITM which internally simulatesM and k instances of π, and links the corresponding
communication tapes.

Any (possibly compound) ITM M of the form X:←→ M :X←→ has an interface like that of a functionality, and

we interpret the ITM as such. We say that two (compound) functionalities X:←→ F1
:X←→ and X:←→ F2

:X←→ are
indistinguishable if for all environments Z,

EXEC[Z,AX , πdummy,F1] ≈ EXEC[Z,AX , πdummy,F2],

where AX is the dummy adversary that corrupts parties indexed by X, and πdummy is the dummy protocol. As a
shorthand for this definition, we write simply:

X:←→ F1
:X←→ ≈ X:←→ F2

:X←→ .

Secure realizability in our notation. We can now rephrase the UC security definition in terms of our notation.
Let F be an m-party functionality. We say that π is a strict secure realization of F in the G-hybrid setting (that
is, F vstrict G) if for all X = {x1, . . . , xk} ⊆ {1, . . . ,m}, there exists a simulator SX such that the following two
compound functionalities are indistinguishable:

X:←→





x1:←−→ π
x1:←−→

...
xk:←−→ π

xk:←−→





X:←→ G :X←→ ≈ X:←→ F :X←→ SX :X←→ .

Note that we do not need to explicitly mention the dummy protocol. In the traditional definition, the simulator SX
corresponds to the simulator for the dummy adversary that corrupts X.

Repackaging and rewriting. Finally, we observe the following rewriting rule, which generalizes the technique used
in the proof of Theorem 3.4 of repackaging component ITMs into and out of the environment:

Lemma 3.6. If functionalities X:←→M1
:X←→ and X:←→M2

:X←→ are indistinguishable, then also

Y :←→ML
X:←→M1

:X←→MR
:Y←→ ≈ Y :←→ML

X:←→M2
:X←→MR

:Y←→,

for any Y ⊆ {1, . . . ,m} and any admissible (possibly compound) ITMsML andMR.

Proof. Consider an arbitrary environment Z interacting with Y :←→ML
X:←→M1

:X←→MR
:Y←→.

Let Z ′ denote an environment which internally simulates instances of Z, ML and MR, with communication
tapes linked as they are in the above interaction.2 Clearly, the original execution is identical to Z ′ interacting with

2According to the definition of admissible machines, the composition of these machines with the environment machine is itself admissible.
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X:←→M1
:X←→.

We may apply the indistinguishability ofM1 andM2 with respect to this environment Z ′, so that Z ′ interacting
with M2 is an indistinguishable execution from the original. Finally, it does not affect the execution to repackage
ML and MR outside of the environment, which corresponds to the original environment Z interacting with
Y :←→ML

X:←→M2
:X←→MR

:Y←→.

3.3.2 General Splittability

Definition 3.7. We say that an m-party functionality F is splittable with respect to another m-party functionality G if
there exist translator ITMs {TX | X ⊆ {1, . . . ,m}} such that for every X = {x1, . . . , xk} ⊆ {1, . . . ,m}, the following
two compound functionalities are indistinguishable:

X:←→ F :X←→ TX X:←→ G :X←→ ≈ X:←→





x1:←−→ F :x1←−→ Tx1

x1:←−→
...

xk:←−→ F :xk←−→ Txk
xk:←−→





X:←→ G :X←→ .

When this is the case, we write F ≺ G.

Intuitively, an instance of F interacting with honest parties indexed byX may be “split” into separate independent
instances of F , one for each of the honest parties. The translator ITMs, which can communicate only via G, must
synchronize all of the instances of F so that they behave as a single instance.

As with all of our results in this chapter, splittability can be specialized to either the unbounded or PPT settings.
We superscript the ≺ relation as ≺u and ≺p to indicate these specific computational model, respectively.

Example. For comparison with the simpler splittability definition for 2-party regular functionalities, we show the
general definition of splittability restricted to the two-party case. For two-party functionalities, all but one of the
requirements in the splittability definition are tautological, leaving only the requirement for X = {1, 2}. Thus we
have:

Definition 3.8. Let F and G be 2-party functionalities. Then F is splittable with respect to G if and only if there exist
translator ITMs T1, T2, T12 such that:

1,2:←−→ F :3←→ T12
1,2:←−→ G :3←→ ≈ 1,2:←−→

{
1:←→ F :2,3←−→ T1

1:←→
2:←→ F :1,3←−→ T2

2:←→

}
1,2:←−→ G :3←→ .

See Figure 3.4 for a visual overview of the two-party case. See also Figure 3.5 for one of the splittability conditions
(X = {1, 2, 3}) for 3-party functionalities.

F

Z

G

T12

F FG

T1 T2

Z

1,2:←−→ F :3←→ T12 1,2:←−→ G :3←→ 1,2:←−→
{

1:←→ F :2,3←−→ T1 1:←→
2:←→ F :1,3←−→ T2 2:←→

}
1,2:←−→ G :3←→

Figure 3.4: Splittability definition for general 2-party functionalities. Dotted lines indicate interactions as an adversary and/or
corrupted party.
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F G

T123
F

F

F G

T3

T2

T1

123:←−→ F :4←→ T123 123:←−→ G :4←→ 123:←−→





1:←→ F :234←−→ T1 1:←→
2:←→ F :134←−→ T1 2:←→
3:←→ F :124←−→ T1 3:←→





123:←−→ G :4←→

Figure 3.5: One of the conditions in required by the definition of F ≺ G, for 3-party functionalities, and with X = {1, 2, 3}.
Dotted lines indicate interactions as an adversary and/or corrupted party.

As in Section 3.2, we aim to establish a relationship between splittability and realizability. Our main technical
results relating the two notions are proven in the following two lemmas. Again, we emphasize that the statements
of these lemmas can be specialized to the computationally unbounded and the PPT settings.

Lemma 3.9. If F ≺ G then F vstrict G.

Proof. Suppose that F ≺ G, using translator ITMs {T F≺GX | X ⊆ {1, . . . ,m}}. Then we claim that the protocol

wherein party i executes i:←→ F :i←→ T F≺Gi
i:←→ (following the notational conventions for protocol ITMs) is a secure

protocol for F in the G-hybrid setting (which uses only one instance of G for communication). To show the security
of this protocol, we must show that the UC security definition holds. For each subset of parties X = {x1, . . . , xk}, the
splittability condition is the following (with grouping brackets added for emphasis):

X:←→





x1:←−→ [F :x1←−→ T F≺Gx1
]
x1:←−→

...
xk:←−→ [F :xk←−→ T F≺Gxk

]
xk:←−→





X:←→ G :X←→

≈ X:←→ F :X←→ [T F≺GX
X:←→ G]

:X←→ .

Thus, the ITM :X←→ T F≺GX
X:←→ G :X←→ satisfies the condition to be the simulator for the dummy adversary who

corrupts parties indexed by X. We conclude that the above protocol is secure.

Lemma 3.10. If F vstrict G ≺ H, then F ≺ H.

Our proof of this lemma generalizes the proof of Theorem 3.4.

Proof. Suppose F vstrict G as witnessed by a protocol π and corresponding simulators {SFvGX | X ⊆ {1, . . . ,m}};
and that G ≺ H using translators {T G≺HX | X ⊆ {1, . . . ,m}}.

To show that F ≺ H, we must demonstrate suitable translators {T F≺HX | X ⊆ {1, . . . ,m}}. Applying the above
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conditions, we have that for each subset of parties X = {x1, . . . , xk}:

X:←→ F :X←→ [SFvGX
:X←→ T G≺HX ]

X:←→ H :X←→

≈ X:←→





x1:←−→ π
x1:←−→

...
xk:←−→ π

xk:←−→





X:←→ G :X←→ T G≺HX
X:←→ H :X←→

≈ X:←→





x1:←−→ π
x1:←−→

...
xk:←−→ π

xk:←−→





X:←→





x1:←−→ G :x1←−→ T G≺Hx1

x1:←−→
...

xk:←−→ G :xk←−→ T G≺Hxk

xk:←−→





X:←→ H :X←→

≡ X:←→





x1:←−→ π
x1:←−→ G :x1←−→ T G≺Hx1

x1:←−→
...

xk:←−→ π
xk:←−→ G :xk←−→ T G≺Hxk

xk:←−→





X:←→ H :X←→

≈ X:←→





x1:←−→ F :x1←−→ [SFvGx1

:x1←−→ T G≺Hx1
]
x1:←−→

...
xk:←−→ F :xk←−→ [SFvGxk

:xk←−→ T G≺Hxk
]
xk:←−→





X:←→ H :X←→ .

The steps in this derivation follow due to the security of the π protocol, splittability of G with respect to H, simple
rearranging/simplification, and the security of the π protocol again (applied k times), respectively.

Thus, setting

T F≺HX =
:X←→ SFvGX

:X←→ T G≺HX
X:←→

completes the proof to show F ≺ H.

Corollary 3.11. The splittability relation ≺ is transitive.

Proof. If F ≺ G ≺ H, then F vstrict G from Lemma 3.9. Then Lemma 3.10 implies F ≺ H.

Splittability characterizing realizability. In the simplified exposition of Section 3.2, splittability provided an exact
characterization of realizability with respect to the completely private channel functionality F∗PVT.

A completely ideal characterization would be a generalization of the form: F vstrict G if and only if F ≺ G.
Unfortunately, this is demonstrably not the case. For instance F vstrict F for all F , but it is easy to see that F 6≺ F
for several functionalities, (for example, FCOM). However, the characterization does generalize for a certain class of
interesting functionalities.

Definition 3.12. Call a functionality F self-splittable if F ≺ F .

When using a self-splittable functionality G as the “channel” for a protocol, splittability with respect to G
completely characterizes secure realizability. Furthermore, the self-splittable functionalities are the only ones for
which this characterization holds.

Theorem 3.13. G is self-splittable if and only if for all F , F vstrict G ⇔ F ≺ G.

Proof. (⇒) F ≺ G implies F vstrict G by Lemma 3.9. Then Lemma 3.10 shows that F vstrict G ≺ G implies F ≺ G.
(⇐) Suppose that for all F , we have F vstrict G ⇔ F ≺ G. Then since G vstrict G unconditionally, we must have

G ≺ G.

Interpreting self-splittability. We propose self-splittability as a useful formal definition of what it means to be a
“communication channel.” It can be easily seen that all typical communication channels (e.g., authenticated or
unauthenticated, public or private, multicast or point-to-point), which are often implicitly incorporated into the
network model, are self-splittable.

We see from the protocols constructed in the proof of Lemma 3.9 that the simulator for a protocol on a self-
splittable channel G can, without loss of generality, faithfully simulate an honest instance of G (in fact, even
interacting with this instance of G using the interface for the honest parties). Indeed, this is a property shared
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by all standard communication channels — that the simulator gains no advantage over honest parties by being able
to simulate the channel itself.

In our simplified exposition, the functionality F∗PVT had a special status in that it could be freely inserted in place
of any communication tape linked between two entities in the network. Self-splittability generalizes this important
property, since F ≺ F implies that “routing” communication through an instance of F is indistinguishable from
routing communication through three instances of F . The {TX} ITMs from the splittability definition effect the
routing through the different instances.

Note, however, that the self-splittability of a functionality depends crucially on whether considering unbounded
or PPT settings. For instance, a channel which applies a one-way permutation to its input is self-splittable in the
unbounded setting, but not in the PPT setting. Indeed, in the PPT setting, there is an advantage in simulating such
a channel versus accessing it as an honest party — the simulator gets access to the preimage under the one-way
permutation, whereas an honest party cannot compute the preimage.

3.3.3 Non-Trivial Protocols

As discussed in Section 2.2.4, we are most often interested in functionalities with delayed output, and protocols
which are non-trivial. Recall that a secure protocol for F in the G-hybrid setting is non-trivial if for every adversary
which corrupts no one and eventually delivers all delayed outputs of G, the corresponding simulator eventually
delivers all delayed outputs in F .

We can easily incorporate this non-triviality requirement into our framework of splittability, as follows. Recall
that F vnt G is defined as F vstrict G̃ via a non-trivial protocol, where G̃ is the multi-session version of G augmented
with FPVT.

Definition 3.14. Let F and G be m-party functionalities and suppose F ≺ G using translator ITMs {TX | X ⊆
{1, . . . ,m}}. Recall that in the splittability definition, each ITM TX interacts with an instance of G (on behalf of the
honest parties) and with an instance of F (as the adversary and corrupt parties).

We say that F is non-trivially splittable with respect to G, and write F ≺nt G, if T{1,...,m} has the property that
when it interacts with an instance of G in which all delayed outputs are eventually delivered, then T{1,...,m} eventually
delivers all delayed outputs of F .

Note that non-triviality for splittability only involves an additional constraint on one of the translator ITMs, just as
the definition of non-triviality for protocols only involves an additional constraint on the simulator in one corruption
scenario.

Theorem 3.15. G̃ is self-splittable if and only if for all F , F vnt G ⇔ F ≺nt G̃.

Proof. It suffices to show that Lemma 3.9 and Lemma 3.10 hold with respect to the ≺nt and vnt relations.
In Lemma 3.9, we construct a secure protocol from a splitting of F with respect to G. SupposeF and G arem-party

functionalities. Then the simulator for this protocol in the case where no parties are corrupt is :X←→ T F≺GX
X:←→ G :X←→.

Thus if the real-world adversary eventually delivers all delayed outputs, and the split of F with respect to G is non-
trivial, then this simulator will will eventually deliver all delayed inputs on F .

In Lemma 3.10, we derive a splitting of F with respect toH, given that F v G ≺ H. Suppose that F vnt G ≺nt H
and let X = {1, . . . ,m}. Then the proof of Lemma 3.10 constructs the translator TX to be :X←→ S :X←→ T ′X

X:←→, where
S is the simulator for the protocol that realizes F v G, and T ′X is the translator ITM from G ≺ H. Both of these
ITMs have the property that whenever the interface to their right eventually delivers all delayed outputs, then they
eventually deliver all outputs on the interface to their left. Thus the proof of Lemma 3.10 constructs a non-trivial
splitting in this case.

3.4 Applications of the Theory

In this section, we apply the general theory developed in the previous section to specific settings and classes of
functionalities, to obtain several new, concrete results as easy consequences.

3.4.1 Elementary Impossibility Proofs

A compelling aspect of our splittability characterization is that all previous impossibility results for the UC model
can be re-derived quite easily, because the splittability definition involves interactions only with ideal functionalities,
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which give ideal guarantees that are easy to interpret and apply. Furthermore, splittability allows us to derive
with only one argument impossibility results with respect to all natural communication channels (i.e., self-splittable
functionalities).

As concrete examples, we can give elementary proofs that the following functionalities have no non-trivially
secure protocols using any natural communication channel. While these impossibility results are not new (except
for our consideration of arbitrary communication channels), we include them here to demonstrate how useful
splittability is for deriving impossibility results.

Theorem 3.16. There is no non-trivial secure realization for any of the following functionalities, using any self-splittable
communication channel, in either the PPT or computationally unbounded setting:

• Coin-tossing: FCOIN (Figure 2.4)

• Commitment: FCOM (Figure 2.3)

• Oblivious transfer: FOT (Figure 2.2)

Proof. In all of the following examples, we consider a dummy adversary which corrupts no parties, and environments
which instruct the dummy adversary to immediately deliver all delayed outputs.

For each of the listed functionalities F , we show that F 6≺nt G for any functionality G. Then by Theorem 3.15,
we have that F 6vnt G for all self-splittable G. The 2-party splittability definition involves a single indistinguishability
constraint between two interactions. The first interaction involves one copy of F and another ITM acting as an
adversary. The second interaction involves two independent instances of F being synchronized by other ITMs. We
will simply show an environment that distinguishes between the two interactions, provided that the splitting of F is
non-trivial.

Coin-tossing: Consider an environment that gives input OK to both parties and outputs 1 if both parties report
the same output from FCOIN. This environment outputs 1 with probability 1 in the first interaction, since all delayed
outputs are delivered assuming the split is non-trivial. However, in the second interaction, the two instances of FCOIN

are independent, and regardless of the behavior of other ITMs in the compound functionality, the two parties will
receive different outputs with probability 1/2.

Commitment: Consider an environment that gives input (COMMIT, b) to Alice for a randomly chosen bit b, waits for
Bob to report output COMMITTED, then gives input REVEAL to Alice and outputs 1 if Bob reports output (REVEAL, b).
Again, in the first interaction, the environment outputs 1 with probability 1 if the split is non-trivial. However, in
the second interaction, a bit must be committed in Bob’s instance of FCOM, independent of the environment’s choice
of b since the other instance of FCOM has not yet revealed b. Thus Bob will eventually report the wrong output with
probability 1/2.

Oblivious transfer: Consider an environment that supplies random input x0, x1 for Alice and random input b for
Bob, and outputs 1 if Bob reports output xb. Again, in the first interaction, the environment outputs 1 with probability
1 if the split is non-trivial. However, in the second interaction, input (x′0, x

′
1) is given to Bob’s instance of FOT with

at least one bit of uncertainty about the environment’s choice of (x0, x1) by the properties of the other FOT instance.
Thus, Bob will report the wrong output with probability at least 1/4.

We can also show an impossibility result that is specific to the PPT setting. Let FZK be a zero-knowledge
functionality, parameterized by a polynomial-time computable relation R. It takes as input (x,w) from Alice, and if
R(x,w) = 1 it gives delayed output x to Bob. We denote LR = {x | ∃w : R(x,w) = 1}.

Theorem 3.17. There is no non-trivial secure realization for FZK when LR ∈ NP \ BPP, using any self-splittable
communication channel, in the PPT setting.

Proof. Following the outline of the previous proofs, we consider a class of environments parameterized by pairs (x,w)
such that R(x,w) = 1. These environments supply input (x,w) to Alice and output 1 if Bob outputs x. As before,
these environments output 1 with probability 1 in the first interaction, assuming that the split is non-trivial so that all
delayed outputs are delivered. But in the second interaction, the ensemble of ITMs between the two instances of FZK

(which execute in the same way for all environments in this class) must compute a witness w′ such that R(x,w′) = 1,
given x alone. However, this is not possible for all x ∈ LR by a PPT algorithm, unless LR ∈ BPP.
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3.4.2 Characterization of Non-Reactive Functionalities

We now use splittability for 2-party functionalities to give an explicit, combinatorial characterization for 2-party SFE
(which are regular). This subsumes and completes the characterizations initiated by Canetti, Kushilevitz, and Lindell
[22], who gave broad impossibility results for several large subclasses of 2-party SFE. We will also strengthen the
impossibility results to show that they hold with respect to any self-splittable communication channel.

The impossibility results of Canetti, Kushilevitz, and Lindell [22] were later extended by Kidron and Lindell [60]
to the setting where certain “trusted setup” functionalities G are also available for protocols to use. These extensions
can also be shown in our framework by observing that these particular functionalities G are self-splittable.

Since splittability applies to completely arbitrary 2-party functionalities, we are actually able to characterize a
larger class than SFE functionalities; in fact, we will characterize all 2-party non-reactive functionalities. Note that
these functionalities may be randomized and have input domains of unbounded size. However, we use a similar
convention to describe non-reactive functionalities. Namely, a non-reactive functionality F waits for inputs x from
Alice and y from Bob, then it samples a random tape r and gives delayed output fA(x, y, r) to Alice, and delayed
output fB(x, y, r) to Bob. For simplicity, we write fA(x, y) to denote the distribution of outputs fA(x, y, r) induced
by a random choice of r.

Definition 3.18. Let F = (fA, fB) be a 2-party non-reactive functionality. We say that F has unidirectional influence if
one party’s output does not depend on the other party’s input. That is, if fA(x, y) ≈ f ′A(x) for some randomized function
f ′A, or if fB(x, y) ≈ f ′B(y) for some randomized function f ′B . Here, “≈” is meant to denote statistical indistinguishability
in the computationally unbounded setting, or computational indistinguishability in the PPT setting. Otherwise F has
bidirectional influence.

Note that unidirectional influence implies that fA(x, y) ≈ fA(x, y′) for all x, y, and y′, by the transitivity of the ≈
relation.

Definition 3.19. Let F = (fA, fB) be a 2-party non-reactive functionality with unidirectional influence; say, the first
party’s output does not depend on the second party’s input. We say that F is completely invertible if there exists
admissible ITMs R1 and R2 such that for all inputs x, y, the outcome of:

(y∗, s)← R1; fB

(
R2

(
s, fB(x, y∗)

)
, y
)

is (computationally or statistically, depending on the computational setting) indistinguishable from the random variable
fB(x, y), where the probability is over the randomness of R1 and R2 and of both calls to the randomized function fB(·, ·).

Note that complete invertibility is essentially a property of fB (the randomized function which may depend on
the other party’s input). It implies that when carefully choosing his input to F , Bob’s output from F is sufficient
to compute an input x∗ which is “equivalent” to the input x that Alice used, in the sense that fB(x∗, y) ≈ fB(x, y).
This definition succinctly incorporates both the completely revealing and efficiently invertible properties of Canetti,
Kushilevitz, and Lindell [22].

Theorem 3.20. Let F = (fA, fB) be a 2-party non-reactive functionality. Then F vnt FPVT if and only if F has
unidirectional influence and is completely invertible.

Furthermore, if F 6vnt FPVT, then F 6vnt G for any self-splittable G.

Proof. (⇐) Suppose F has unidirectional influence and is completely invertible. By Theorem 3.13, it suffices to
show that F ≺nt FPVT. Without loss of generality, suppose that Alice’s output is not affected by Bob’s input (so
fA(x, y) ≈ f ′A(x) for some randomized function f ′A). Then the following is a non-trivial split of F with respect to
FPVT: The ITM T1 runs runs (y∗, s) ← R1, then sends y∗ to FL and delivers both delayed outputs on FL. It receives
an output z ← fB(x, y∗) and computes x∗ ← R2(s, z). It sends x∗ across FPVT to T2. T2 simply sends x∗ to its instance
of FR and delivers both delayed outputs on FR.

When T12 is informed that F has generated delayed outputs, T12 delivers the output for Alice and simulates that
a message was sent across FPVT from Alice to Bob. If this message is delivered, then T12 delivers the delayed output
for Bob in F .

We claim that the two splittability interactions are indistinguishable. By the correctness of R1 and R2, Bob’s
output is indistinguishable between the interactions. By the unidirectional influence property of fA, Alice’s output is
indistinguishable between the interactions.

(⇒) Suppose F does not have unidirectional influence or is not completely invertible. It suffices to show that
F 6≺nt G for any G. We consider two cases.
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First, suppose F has bidirectional influence. Then there exist inputs x0, x1, x2 for Alice and inputs y0, y1, y2 for
Bob such that fA(x0, y1) 6≈ fA(x0, y2) and fB(x1, y0) 6≈ fB(x2, y0). Consider any environment Z that satisfies the
following properties:

• It runs with a dummy adversary that corrupts no parties.

• It chooses random i, j ← {0, 1, 2} and supplies inputs xi and yj to Alice and Bob, respectively.

• Its instructions to the dummy adversary are independent of its choice of i and j, and these instructions cause
both delayed outputs of F to be eventually delivered in both splittability interactions (if this is not possible,
then no split can be non-trivial, and we are done).

• It waits for both parties to return output, and its final output is a function of only one of the parties’ outputs.

Since we are dealing with an arbitrary channel G, we must make the requirements of Z suitably generic. We will show
that for every T1, T2, T12, some environment of this form will distinguish between the two splittability interactions.

Consider the first splittability interaction (involving FL and FR). One of {T1, T2}must be the first to send an input
to one of these instances of F , and the choice of the instance is independent of the environment’s choice of i and j
(since FL and FR do not release any output until receiving both outputs, and since the adversary’s communication
is also independent of i and j). By symmetry, suppose an input y∗ is sent to FL first. With probability at least 1/9,
the environment will select i = 0 and j such that fA(x0, yj) 6≈ fA(x0, y

∗); such a j must exist by the choice of x0, y1,
and y2. Then there is some distinguisher with non-negligible advantage ε in distinguishing fA(x0, xj) and fA(x0, y

∗).
The environment that runs this distinguisher therefore distinguishes between the two splittability interactions with
non-negligible bias ε/9.

For the other case, suppose that F has unidirectional influence, say with Alice’s output not depending on Bob’s
input, but is not completely invertible. Then consider an environment with the following properties;

• It runs with a dummy adversary that corrupts no parties.

• It is parameterized by x and y, and provides input x for Alice, and input y for Bob.

• Its instructions to the dummy adversary are independent of its choice of x and y, and these instructions cause
both delayed outputs of F to be eventually delivered in both splittability interactions.

• It waits for both parties to return output, and its final output is a function of Bob’s output.

Again we will show that for any purported splitting of F , one environment of this kind can distinguish between the
two interactions in the splittability definition.

Define R1 as the compound ITM which runs T1, T2, G, and the dummy adversary interaction (which is fixed and
independent of the environment’s choice of x and y), as in the first splittability interaction, until T1 sends an input
to FL. The output of R1 is defined as the input y∗ sent to FL, as well as the internal state s of all component ITMs.
Then R2 is defined similarly, computing the input sent by T2 to FR when receiving an output from FL and initialized
with a given internal state. Then the output of Bob in this splittability interaction is as in the definition of complete
invertibility.

But for any such R1 and R2, there is a choice of x and y such that the output induced by Bob is distinguishable
from fB(x, y), as is Bob’s output in the other splittability interaction. Thus the environment that uses these inputs
x and y, and runs the appropriate distinguisher, can distinguish the two splittability interactions with some non-
negligible bias.

SFE functionalities. We have given a combinatorial characterization for the large class of non-reactive function-
alities. For the special case of 2-party SFE functionalities (which are deterministic, and have constant-sized input
domains), our characterization collapses to a very simple combinatorial condition:

Theorem 3.21. Let F be a 2-party SFE functionality. Then F vnt FPVT if and only if F is isomorphic to a function of the
form F(x, y) = x. Furthermore, if F is not isomorphic to such a function, then F 6vnt G for any self-splittable channel
G.

We emphasize that this same characterization applies to both the computationally unbounded and PPT settings.
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Proof. Let F = (fA, fB). By Theorem 3.20, it suffices to show that for SFE functionalities, unidirectional influence
and complete invertibility collapse to the condition of being isomorphic to a function of the form F(x, y) = x.

Unidirectional influence demands that, by symmetry, fA(x, y) ≈ f ′A(x) for some function f ′A. However, when
fA is deterministic, and x is from a finite domain, this condition is equivalent (in both the unbounded and PPT
settings) to fA(x, y) = f ′A(x) for some deterministic function f ′A. By isomorphism-preserving operations, we can
have fA(x, y) = x without loss of generality.

Next, F must be completely invertible. Similar to before, in the case of SFE, the complete invertibility condition
is equivalent to the condition that for some choice of y∗, fB(x, y∗) determines an x′ such that fB(x, ·) ≡ fB(x′, ·). In
other words, if fB(x, ·) 6≡ fB(x′, ·), then fB(x, y∗) 6= fB(x′, y∗). It is easy to see that every input for Bob other than
y∗ is redundant. Thus, we can safely remove these inputs while preserving isomorphism to the original functionality.
Then, any inputs x and x′ for Alice which have fB(x, y∗) = fB(x′, y∗) are also redundant, and can be collapsed,
preserving isomorphism. Finally, we may consistently re-label Bob’s outputs to obtain fB(x, y∗) = x; thus both
parties’ outputs are F(x, y) = x.

3.4.3 Results for Multi-Party Functionalities

For functionalities involving more than two parties, the splittability definition is much more complicated, and
combinatorial characterizations like Theorem 3.21 seem difficult to come by. Nonetheless, we can use 2-party results
to obtain some strong necessary conditions for the multi-party setting.

A well-known technique for studying m-party SFE functionalities is the partitioning argument: consider 2-party
SFE functionalities induced by partitioning the m parties into two sets. If the original functionality is realizable, then
clearly so is each induced 2-party functionality.

To exploit the partitioning argument, first we extend the notion of influence from the 2-party case to multi-party
SFE: If in F there is a fixed setting of inputs for parties other than i, such that there exist two inputs for party i which
induce different outputs for party j 6= i, then we say party i influences party j, and write i F j.

Corollary 3.22. If F is an m-party SFE functionality securely realizable using completely private channels, then in the
directed graph induced by F

 , either all edges have a common source, or all edges have a common destination.

Proof. Suppose the graph induced by F
 has two edges ij and i′j′, where i 6= i′ and j 6= j′. Then any bipartition

of [m] which separates {i, j′} and {i′, j} induces a 2-party functionality which has bidirectional influence. Thus F
cannot be realizable.

We see that there are only two simple kinds of securely realizable SFE functionalities. Let P be the common
vertex in the graph induced by F

 . If all edges are directed towards P , then we say that F is aggregated via party P .
If all edges are directed away from P , then we say that F is disseminated via party P .

3-party characterization. The partitioning argument gives a necessary condition, but not generally a sufficient
condition. However, we do identify one restricted setting in which the 2-party restrictions do provide a sufficient
condition for secure realizability.

Our restricted setting is the case of 3-party regular (Definition 3.1) functionalities. That is, those functionalities
whose behavior does not depend on which parties are corrupt, and which do not interact with the adversary. For
these functionalities, we prove the following result:

Theorem 3.23. Let F be a 3-party regular functionality that has an honest-majority protocol using F∗PVT. Then F v F∗PVT

if and only if all 2-party restrictions of F are UC-realizable using F∗PVT.

Proof. The forward implication is trivially true. To show the other direction, assume each 2-party restriction is
realizable (and therefore splittable according to the simplified definition Definition 3.3). Let Ti be the machine
guaranteed by splittability on the 2-party restriction induced by the partition {i}, ({1, 2, 3} \ {i}). Let π be the
honest-majority protocol for F .

Now the protocol π′ we construct is as follows: Party i internally simulates an instance of F , Ti, and of π
(initialized for party i). The communication tapes of F and Ti are linked as in the splittability interaction, and the
remaining communication tape of F (for honest party i) is treated as the protocol’s environment-side communication
tape. The environment-side communication tape of π and the remaining tape of Ti are linked, and the functionality-
side tape of π is treated as the protocol’s functionality-side communication tape.
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Figure 3.6: Steps in the proof of Theorem 3.23, when one party is corrupted. Communication via F∗PVT is denoted by a double
line.

To show that this protocol π′ is secure, we must demonstrate a simulator for each dummy adversary. The cases
when the adversary corrupts all or no parties are trivial. We focus on the case when the adversary corrupts 1 or 2
parties.

Suppose the adversaryA corrupts 2 parties (by symmetry, parties 2 and 3). This adversary interacts on the private
channel on behalf of parties 2 and 3, while the honest party 1 is running π′. However, in this instance of π′, the
honest party is faithfully running an instance of F . Thus, the simulator can reflect a repackaging of the real-world
interaction, simulating the instances of T1, π1, and F∗PVT, as they are interacting in the real-world interaction. Being
a simple repackaging, this simulation is perfectly indistinguishable from the real-world interaction.

Now suppose the adversary A corrupts only one party, by symmetry, party 3 (see Figure 3.6). In the real-world
interaction, parties 1 and 2 are simulating independent instances of F , as well as their respective Ti and πi instances
(box 1 in Figure 3.6). If we repackage this interaction so that everything but the πi instances and FPVT are inside
the environment, we have an interaction in which two honest parties are running π on the channel F∗PVT with an
adversary (box 2 in Figure 3.6). This is an honest majority, and the security of π holds. Thus there is a simulator S
for the adversary so that this interaction is indistinguishable from an ideal-world interaction with F itself (box 3 in
Figure 3.6).

Next, we again repackage so that party 1’s instance of F and T1 are outside of the environment, and S is
inside the environment (box 4 in Figure 3.6). Since the behavior of F does not depend on which parties are
corrupt, this interaction is an interaction with two instances of F being coordinated by an instance of T1. This
is exactly a splittability interaction for the 2-party restriction of F induced by {1}, {2, 3}. Thus, this interaction is
indistinguishable from the interaction with a single F alone (box 5 in Figure 3.6).

Finally, we can again repackage so that party 2’s instance of F and T2 are outside of the environment (box 6 in
Figure 3.6). Again, what remains is exactly a splittability interaction for another 2-party restriction of F . Then the
interaction is indistinguishable from one involving a single instance of F (box 7 in Figure 3.6). Then, repackaging to
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remove S from the environment, we have an ideal-world interaction with F and simulator S (box 8 in Figure 3.6).
By construction, this interaction is indistinguishable from the real-world interaction, so S is a suitable simulator for
our protocol π′.

Note that our protocol requires each player to indirectly simulate executions of another protocol with a
weaker/different security guarantee (in this case, the 2-party restrictions and the honest-majority protocol). This
approach is somewhat comparable to the “MPC in the head” approach recently introduced and explored in several
works [55, 49]. There, significant efficiency gains are achieved in the standard corruption model by leveraging MPC
protocols with security in the honest-majority settings. Our constructions indicate the possibility of extending this
approach by having the parties carry out not a direct protocol execution, but a related simulation.

The same approach does not seem to apply for functionalities which interact with the adversary, whose behavior
depends on which parties are corrupt, or which involve more than three parties (so that two parties do not form a
strict majority).

3.5 Conclusion & Open Problems

We have given the first complete characterization of realizability in the UC framework for arbitrary functionalities
and arbitrary “natural” communication channels. However, the characterization is still somewhat unwieldy in its full
generality for multi-party functionalities.

Interpretations of splittability. We leave open the problem of applying splittability to provide more “simple”
characterizations of realizability, as in our characterizations for 2-party non-reactive and SFE functionalities. In
particular, we derived necessary conditions for multi-party SFE functionalities, but do not know whether they are
sufficient. Our approach of using a partitioning argument to reduce a multi-party functionality to several 2-party
functionalities has been studied in the passive security setting by Chor and Ishai [27]. In that setting, there exist
m-party SFE functionalities which are not securely realizable, but all of whose k-party partitions (for k < m) are
realizable. We leave open the question of whether such counterexamples exist in the context of UC security.

Another natural class of functionalities are reactive, deterministic finite-memory functionalities (DFF). We do not
consider any broad characterizations for reactive functionalities in this chapter. However, later in Chapter 5, we
develop some techniques for reasoning about DFFs. As a consequence of our results in that chapter, we implicitly
derive a combinatorial characterization of secure realizability for DFFs (Section 5.3.3).

Non-natural communication channels. Splittability is a useful tool for understanding secure protocols on natural
communication channels (those which are self-splittable). However, these channels are functionalities of relatively
low cryptographic sophistication. Thus, in our landscape of cryptographic complexity, splittability can be used only
to prove separations of the form F 6v G when G itself has low complexity. In particular, splittability is of no use in
discriminating between the complexities of more sophisticated functionalities.

Later in Chapter 4, we develop some new techniques for deriving complexity separations between more
sophisticated functionalities. However, these techniques appear to be tied to the particular subclass of functionalities
that we consider, and are still not applicable to functionalities of arbitrary high complexity.
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CHAPTER 4

Unbounded Cryptographic Complexity

4.1 Overview

In this chapter, we study 2-party symmetric-output SFE (SSFE) functionalities, in the computationally unbounded
setting. Two-party SSFE is perhaps the most natural and widely studied subclass of MPC functionalities, dating
back to the first MPC paper by Yao [96]. Beaver [4] and Kushilevitz [67] independently gave a combinatorial
characterization of the SSFE functionalities that have perfect passive-secure protocols against unbounded adversaries.
In other security settings (honest-majority and passive/standalone security against PPT adversaries), there exist
secure protocols for all functionalities, and SSFE functionalities were among the first to be considered [97, 41, 9, 25].
Finally, Kilian [62] gave a combinatorial characterization of completeness for this class of functionalities against
unbounded adversaries.

Yet, despite these fundamental results, our understanding of the complexity of securely realizing such function-
alities remains far from complete, especially in the computationally unbounded setting. In this chapter, we present
several new results to shed more light on the cryptographic complexity of SSFE functionalities in the unbounded
setting. We provide the first complete characterizations of passive security1 and of standalone security. We also show
new impossibility results for concurrent self-composition, and identify a complex landscape of structures for SSFE
functionalities under the vu reduction. A visual overview of all of the cryptographic complexity we uncover is given
in Figure 4.1.
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Figure 4.1: Cryptographic complexity landscape of 2-party SSFE, with several example functionalities.

1Although Beaver [4] and Kushilevitz [67] already have a characterization for perfectly secure protocols, ours is the first in the more natural
model in which protocols are allowed to have negligible error.
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4.1.1 Our Results

Leveraging passive security. The complete characterization of passive security by Beaver and Kushilevitz is purely
combinatorial. They prove that a 2-party SSFE functionality F has a perfect, passive-secure protocol if and only
if F satisfies a recursive combinatorial condition called decomposability. Decomposable functionalities have very
simple deterministic secure protocols, whose round structure has a direct, natural correspondence with the recursive
structure required by the definition of decomposition. We call these simple deterministic protocols canonical protocols.

Underpinning all of our results in this chapter is the intuition that these canonical protocols reflect the structure
of all protocols for SSFE functionalities, in a wide variety of security settings that are much more demanding than
passive security. Intuitively, canonical protocols so fundamentally express the structure of an SSFE functionality, that
any protocol for that functionality in any setting will have to disclose information in essentially the same sequence.
More formally, we prove the following technical theorem which unifies all of our further cryptographic complexity
results:

Lemma. Let F be a uniquely decomposable 2-party SSFE. Then F has a non-trivial protocol that is UC-secure (resp.
standalone secure) if and only if the canonical protocol for F is UC-secure (resp. standalone secure).

Thus, to show that F is not securely realizable, it suffices to show a single attack against the (very simple)
canonical protocol for F . Consequently, we are able to derive impossibility results which are simple and intuitively
clear. The restriction that F be uniquely decomposable is necessary, since multiple decompositions can yield very
different canonical protocols.

To prove Corollary 4.15, we show that if π is some purported protocol for F , then for every adversary attacking
the canonical protocol for F , there is a corresponding adversary attacking π that achieves the same effect in all
environments. The proof requires us to establish a correspondence between steps in an arbitrary protocol π and steps
in the canonical protocol for F (equivalently, steps in the decomposition of F), in terms of how much information
about the parties’ inputs has been revealed so far. As a direct consequence of the proof, we also show that canonical
protocols have optimal round complexity among passive-secure protocols — even among randomized protocols with
negligible error probability.

Alternative characterizations of realizability. We first use some of the techniques developed for Corollary 4.15
to extend the characterization of Beaver and Kushilevitz to the more natural model in which protocols can have
negligible error probability. Thus we have the following:

Theorem. Let F be a 2-party SSFE functionality. F has a (statistically secure) passive-secure protocol if and only if F
is decomposable.

We also show a surprising characterization of passive security as a natural statement in the language of UC
security:

Theorem. Let F be a 2-party SSFE functionality. Then F is passively realizable if and only if F vunt FCOM.

Intuitively, the commitment functionality FCOM captures the essence of passive security. However, FCOM cannot be
said to be complete, since it is not an SSFE functionality itself. To prove this characterization, we develop a general
purpose compiler which converts any passive-secure SSFE protocol into a UC-secure protocol in the FCOM-hybrid
setting.

Next, we give the first complete characterization of standalone security for SSFE functionalities. We define
an additional property of decomposable functionalities called saturation. This property completely characterizes
standalone security:

Theorem. Let F be a 2-party SSFE functionality. Then F is standalone-realizable if and only if F is saturated.

Intuitively, a functionality is saturated if every traversal of the decomposition structure (equivalently, set of
messages in the canonical protocol) corresponds to a legitimate input to the functionality. We define saturation
explicitly as a special case of unique decomposability. As such, our technical results regarding canonical protocols
apply, and we crucially use the connection to canonical protocols to prove the characterization.

Concurrent self-composition. Lindell [70] considered the concurrent self-composition setting, in which a protocol
is analyzed in the context of many concurrent instances of the same protocol. He showed that, in the PPT setting,
security under general (that is, with no limit on the number of protocol instances) concurrent self-composition is
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equivalent to full-fledged UC security, for almost all functionalities. This impossibility result stands in contrast with
the SSFE protocols of Lindell [69] and Pass and Rosen [80], which are secure for a fixed number of concurrent
protocol instances in the PPT setting.

In the unbounded setting, however, Backes, Müller-Quade, and Unruh [3] demonstrated a protocol for an SSFE
functionality which was standalone-secure, and even had a perfect, efficient (rewinding) simulator, but was not
secure against two concurrent instances. In fact, their protocol is the canonical protocol for that functionality. Using
our new techniques, we are able to extend and greatly generalize their attack, to obtain the following:

Theorem. Let F be a 2-party SSFE functionality with unique decomposition. If F is not UC-realizable, then F has no
protocol secure against even two concurrent instances.

Thus concurrent attacks are an inherent property of the SSFE functionalities themselves, and are not particular to
the specific protocol considered by Backes, Müller-Quade, and Unruh [3]. As is the case with all of the impossibility
results in this chapter, to prove this theorem, we need only show an attack against two concurrent instances of the
canonical protocol for F .

Impossibility results in the UC framework. Finally, we apply our technical tools in the UC framework to derive
cryptographic complexity separations with respect to the vunt relation. We prove the following fundamental result
identifying decomposition depth (i.e., the number of recursive steps in the decomposition of an SSFE functionality)
as one indicator of cryptographic complexity:

Theorem. If F is a 2-party SSFE functionality with unique decomposition depth m and G is a 2-party SSFE functionality
with a (not necessarily unique) decomposition of depth n < m, then F 6vunt G.

Since decomposition depth is equivalent to round complexity for passive security, another interpretation of this
result is that round complexity against passive adversaries is an indicator of cryptographic complexity as measured
in the UC setting.

Applying Corollary 4.26, we can easily identify the following interesting complexity structures uncovered by the
vunt reduction:

Theorem. There exists a strict, infinite hierarchy ofvunt-complexity; that is, functionalities G1,G2, . . . such that Gi vunt Gj
if and only if i ≤ j.

There also exist functionalities F and G whose complexities are incomparable; that is, F 6vunt G and G 6vunt F .

We note that these are the first results differentiating the relative complexities of intermediate MPC functionalities
(that is, functionalities which are neither trivial nor complete under the reduction in question).

Acknowledgement. Our characterizations of passive security (Theorem 4.17) and standalone security (Theo-
rem 4.23) were independently discovered by Künzler, Müller-Quade, and Raub [66]. They also extend these results
to a multi-party setting, and beyond the symmetric-output case.

4.2 SSFE Preliminaries

We review some relevant previous results classifying SSFE functionalities, mainly regarding passive security and
completeness.

Definition 4.1 (Decomposable [4, 67]). A 2-party SSFE functionality F : X × Y → D is row decomposable if there
exists a partition X = X1 ∪ · · · ∪Xt, with t ≥ 2, such that the following hold for all i ≤ t:

• Xi 6= ∅;

• for all y ∈ Y , x ∈ Xi, x′ ∈ (X \Xi), we have F(x, y) 6= F(x′, y); and

• F
∣∣
Xi×Y is either a constant function or column decomposable, where F

∣∣
Xi×Y denotes the restriction of F to the

domain Xi × Y .

We define being column decomposable symmetrically with respect to X and Y . We say that F is simply decomposable
if it is either constant, row decomposable, or column decomposable.
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For instance, the functionality 0 0
1 2 is row-decomposable but not column-decomposable. 0 1

1 0 is both row- and

column-decomposable. Neither 0 0
0 1 nor

0 0 1
3 4 1
3 2 2

are decomposable. Decomposability completely characterizes perfect

passive security in the unbounded setting:

Theorem 4.2 ([4, 67]). Let F be a 2-party SSFE functionality. Then F is decomposable if and only if it has a perfectly
secure protocol against passive, unbounded adversaries.

For convenience in our proofs, we have presented a slightly different definition of decomposability than that of
[4, 67]. We insist that row and column decomposition steps strictly alternate, and thus each decomposition step
must select the “most refined” partition possible. We say that a function F is uniquely decomposable if all of its
decompositions are equivalent up to re-indexing the sets X1, . . . , Xt (resp. Y1, . . . , Yt) at each step. Thus 0 0

1 2 is

uniquely decomposable, but 0 1
1 0 is not, since the first step may be either a row- or a column-decomposition step.

Canonical protocols [4, 67]. If F is decomposable, then a canonical protocol for F is a deterministic protocol
defined inductively as follows:

• If F is a constant function, then both parties output the value, without interaction.

• If F : X × Y → Z is row decomposable as X = X1 ∪ · · · ∪Xt, then Alice announces the unique i such that her
input x ∈ Xi. Then both parties run a canonical protocol for F

∣∣
Xi×Y .

• If F : X × Y → Z is column decomposable as Y = Y1 ∪ · · · ∪ Yt, then Bob announces the unique i such that his
input y ∈ Yi. Then both parties run a canonical protocol for F

∣∣
X×Yi .

It is an easy exercise to see that a canonical protocol is a perfectly secure protocol for F against unbounded passive
adversaries.

Deviation revealing. Prabhakaran and Rosulek [84] showed that for a class of functionalities called “deviation
revealing” functionalities, if a protocol π is a UC-secure realization of that functionality, then that same protocol is
also secure against passive adversaries. Note that this property is not true in general for all SFE functionalities. For
example, the SFE in which Alice gets no output but Bob gets the boolean-OR of both parties’ inputs is not passively
realizable. However, the protocol where Alice simply sends her input to Bob is UC-secure, since a malicious Bob can
always learn Alice’s input in the ideal world by choosing 0 as its input to the functionality. It turns out that SSFE
functions are deviation revealing. For completeness, we include here an adapted version of this result:

Lemma 4.3 ([84]). Let π be a non-trivial UC-secure (perhaps in a hybrid world) or a standalone-secure protocol for a
2-party SSFE functionality F . Then π is also passive-secure protocol for F as well (in the same hybrid setting as π).

Proof. We show that, without loss of generality, the simulator for π maps passive real-world adversaries to passive
ideal-world adversaries. A passive adversary A for π is one which receives an input x from the environment, runs π
honestly, and reports its view to the environment. Note that in the context of SSFE functionalities, the relevant kinds
of environments comprise a special class of standalone environments, so that even if π is only standalone secure, its
security still holds with respect to the environments we consider for passive security.

Suppose S is the simulator for A. In the ideal world, both parties produce output with overwhelming probability
since π is a non-trivial protocol (and A is passive). Thus S must also allow the other party to generate output in
the ideal world with overwhelming probability, meaning that S must receive x from the environment, send some x′

to the ideal functionality F , receive the output F(x′, y) and deliver the output. Without loss of generality, we may
assume S does so with probability 1.

Suppose x′ is the input sent by S to F . This input is selected independently of the environment’s choice of
input for the honest party. If F(x, y) 6= F(x′, y) for some input y, then consider an environment that uses y for
the honest party’s input. In this environment, the honest party will report F(x, y) in the real world, but F(x′, y) in
the ideal world, so the simulation is unsound. Thus with overwhelming probability, S sends an input x′ such that
F(x, ·) ≡ F(x′, ·). We may modify S by adding a simple wrapper which ensures that x (the input originally obtained
from the environment) is always sent to F . With overwhelming probability, the reply from F is unaffected by this
change. Conditioned on these overwhelming probability events, the output of the wrapped S is identical to that of
the original S. However, the wrapped S is a passive ideal-world adversary: it receives x from the environment, sends
x to F , and delivers the output.
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Normal form for protocols. For simplicity in our proofs, we will often assume that a protocol is given in the
following normal form:

1. If m1,m2, . . . are the messages exchanged in a run of the protocol, then (m1,m2, . . .) can be uniquely and
unambiguously obtained from the string m1m2 · · · . This can be achieved without loss of generality by encoding
all protocol messages in a prefix-free code.

2. As the last steps of the protocol, both parties announce their final output. It is easy to see that this is without
loss of generality when the functionality’s output is symmetric, even for standalone or UC security.

3. The honest protocol does not require the parties to maintain a persistent state besides their private input
(in particular, no random tape). Instead, the protocol program for each party is simply a mapping P :
{0, 1}∗ × {0, 1}∗ × {0, 1}∗ → [0, 1], indicating that if τ is the transcript so far, and a party’s input is x, then
its next message is m with probability P (x, τ,m). In other words, randomness can be sampled as needed and
immediately discarded. This requirement is without loss of generality for computationally unbounded parties,
since at each step a party can (re)sample a random tape from the set of tapes consistent with their private input
and transcript so far.

The consequence of this normal form is that it becomes easier to reason about parties who keep no internal state,
and easier to reason about protocols in which the final output is a public function of the transcript (i.e., the output
does not depend on a party’s private state).

Completeness. We also review the known results characterizing completeness for SSFE functionalities.

Definition 4.4. We say that {x, x′} × {y, y′} is an OR-minor in F if:

F(x, y) = F(x, y′)
= 6=

F(x′, y) 6= F(x′, y′)

Lemma 4.5 ([65]). Let F be a 2-party SSFE functionality. Then F is complete under the vunt reduction if and only if F
contains an OR-minor.

In fact, Kraschewski and Müller-Quade [65] prove a more general theorem than stated above, in which the
functionality need not have symmetric output. We use this more general result later in Chapter 5.

4.3 Simulation of Canonical Protocol in a General Protocol

In this section, we develop our main new technical tool, the protocol simulation theorem. Throughout the section
we fix a 2-party SSFE functionality F with input domain X × Y and fix a passive-secure protocol π for F , in normal
form.

4.3.1 Structure of Protocols

We first introduce some terminology, notation, and simple technical observations relating to the structure of protocol
transcripts.

Definition 4.6. Let Pr[u|x, y] denote the probability that π generates a transcript that has u as a valid prefix (that is, u
consists of a sequence of complete messages between parties), when executed honestly with x and y as inputs.

Let F be a set of partial π-transcripts that is prefix-free.2 Define Pr[F |x, y] =
∑
u∈F Pr[u|x, y]. We call F a frontier if

F is maximal – that is, if Pr[F |x, y] = 1 for all x, y. We denote as Dx,yF the probability distribution over F where u ∈ F
is chosen with probability Pr[u|x, y].

Claim 4.7. For any protocol π, there exist functions α and β such that Pr[u|x, y] = α(u, x)β(u, y). In other words, the
probability of a transcript being generated can be expressed as the product of two probabilities, each of which depends on
only one party’s input.

2That is, no string in F is a proper prefix of another string in F .
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Proof. The next message function depends only on the active party’s input and the transcript so far. For a message m
and partial transcript u, denote by πA(um, x) is the probability that Alice’s next message is m when running on input
x and the transcript so far is u. Define πB for Bob analogously. Suppose we run π on inputs (x, y) ∈ X × Y , where
Alice sends the first message The probability of obtaining a particular partial transcript u = u1 · · ·un is:

Pr[u|x, y] = πA(u1, x) · πB(u1u2, y) · πA(u1u2u3, x) · · ·

=




n∏

i=1
i odd

πA(u1 · · ·ui, x)







n∏

i=1
i even

πB(u1 · · ·ui, y)


 = α(u, x)β(u, y).

where we define α(u, x) and β(u, y) to be the parenthesized quantities, respectively.

The following lemma is a convenient tool for proving bounds on statistical differences:

Lemma 4.8. Let F be a frontier of partial transcripts in which Alice has just spoken, and let S be the set of partial
transcripts in which Alice just spoken, which are proper prefixes of elements in F .

Then there exist constants cπ ≥ 0 and λ(v, y, y′) ≥ 0 for all v ∈ S such that:
∑

u∈F
α(u, x)|β(u, y)− β(u, y′)| = cπ +

∑

v∈S
α(v, x)λ(v, y, y′).

Proof. For clarity, assume that each message in the protocol is a single bit, and that the parties strictly alternate
rounds. The proof also holds for unrestricted protocols, but is more cumbersome.

Let S0 be the prefix-minimal elements of S (if Alice speaks first in the protocol, then S0 = {0, 1}, otherwise
S0 = {ε}). We will define a sequence S0 ⊂ S1 ⊂ · · · ⊂ St inductively as follows. Let L(Si) be the set of elements of Si
that have no extensions in Si; that is, L(S) = {x ∈ S | (∀y) xy 6∈ S}. We define a pop operation on elements of L(Si)
as follows. When we pop an element u ∈ L(Si), we expand the partial transcript u by two moves in the protocol,
setting Si+1 = Si ∪ {u00, u01, u10, u11}. After some finite number of operations we reach St such that L(St) = F .

We define the weight of a tree Si as:

w(Si) =
∑

u∈L(Si)

α(u, x)|β(u, y)− β(u, y′)|.

Observe that w(St) = ∆
(
Dx,yF ,Dx,y

′

F

)
. We define the quantity cπ = w(S0) ≥ 0. We define the intermediate quantity

δ(u, y, y′) = |β(u, y)− β(u, y′)|. Suppose the node v was popped in Si to obtain Si+1. Then,

w(Si+1)− w(Si) = α(v00, x)δ(v00, y, y′) + α(v01, x)δ(v01, y, y′)

+ α(v10, x)δ(v10, y, y′) + α(v11, x)δ(v11, y, y′)

− α(v, x)δ(v, y, y′).

Since v0 and v1 are nodes where Bob has just spoken, we get that δ(v00, y, y′) = δ(v01, y, y′) = δ(v0, y, y′)
and δ(v10, y, y′) = δ(v11, y, y′) = δ(v1, y, y′). Similarly, α(v0, x) = α(v1, x) = α(v, x). By definition, we have
α(v00, x) + α(v01, x) = α(v0, x) and α(v10, x) + α(v11, x) = α(v1, x). Using these observation we get:

w(Si+1)− w(Si) = (α(v00, x) + α(v01, x)) δ(v0, y, y′)

+ (α(v10, x) + α(v11, x)) δ(v1, y, y′)− α(v, x)δ(v, y, y′)

= α(v0, x)δ(v0, y, y′) + α(v1, x)δ(v1, y, y′)− α(v, x)δ(v, y, y′)

= α(v, x) [δ(v0, y, y′) + δ(v1, y, y′)− δ(v, y, y′)] .

Define λ(v, y, y′) = δ(v0, y, y′) + δ(v1, y, y′)− δ(v, y, y′) and it is easy to verify that λ(v, y, y′) ≥ 0. The expression for
w(St) telescopes, and we obtain the desired result:

w(St) = cπ +
∑

v∈S
α(x, v)λ(v, y, y′).
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4.3.2 Associating Minors with Frontiers

Consider the 2× 2 SSFE functionality 0 0
1 2 , which is the smallest non-trivial (decomposition depth greater than one),

uniquely decomposable SSFE. Observe that in the canonical protocol for this SSFE, Alice completely reveals her input
before Bob reveals anything about his input. We now present a technical result that generalizes this observation about
when information can be revealed, to arbitrary protocols.

Definition 4.9. We say that {x, x′} × {y, y′} is a -minor (resp. -minor) in F if:

F(x, y) = F(x, y′)
6= 6=

F(x′, y) 6= F(x′, y′)


resp. if

F(x, y) 6= F(x, y′)
= 6=

F(x′, y) 6= F(x′, y′)




We now show that in any secure protocol for any F , the order in which parties disclose information about their
inputs must respect all - and -minors within F . That is, if {x, x′} × {y, y′} is a -minor in F , then there must
be a point in the protocol at which Alice has (almost) entirely made the distinction between x and x′, but Bob has
not made any (noticeable) distinction between y and y′.

More formally,

Lemma 4.10 ( Frontiers). For all x 6= x′ ∈ X and any parameter µ(k) < 1, there is a frontier F such that, for all
y, y′ ∈ Y :

• if F(x, y) 6= F(x′, y), then ∆
(
Dx,yF ,Dx

′,y
F

)
≥ µ(k)

(
1− ε(k)

1−µ(k)

)
, and

• ∆
(
Dx
′,y
F ,Dx

′,y′

F

)
≤
(

1+µ(k)
1−µ(k)

)
∆
(
Dx,yF ,Dx,y

′

F

)
.

where ε(k) is the simulation error of π (i.e., the statistical difference between the real and ideal interactions).

Note that when {x, x′} × {y, y′} is a -minor, we have ∆
(
Dx,yF ,Dx,y

′

F

)
≤ ε(k) for all frontiers F by the security

of the scheme. By setting µ = 1−√ε and ν = 4
√
ε, we immediately obtain the following corollary:

Corollary 4.11 ( Frontiers). If {x, x′}×{y, y′} is a -minor in F , then there exists a frontier F and a negligible func-
tion ν (which depend only on x and x′) such that: ∆

(
Dx,yF ,Dx

′,y
F

)
≥ 1− ν(k), and ∆

(
Dx,yF ,Dx,y

′

F

)
,∆
(
Dx
′,y
F ,Dx

′,y′

F

)
≤

ν(k).
In other words, at F , Alice has overwhelmingly made the distinction between inputs x and x′, while Bob has not

made any noticeable distinction between inputs y and y′ (when Alice and Bob are executing the protocol on inputs in the
-minor).

Proof of Lemma 4.10. Suppose we have a protocol π in normal form, and let ε denote the simulation error of π. Let
α and β be defined as in Claim 4.7.

Given parameters x, x′ ∈ X and µ < 1, we define the frontier F as the prefix-minimal elements of:
{
u
∣∣∣ u is a complete transcript, or |α(u, x)− α(u, x′)| ≥ µ(α(u, x) + α(u, x′))

}
.

By “complete transcript”, we mean one on which the parties terminate and give output. Intuitively, F is the first place
at which x and x′ induce significantly different probabilities on partial transcripts, where µ measures the significance.
We extend F so that it becomes a complete frontier, by adding complete transcripts where necessary.

We partition F into Fgood ∪ Fbad, where Fgood are the elements u ∈ F which satisfy |α(u, x)− α(u, x′)| ≥
µ(α(u, x) + α(u, x′)). Each element u ∈ Fbad therefore satisfies α(u, x)/α(u, x′) < (1 + µ)/(1− µ).

Consider any y ∈ Y such that F(x, y) 6= F(x′, y). Let A ⊆ Fbad be the transcripts in Fbad which do not induce
output F(x, y) (all elements of Fbad are complete transcripts, and the output is a function of the transcript alone).
Similarly let B ⊆ Fbad be the transcripts in Fbad which do not induce output F(x′, y). Thus Pr[A|x, y] and Pr[B|x′, y]
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must each be at most ε. Observe that Fbad ⊆ A ∪B. Thus we have:

Pr[Fgood|x, y] = 1− Pr[Fbad|x, y]

≥ 1−
∑

u∈A
α(u, x)β(u, y)−

∑

u∈B
α(u, x)β(u, y)

≥ 1−
∑

u∈A
α(u, x)β(u, y)−

(
1 + µ

1− µ

)∑

u∈B
α(u, x′)β(u, y)

= 1− Pr[A|x, y]−
(

1 + µ

1− µ

)
Pr[B|x′, y]

≥ 1− ε−
(

1 + µ

1− µ

)
ε = 1− 2ε

1− µ.

The same bound holds for Pr[Fgood|x′, y]. Now,

∆
(
Dx,yF ,Dx

′,y
F

)
=

1

2

∑

u∈F
|α(u, x)− α(u, x′)|β(u, y)

≥ 1

2

∑

u∈Fgood

µ (α(u, x) + α(u, x′))β(u, y)

=
µ

2

(
Pr[Fgood|x, y] + Pr[Fgood|x′, y]

)

≥ µ
(

1− 2ε

1− µ

)
.

To show the other part of the lemma, consider any y, y′ ∈ Y . Let S be the set of all proper prefixes of elements
F that correspond to points where Alice has just spoken. By Lemma 4.8, we can express the statistical difference
at F in terms of a positive linear combination of α(v, x) values for v ∈ S. Since by definition every v ∈ S satisfies
α(v, x′)/α(v, x) ≤ (1 + µ)/(1− µ), we have:

∆
(
Dx
′,y
F ,Dx

′,y′

F

)
=

1

2

∑

u∈F
α(u, x′)|β(u, y)− β(u, y′)|

=
1

2

(
cπ +

∑

v∈S
α(v, x′)λ(v, y, y′)

)

≤ 1

2

(
cπ +

1 + µ

1− µ
∑

v∈S
α(v, x)λ(v, y, y′)

)

≤ 1

2

(
1 + µ

1− µ

)(
cπ +

∑

v∈S
α(v, x)λ(v, y, y′)

)

=

(
1 + µ

1− µ

)
∆
(
Dx,yF ,Dx,y

′

F

)
.

4.3.3 Protocol Simulation Theorem

Our main protocol simulation theorem extends Lemma 4.10 to show that the information disclosed during any
protocol must come in the same order as in the canonical protocol, provided that the canonical protocol is unique.
This restriction on the canonical protocol is necessary, since different non-isomorphic canonical protocols for the
same F can admit completely different kinds of attacks (e.g., for the XOR function, depending on which party speaks
first).

Theorem 4.12 (Protocol Simulation). If F is uniquely decomposable, and π is a passive-secure protocol for F (in the
unbounded setting), then the canonical protocol πc for F is “as secure as” π, in the following sense: For all adversaries
A, there exists a simulator S such that for all environments Z, we have EXEC[Z,A, πc,FPVT] ≈ EXEC[Z,S, π,FPVT].

In other words, every effective attack on the canonical protocol in the UC setting can be translated into an attack
against π. Thus, if the canonical protocol for F is not secure against a given class of environments, then F is not
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securely realizable (by any protocol) against that class of environments (see Corollary 4.15).
To prove the theorem, we first establish two intermediate lemmas:

Lemma 4.13. For frontiers F and G, let “G � F |x, y” denote the event that when running the protocol on inputs x, y,
the transcript reaches G strictly before reaching F . Then

∆
(
Dx,yF ,Dx

′,y′

F

)
≤ ∆

(
Dx,yG ,Dx

′,y′

G

)
+

1

2

(
Pr[G� F |x, y] + Pr[G� F |x′, y′]

)
.

Proof. Partition F into F1 and F2, where F1 are the partial transcripts in F which are prefixes of elements in G. Thus
the distribution of transcripts at frontier F1 can be expressed as a function of the distribution of transcripts at frontier
G. Then,

∆
(
Dx,yF ,Dx

′,y′

F

)
=

1

2

∑

u∈F1∪F2

∣∣∣Pr[u|x, y]− Pr[u|x′, y′]
∣∣∣

≤ ∆
(
Dx,yG ,Dx

′,y′

G

)
+

1

2

∑

u∈F2

(
Pr[u|x, y] + Pr[u|x′, y′]

)

= ∆
(
Dx,yG ,Dx

′,y′

G

)
+

1

2

(
Pr[F2|x, y] + Pr[F2|x′, y′]

)

= ∆
(
Dx,yG ,Dx

′,y′

G

)
+

1

2

(
Pr[G� F |x, y] + Pr[G� F |x′, y′]

)
.

This completes the proof.

Lemma 4.14. Let F be a uniquely decomposable SSFE functionality. Then for each step X × Y in the decomposition
of F (by symmetry, suppose X × Y is row-decomposable as X = X1 ∪ · · · ∪Xn), there exists a frontier F (X,Y ) and a
negligible quantity λ such that for all (x, y), (x′, y′) ∈ X × Y ,

∆
(
Dx,yF (X,Y ),D

x′,y′

F (X,Y )

)
≤ λ, if x, x′ belong to the same part Xi

∆
(
Dx,yF (X,Y ),D

x′,y′

F (X,Y )

)
≥ 1− λ, otherwise.

Proof. We prove the claim by induction on the decomposition depth d of F
∣∣
X×Y . When d = 1, the claim follows

trivially by the security of the protocol and triangle inequality of statistical difference, setting λd = 2ε.
Now, suppose d ≥ 2, and suppose by symmetry that F

∣∣
X×Y is row-decomposable as X = X1 ∪ · · · ∪Xn. For each

i ≤ n, we have an associated frontier F (Xi, Y ) and negligible quantity λd−1 by the inductive hypothesis. We will use
this fact to construct a frontier F (X,Y ) with the desired properties.

Step 1: F ′(i, j). For every distinct i, j ≤ n, we will construct a frontier F ′(i, j) with the following property: For
all (x, y), (x′, y′) ∈ (Xi ∪Xj)× Y ,

• if x, x′ ∈ Xi or x, x′ ∈ Xj (i.e., x and x′ are in the same part of the row-decomposition), then

∆
(
Dx,yF ′(i,j),D

x′,y′

F ′(i,j)

)
≤ γ;

• otherwise (x and x′ are in different parts of the row-decomposition), ∆
(
Dx,yF ′(i,j),D

x′,y′

F ′(i,j)

)
≥ 1− γ,

where γ is negligible in the security parameter.
If F

∣∣
Xi×Y and F

∣∣
Xj×Y are both constant functions, then F ′(i, j) is simply the set of complete transcripts. By the

security of the protocol, the above claim is satisfied with γ = 2ε.
Otherwise, our construction is symmetric with respect to i and j, so assume that F

∣∣
Xi×Y is column-decomposable

as Y = Y1 ∪ · · · ∪ Ym. Then F
∣∣
Xj×Y is either column-decomposable as Y = Y ′1 ∪ · · · ∪ Y ′m′ ; or it is constant, in which

case we define m′ = 1 and Y ′1 = Y for simplicity. Furthermore, we assume without loss of generality that the sets are
indexed so that Y1 ∩ Y ′1 6= ∅.

We will construct F ′(i, j) and prove the above properties by induction. More specifically, we will show by
induction on `+ `′ that:

• For all (x, y), (x′, y′) ∈ Xi × (Y1 ∪ · · · ∪ Y`), we have ∆
(
Dx,yF ′(i,j),D

x′,y′

F ′(i,j)

)
≤ γ`+`′ .
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• For all (x, y), (x′, y′) ∈ Xj × (Y ′1 ∪ · · · ∪ Y ′`′), we have ∆
(
Dx,yF ′(i,j),D

x′,y′

F ′(i,j)

)
≤ γ`+`′ .

The remaining condition to be shown will then follow easily.
To prove the base case, we first observe that since F is uniquely decomposable, Y = (Y1 ∩ Y ′1) ∪ (Y \ (Y1 ∩ Y ′1))

is not a valid decomposition of both F
∣∣
Xi×Y and F

∣∣
Xj×Y . By symmetry, assume that it is not a valid decomposition

of F
∣∣
Xi×Y ; thus there exists x ∈ Xi, y ∈ Y1 ∩ Y ′1 , and y′ 6∈ Y1 ∩ Y ′1 , such that F(x, y) = F(x, y′). By the properties of

decompositions, this equality implies that y′ ∈ Y1; therefore y′ 6∈ Y ′1 . Without loss of generality, assume that the sets
are indexed so that y′ ∈ Y ′2 .

Choose x′ ∈ Xj arbitrarily; then {x, x′} × {y, y′} is a -minor. We will define F ′(i, j) as the frontier given by
Lemma 4.10 for inputs x, x′ and parameter µ to be fixed later. By the properties of this frontier, we then have

∆
(
Dx
′,y
F ′(i,j),D

x′,y′

F ′(i,j)

)
≤
(

1 + µ

1− µ

)
ε.

Our choice of µwill ensure that this statistical difference is negligible. However, by the inductive hypothesis, these
two input pairs (one in Xj × Y ′1 and one in Xj × Y ′2) induce overwhelmingly different distributions at F (Xj , Y ); the
distributions have statistical difference at least 1 − λd−1. Thus (intuitively) F ′(i, j) must be encountered before
F (Xj , Y ), with high probability. More formally, by Lemma 4.13, we have:

Pr[F ′(i, j)� F (Xj , Y )|x′, y] ≥ 1− 2

(
λd−1 +

(
1 + µ

1− µ

)
ε

)
;

Pr[F ′(i, j)� F (Xj , Y )|x′, y′] ≥ 1− 2

(
λd−1 +

(
1 + µ

1− µ

)
ε

)
.

The event “F ′(i, j) � F (Xj , Y )” can be expressed naturally as a statistical test on the distribution of transcripts

at frontier F (Xj , Y ). For any (x∗, y∗) ∈ Xj × Y ′1 , we have that ∆
(
Dx
′,y
F (Xj ,Y ),D

x∗,y∗

F (Xj ,Y )

)
≤ λd−1 by the inductive

hypothesis. Thus the probability of the event “F ′(i, j)� F (Xj , Y )” can differ by no more than λd−1 when executing
the protocol on inputs (x′, y) versus inputs (x∗, y∗). Thus, we have:

Pr[F ′(i, j)� F (Xj , Y )|x∗, y∗] ≥ 1− 3λd−1 − 2

(
1 + µ

1− µ

)
ε,

for all (x∗, y∗) ∈ Xj × Y ′1 .
Then, intuitively, since F ′(i, j) is almost always encountered before F (Xj , Y ), for all inputs in Xj × Y ′1 , and all

of these inputs induce negligibly close distributions at F (Xj , Y ), then all of these inputs must also induce negligibly
close distributions at F ′(i, j) as well. More formally, we have the following bound for all (x0, y0), (x1, y1) ∈ Xj × Y ′1 :

∆
(
Dx0,y0
F ′(i,j),D

x1,y1
F ′(i,j)

)
=

1

2

∑

u∈F ′(i,j)
F ′(i,j)�F (Xj ,Y )

∣∣∣Pr[u|x0, y0]− Pr[u|x1, y1]
∣∣∣

+
1

2

∑

u∈F ′(i,j)
F ′(i,j)6�F (Xj ,Y )

∣∣∣Pr[u|x0, y0]− Pr[u|x1, y1]
∣∣∣

≤ ∆
(
Dx0,y0
F (Xj ,Y ),D

x1,y1
F (Xj ,Y )

)

+
1

2

∑

u∈F ′(i,j)
F ′(i,j)6�F (Xj ,Y )

(
Pr[u|x0, y0] + Pr[u|x1, y1]

)

= ∆
(
Dx0,y0
F (Xj ,Y ),D

x1,y1
F (Xj ,Y )

)

+
1

2
Pr[F ′(i, j) 6� F (Xj , Y )|x0, y0]

+
1

2
Pr[F ′(i, j) 6� F (Xj , Y )|x1, y1]

≤ 4λd−1 + 2

(
1 + µ

1− µ

)
ε.
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We can apply the same reasoning for Xi × Y1 and Xj × Y ′2 ; for each of these domains of F , its input pairs all induce
pairwise negligibly close distributions at the frontier F ′(i, j).

However, we have also shown above that, due to the -minor {x, x′} × {y, y′}, some particular input pair in

Xj × Y ′1 induces a negligibly close (within
(

1+µ
1−µ

)
ε) distribution to an input pair in Xj × Y ′2 , at the frontier F ′(i, j).

Thus by the triangle inequality, we have that

∆
(
Dx0,y0
F ′(i,j),D

x1,y1
F ′(i,j)

)
≤ 8λd−1 + 5

(
1 + µ

1− µ

)
ε,

for all (x0, y0), (x1, y1) ∈ Xj × (Y ′1 ∪ Y ′2).

This establishes the inductive claim for ` = 1, `′ = 2, with γ3 = 8λd−1 + 5
(

1+µ
1−µ

)
ε.

To complete the inductive step, we use a very similar argument as in the base case. Set Y ∗ = (Y1 ∪ · · · ∪ Y`) ∩
(Y ′1 ∪ · · · ∪ Y ′`′), and observe that (unless Y ∗ = Y , in which case we are done) Y = Y ∗ ∪ (Y \ Y ∗) is not a valid
column-decomposition of both F

∣∣
Xi×Y and F

∣∣
Xj×Y . By symmetry, suppose it is not a column-decomposition of

F
∣∣
Xi×Y . As above, there exists x0 ∈ Xi, y ∈ Y ∗, y′ ∈ Y \ Y ∗ such that F(x0, y) = F(x0, y

′). Then y′ ∈ Y1 ∪ · · · ∪ Y`,
and y′ 6∈ Y ′1 ∪ · · · ∪ Y ′`′ . Assume that the sets are indexed so that y′ ∈ Y ′`′+1.

Let x ∈ Xi and x′ ∈ Xj be the values used in the definition of F ′(i, j). By the inductive hypothesis,

∆
(
Dx,yF ′(i,j),D

x,y′

F ′(i,j)

)
≤ γ`+`′ , so by the construction of F ′(i, j), we have ∆

(
Dx
′,y
F ′(i,j),D

x′,y′

F ′(i,j)

)
≤
(

1+µ
1−µ

)
γ`+`′ .

Then applying the same argument as before, (since (x′, y′) ∈ Xj × Y ′`′+1) we can show:

∆
(
Dx0,y0
F ′(i,j),D

x1,y1
F ′(i,j)

)
≤ 8λd−1 + 5

(
1 + µ

1− µ

)
γ`+`′ ,

for all (x0, y0), (x1, y1) ∈ Xj × (Y ′1 ∪ · · · ∪ Y ′`′+1).

This completes the inductive claim for (`, `′ + 1), setting γ`+`′+1 = 8λd−1 + 5
(

1+µ
1−µ

)
γ`+`′ .

Finally, if we have established the inductive claim, then it is easy to establish the second desired condition of
F ′(i, j). The definition of F ′(i, j) implies that for any y ∈ Y , x ∈ Xi, and x′ ∈ Xj , we have ∆

(
Dx,yF ′(i,j),D

x′,y
F ′(i,j)

)
≥

µ
(

1− 2ε
1−µ

)
. So by the triangle inequality, we have:

∆
(
Dx0,y0
F ′(i,j),D

x1,y1
F ′(i,j)

)
≥ µ

(
1− 2ε

1− µ

)
− γm+m′ ,

for any x0 ∈ Xi, x1 ∈ Xj , and y0, y1 ∈ Y .
It finally suffices to set µ appropriately. First observe that solving the recurrence γn yields that γn =

O

((
5
(

1+µ
1−µ

))n−1

(λd−1 + ε)

)
. Then setting µ = 1− (λd−1 + ε)1/(m+m′), we have that γm+m′ = O(10m+m′(λd−1 +

ε)1/(m+m′)), which is negligible when λd−1 and ε are negligible, and m,m′ are constant. Then all the desired bounds
are negligible, with negligible quantity γ = O(γm+m′). 4

Step 2: R(i). Next, for each i ≤ n, we define a set R(i) of transcript prefixes, as follows. First, for each Xi, we
arbitrarily choose a representative xi ∈ Xi. Define the following two sets:

L(i) = {u | (∀j 6= i) some prefix of u appears in F ′(i, j)};

R(i) =

{
u ∈ L(i)

∣∣∣∣ α(u, xi) > max
j 6=i

α(u, xj)

}
.

Thus L(i) is a frontier, consisting of the partial transcripts which have reached every F ′(i, j) frontier. Suppose
(x, y), (x′, y′) ∈ Xi × Y . Then we have:

∆
(
Dx,yL(i),D

x′,y′

L(i)

)
≤ 1

2

∑

j 6=i

∑

u∈L(i)∩F ′(i,j)

∣∣∣Pr[u|x, y]− Pr[u|x′, y′]
∣∣∣

≤
∑

j 6=i
∆
(
Dx,yF ′(i,j),D

x′,y′

F ′(i,j)

)
≤ nγ.
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Note that the distribution of partial transcripts at any F ′(i, j) can be naturally expressed as a function of the
distribution of transcripts at L(i). Thus for any input pairs (xi, y) with xi ∈ Xi, and (xj , y) with xj ∈ Xj , we have:

∆
(
Dxi,yL(i),D

xj ,y

L(i)

)
≥ ∆

(
Dxi,yF ′(i,j),D

xj ,y

F ′(i,j)

)
≥ 1− γ.

Note that the optimal statistical test for distinguishing Dxi,yL(i) and Dxj ,yL(i) is to output (xi, y) on input u if
α(u, xi) < α(u, xj) and output (xj , y) otherwise. Since this statistical test is optimal and the statistical difference
is at least 1 − γ, the probability of reaching a transcript u ∈ L(i) such that α(u, xi) ≤ α(u, xj) when running the
protocol on input xi is at most γ. This observation motivates the definition of R(i), and for all y ∈ Y , we have:

Pr[¬R(i)|xi, y] ≤
∑

j 6=i

∑

u∈L(i)
α(u,xi)≤α(u,xj)

Pr[u|xi, y] ≤
∑

j 6=i
γ = (n− 1)γ.

Then it follows that Pr[¬R(i)|x, y] ≤ 2nγ for all (x, y) ∈ Xi × Y , since ∆
(
Dx,yL(i),D

xi,y
L(i)

)
≤ nγ. 4

Step 3: The final construction. Note that for distinct i and j, the set R(i) ∪ R(j) is prefix-free by definition. We
finally define F (X,Y ) as the partial transcripts of

⋃
iR(i), along with any complete transcripts needed to extend

F (X,Y ) to a frontier.
Let (x, y), (x′, y′) ∈ Xi × Y . Then we have:

∆
(
Dx,yF (X,Y ),D

x′,y′

F (X,Y )

)

=
1

2

∑

u∈F (X,Y )∩R(i)

∣∣∣Pr[u|x, y]− Pr[u|x′, y′]
∣∣∣

+
1

2

∑

u∈F (X,Y )\R(i)

∣∣∣Pr[u|x, y]− Pr[u|x′, y′]
∣∣∣

≤ ∆
(
Dx,yL(i),D

x′,y′

L(i)

)
+

1

2

∑

u∈F (X,Y )\R(i)

(
Pr[u|x, y] + Pr[u|x′, y′]

)

≤ ∆
(
Dx,yL(i),D

x′,y′

L(i)

)
+

1

2

(
Pr[¬R(i)|x, y] + Pr[¬R(i)|x′, y′]

)

≤ 3nγ.

This establishes half of the desired claim.
Now let (x, y) ∈ Xi × Y and (x′, y′) ∈ Xj × Y , where i 6= j. Consider the statistical test on partial transcripts

in F (X,Y ) in which we output (x, y) on input u if α(u, xi) > α(u, xj), and output (x′, y′) otherwise. The
probability that this statistical test gives an incorrect answer is at most Pr[¬R(i)|x, y] + Pr[¬R(j)|x′, y′] = 4nγ. Thus

∆
(
Dx,yF (X,Y ),D

x′,y′

F (X,Y )

)
≥ 1− 4nγ. Finally, setting λ = 4nγ completes the proof.

Completing the proof. Finally, the proof of Theorem 4.12 follows naturally from the previous lemma:

Proof of Theorem 4.12. Given such frontiers corresponding to each decomposition step, the required simulation is
natural. Suppose by symmetry that the adversary A corrupts Alice alone. The simulator’s job is to simulate the
canonical protocol to A, while interacting with the honest Bob in the protocol π. The simulator S does the following:

1. Maintain variables X,Y , and x ∈ X. X and Y are initialized to the domain of function F , and x is initialized
to an arbitrary element of X.

2. For each step in the canonical protocol for F , do:

(a) If this is a step in which Alice speaks, then receive a message in the canonical protocol from A. The
message determines a subset X ′ ⊆ X upon which to recurse in the canonical protocol. Update X ← X ′,
and if x 6∈ X ′, choose an arbitrary x′ ∈ X ′ and update x← x′.

(b) If this is a step in which Bob speaks, then run the π protocol honestly on input x, with the external honest
Bob. Run until the partial transcript reaches the frontier in π corresponding to Bob’s next decomposition
step. If the frontier for a different Bob decomposition step is encountered first, then abort.
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Otherwise, determine the subdomain Y ′ ⊆ Y for this decomposition step such that Bob’s input lies in Y ′;
by the construction of the frontiers, there is an accurate statistical test to determine this subdomain with
overwhelming probability. Update Y ← Y ′, and simulate to A the corresponding message (Y ′) in the
canonical protocol.

3. After the last step of the canonical protocol, continue honestly running the protocol π on the current value of
input x, with honest Bob.

We note that the simulator S may change its input x several times during its (otherwise honest) execution of the π
protocol. Here it is important that π be in normal form, so that the next-message function depends only on the input
and the transcript generated so far (in particular, not on a long-term private random tape).

Without loss of generality since the canonical protocol is deterministic, suppose thatA is deterministic. For y ∈ Y ,
define A(y) ∈ X to be an input x ∈ X such that if A interacts with an honest Bob who runs the (deterministic)
canonical protocol on input y, then A will produce messages in the canonical protocol consistent with having input
x ∈ X. To show the soundness of the simulation, it suffices to show that whenever S is interacting with an honest
Bob with input y in protocol π, the π transcript and the simulated canonical protocol transcript are indistinguishable
from respective transcripts honestly generated on inputs A(y) and y. In particular, this implies that the output of Bob
will be indistinguishable in the two settings, by the correctness of π and the canonical protocol.

We prove the correctness of the simulation via a sequence of hybrid interactions. Suppose the maximum number
of Alice-rounds in the canonical protocol is n, and let y be the input upon which the honest Bob is executing the
protocol π. For i ∈ {0, . . . , n}, let xi be the value of variable x after i times through step (2a). Thus in the ith time
through step (2b), the simulator will honestly run protocol π on input xi, and xn = A(y).

We define Hybrid i, for i ∈ {0, . . . , n}, to be identical to the simulation, except that in the first i times through
step (2b), we set the variable x← xi; thereafter the simulator updates variable x as normal. Thus Hybrid 0 is exactly
the simulation. In Hybrid n, the simulator runs π honestly on input A(y) the entire time, and generates a simulated
canonical protocol transcript indistinguishable from one generated with Bob’s true input y, as desired. The latter
condition is because by the correctness of the frontiers, it is only with negligible probability that in step (2b), the
simulator will abort or incorrectly determine Y ′ such that Bob’s input y ∈ Y ′.

Finally, we must show the indistinguishability of consecutive hybrids. The difference between Hybrids i and i+ 1
is that in the first i times through step (2b), the simulator honestly runs the π protocol with input xi instead of
xi+1. By construction, both xi and xi+1 induce the same messages in the first i rounds of the canonical protocol,
when Bob has input y. Thus by the correctness of the frontiers, these two inputs induce statistically indistinguishable
partial transcripts in the first i times through step (2b). The remainder of the interaction depends only on the partial
transcript; in particular, not on the past values of the x variable. Thus the entire interaction is indistinguishable
between the two hybrids, as desired.

Implications for other security settings. Theorem 4.12 proves an equivalence between attacks against the
canonical protocol and against any other protocol, in the UC sense. Consequently, the theorem also has implications
for other security settings as well:

Corollary 4.15. Let F be a uniquely decomposable 2-party SSFE. Then F has a non-trivial protocol that is UC-secure
against a class of environments C if and only if the canonical protocol for F is such a protocol.

Proof. One direction (⇐) of the claim is immediate. For the other direction, suppose π is such a secure protocol for
F , but the canonical protocol is not. By the properties of F , we have that π is also a passive-secure protocol for F . As
such, Theorem 4.12 holds. There is an adversary attacking the canonical protocol in some environment in the class
C which violates the security of F . Theorem 4.12 implies that there is a corresponding adversary attacking π, in the
same environment, which also violates the security of F . This contradicts the supposed security of π.

In particular, standalone security and concurrent-self-composable security are both defined as UC security for a
restricted class of environments; and Corollary 4.15 applies to those security settings (as well as to full UC security,
of course).

4.3.4 Round Complexity

LetR(π, x, y) denote the random variable indicating the number of rounds taken by π on inputs x, y, and letR(F , x, y)
denote the same quantity with respect to the canonical protocol for F (which is deterministic).
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Corollary 4.16. Let F be a 2-party SSFE functionality. If F is uniquely decomposable, then its canonical protocol
achieves the optimal round complexity. That is, for every secure protocol π for F , we have E[R(π, x, y)] ≥ R(F , x, y)−ν,
where ν is a negligible function in the security parameter of π.

Proof. The proof of Theorem 4.12 constructs for π a frontier for each step in the decomposition of F (corresponding
to each step in the canonical protocol). By the required properties of the frontiers, the transcript for π must visit all
the relevant frontiers in order, one strictly after the next, with overwhelming probability.

4.4 Characterizing Passive Security

In this section, we apply Lemma 4.10 to extend the characterization of Beaver [4] and Kushilevitz [67] to the case
of statistical security. We also show a new characterization of passive security in terms of the ideal commitment
functionality.

Theorem 4.17. Let F be a 2-party SSFE functionality. Then F has a (statistically secure) passive-secure protocol if and
only if F is decomposable.

Proof. (⇐) Trivial by the (perfect) security of canonical protocols.
(⇒) Suppose F has a passive-secure protocol π. Then it cannot have an OR-minor, since such functions are

complete for passive security [63]. One can easily verify that if F does not have both a - and -minor, then it is
decomposable (in fact, F is isomorphic to the function F(x, y) = x), and the claim is proven. Otherwise, suppose
for contradiction that F is not decomposable. If one decomposition step can be made in F , say, a partition of X into
X1 ∪X2 such that for all y ∈ Y , x ∈ X1, and x′ ∈ X2, F(x, y) 6= F(x′, y), then at least one of F

∣∣
X1×Y and F

∣∣
X2×Y

are also not decomposable. The corresponding condition also holds for column decomposition steps as well. The
protocol in which parties run π, but restricted their inputs to a subdomain of X ′×Y ′ ⊆ X×Y , is also a passive-secure
protocol for F

∣∣
X′×Y ′ . Thus without loss of generality, we assume that F is such that no single decomposition step

can be made in F .
Intuitively, by Lemma 4.10, each -minor {x, x′} × {y, y′} corresponds to a combination of inputs where Alice

must differentiate her input before Bob. Similarly, for a -minor, Bob must differentiate first. We will leverage these
constraints to obtain a contradiction to the assumption that π is a passively secure protocol.

For every -minor {x, x′} × {y, y′}, we compute the associated frontier Fx,x′ . Similarly, for every -minor
{x, x′} × {y, y′}, we compute the associated frontier Fy,y′ . Let FX be the prefix-minimal elements of

⋃
x,x′ Fx,x′ ,

and let FY be the prefix-minimal elements of
⋃
y,y′ Fy,y′ . Intuitively, FX is the first place where Alice finalizes any

distinctions among her inputs, and FY is the first place where Bob finalizes any distinctions among his inputs.
For an arbitrary x ∈ X, y∗ ∈ Y , we will we will inductively construct a sequence Y1 ⊂ · · · ⊂ Yn = Y such that

∆
(
Dx,y

∗

FX
,Dx,yFX

)
≤ i · ν for all y ∈ Yi, where ν is the negligible quantity guaranteed by Lemma 4.10. That is, at FX ,

transcripts are nearly independent of Bob’s input. The base case is Y1 = {y∗}.
For the inductive step, we know that Y = Yi ∪ Yi is not a valid column decomposition step in F . Thus we must

have F(x′, y) = F(x′, y′) for some x′ ∈ X, y ∈ Yi, y′ ∈ Y1. We now consider the 2 × 2 minor {x, x′} × {y, y′}. If

F(x, y) = F(x, y′), then clearly by the security of the protocol, ∆
(
Dx,yFX ,D

x,y′

FX

)
≤ ε ≤ ν. If F(x, y) 6= F(x, y′), then

we cannot have F(x, y) = F(x′, y) or F(x, y′) = F(x′, y′), since this would make the 2 × 2 minor in question an
OR-minor. The only other case is that this 2 × 2 minor is a -minor. As such, it has an associated frontier Fx,x′ .

Since FX contains only prefixes of Fx,x′ , we must have ∆
(
Dx,yFX ,D

x,y′

FX

)
≤ ∆

(
Dx,yFx,x′ ,D

x,y′

Fx,x′

)
≤ ν. Thus in either of

the above cases, we have:

∆
(
Dx,y

∗

FX
,Dx,y

′

FX

)
≤ ∆

(
Dx,y

∗

FX
,Dx,yFX

)
+ ∆

(
Dx,yFX ,D

x,y′

FX

)
≤ (i− 1)ν + ν = i · ν

Setting Yi+1 = Yi ∪ {y′} completes the inductive step.
Summarizing, for any x ∈ X, the transcript distribution at FX is nearly independent of Bob’s input. Symmetrically,

for any y ∈ Y , the transcript distribution at FY is nearly independent of Alice’s input. We will now obtain a
contradiction by showing that the probability of reaching FX strictly before FY is overwhelming, as is the probability
of reaching FY strictly before FX — a clear contradiction since these two events are mutually exclusive.

Let {x, x′} × {y, y′} be a -minor, and let Fx,x′ be its corresponding frontier. As in Lemma 4.13, we let
“F � G | x, y” denote the event that the frontier F is encountered strictly before frontier G when honestly executing
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the protocol on inputs x, y. We know that ∆
(
Dx,yFx,x′ ,D

x′,y
Fx,x′

)
≥ 1 − ν, and also that ∆

(
Dx,yFY ,D

x′,y
FY

)
≤ O(ν). From

Lemma 4.13, this implies that Pr[FY � Fx,x′ | x, y] ≥ 1−O(ν).
Now, checking whether a transcript reaches FY or Fx,x′ first is a statistical test that can be carried out on both

of the distributions Dx,yFY and Dx,yFx,x′ . Since ∆
(
Dx,yFx,x′ ,D

x,y′′

Fx,x′

)
≤ O(ν) for all y′′ ∈ Y , the outcome of this statistical

test must differ by at most O(ν) between input pairs (x, y) and (x, y′′); that is, Pr[FY � Fx,x′ | x, y′′] ≥ 1 − O(ν).

Similarly, since ∆
(
Dx,y

′′

FY
,Dx

′′,y′′

FY

)
≤ O(ν) for all x′′ ∈ X, we must also have Pr[FY � Fx,x′ | x′′, y′′] ≥ 1 − O(ν).

Thus, for an arbitrary minor with associated frontier Fx,x′ , we have

Pr[FY � Fx,x′ | x′′, y′′] ≥ 1−O(ν)

for all x′′ ∈ X, y′′ ∈ Y . Intuitively, when running the protocol on any input, the transcript will reach FY strictly
before Fx,x′ with overwhelming probability. Since FX is defined as the prefix-minimal elements of at most

(|X|
2

)

frontiers of the form Fx,x′ , we have by a union bound that Pr[FY � FX | x′′, y′′] ≥ 1−O(ν) for all x′′ ∈ X, y′′ ∈ Y .
In other words, the protocol (when running on any inputs) will encounter the FY frontier before the FX frontier
with overwhelming probability.

However, a symmetric argument using -minors shows that the protocol will encounter the FX frontier before
the FY frontier with overwhelming probability. This is the desired contradiction.

On SSFE functionalities with security parameters. The above result crucially relies on the fact that the domain
of F does not grow too much as a function of the security parameter. (We use the fact that |X|ν and |Y |ν are both
negligible in the security parameter if ν is negligible.) When statistical error is allowed, this restriction is necessary,
as illustrated by the following example F : Zn × Zn → (Zn ∪ {⊥})2:

F(x, y) =





(⊥, y) if x ∈ {y, y + 1}
(x,⊥) if y ∈ {x+ 1, x+ 2}
(x, y) otherwise

All additions are modulo n. F is not row decomposable, since any partition of X would separate some adjacent pair
of inputs {x, x+ 1}, and yet F(x, x+ 1) = F(x+ 1, x+ 1). Similarly, F is not column decomposable.

However, one may also verify that F
∣∣
X′×Y ′ is decomposable for any X ′×Y ′ ( X×Y . This suggests the following

protocol in which Alice randomly picks a value x′ ∈ X, then announces x′ and also announces whether her input
is equal to x′. Her announcement induces a restriction of the function to either {x′} × Y or (X \ {x′}) × Y , and
the parties continue with the canonical protocol for the appropriate restriction of F . The protocol is perfectly secure
except when x′ ∈ {x, x+ 1}, which happens with probability 2/n. Thus when n is allowed to be superpolynomial in
the security parameter, this protocol is statistically secure.

4.4.1 Characterization in Terms of UC Security

We also show that the natural class of passively realizable SSFE functionalities also has a simple characterization in
terms of the vunt reduction:

Theorem 4.18. Let F be a 2-party SSFE functionality. Then F is passively realizable if and only if F vunt FCOM.

To show a reduction to FCOM, we give a general-purpose “compiler” that compiles any passive-secure protocol
into a UC-secure protocol in the FCOM-hybrid setting. In particular, this step of the proof applies to any passive-
secure protocol for a non-reactive functionality, not just canonical protocols or protocols for SSFE functionalities. In
particular, the output of the functionality may be non-symmetric or randomized. This compiler, like the well-known
GMW compiler [41], may be of independent interest.

We break the proof into several steps, the first of which is the simple direction:

Proof of (⇐). Suppose π is a secure protocol for F in the FCOM-hybrid setting. Recall that any non-trivial UC-secure
protocol for a SSFE functionality F (in any hybrid setting) is also passive-secure (Lemma 4.3). There is a trivial
passive-secure protocol for FCOM (the committing party sends “COMMITTED” in the commit phase and honestly sends
the correct value in the reveal phase). We can compose π with the passive-secure commitment protocol to obtain a
passive-secure protocol for F in the plain FPVT-hybrid setting.
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• On input (COMMIT, x,X) from Alice, where X is a set: Abort if x 6∈ X. Otherwise, send (COMMITTED, X)
to Bob.

• On input (PROVE, S) from Alice: Abort if S 6⊆ X or if x 6∈ S. Otherwise, send (PROVE, S) to Bob.

Figure 4.2: Commit-and-prove functionality FC&P

For the other direction, we modularize the protocol construction into two steps, carried out in the following
lemmas.

Lemma 4.19. FC&P vunt FCOM, where FC&P is the commit-and-prove functionality defined in Figure 4.2.

Proof. Our protocol for FC&P is as follows, with security parameter k:

1. On input (COMMIT, x,X), where x ∈ X, Alice lets χ ∈ {0, 1}|X| denote the characteristic vector of x in X; that
is, χi = 1 if i = x and 0 otherwise. Alice also chooses k random permutations of X: σ1, . . . , σk.

2. Alice sends X to Bob. Then she instantiates 2k|X| instances of FCOM, which we denote as {Fσi,j ,Fχi,j | i ∈ [k], j ∈
X}. In each Fσi,j , she commits to the value σi(j) ∈ X. In each Fχi,j , she commits to the value χσ−1

i (j) ∈ {0, 1}.

3. Bob receives X and expects to receive 2k|X| commitments from the appropriate size domains. He then chooses
a random string c← {0, 1}k and sends it to Alice.

4. For each i ∈ [k], Alice does the following: If ci = 0, then she opens the commitments Fσi,j for all j. Otherwise,
if ci = 1, then she opens the commitments Fχi,j for all j.

5. Bob checks that Alice opened the appropriate commitments. For each i, Bob does the following: If ci = 0, then
he checks that the decommitments of {Fσi,j | j ∈ X} constitute a valid permutation of X. If ci = 0, then he
checks that the decommitments of {Fχi,j | j ∈ X} contain exactly one 1 and the others 0. If not, then he aborts
the protocol; otherwise, he outputs (COMMITTED, X).

6. On input (PROVE, S), where x ∈ S ⊆ X, then Alice sends S to Bob and does the following: For each i ∈ [k] and
j ∈ X \S, she opens the commitments of Fσi,j and of Fχi,σi(j), if they have not already been opened at an earlier
time.

7. Bob receives S and verifies that S ⊆ X. He ensures that Alice has opened (either in this round or at some
earlier time) Fσi,j for each i ∈ [k] and j ∈ X \ S. Suppose Fσi,j has been opened to σ̂i,j (either in this round or
at some earlier time). For each i ∈ [k], he ensures that the known values {σ̂i,j} contain no duplicates, and are
all elements of X. Then he ensures that Alice has opened (either in this round or at some earlier time) Fχi,σ̂i,j
to the value 0, for each i ∈ [k] and j ∈ X \ S. If all of these checks succeed, then he outputs (PROVE, S).

Correctness of the protocol when both parties are honest is easily verified by inspection. Further, FC&P never receives
input from Bob, so simulation is trivial when the adversary corrupts Bob alone. We now construct a simulator for the
case when the adversary corrupts Alice alone.

The simulator faithfully simulates an honest Bob (who has no input) and FCOM instances in all steps. If the
simulated Bob aborts in step (5), then the simulation also aborts. The simulation is clearly perfect in this case. We
now analyze the simulation in the case where Bob does not abort in step (5).

The simulator sees the values that Alice has sent to the FCOM instances. Let χ̂i,j and σ̂i,j be the values that Alice
sent to Fχi,j and Fσi,j , respectively. Call an index i ∈ [k] valid if the values {χ̂i,j | j ∈ X} contain exactly one 1 and the
rest 0s, and if the values {σ̂i,j | j ∈ X} are a permutation of X. If all indices i ∈ [k] are invalid, then the simulated
Bob would have aborted in step (5) with overwhelming probability 1 − 2−k. Thus we condition on the event that
some index i is valid.

Let i be any valid index, and let x̂ ∈ X be the unique value such that χ̂i,σ̂i,x̂ = 1. The simulator sends
(COMMIT, x̂) to FC&P. Now throughout the simulation, if the simulated Bob outputs (PROVE, S), then the simulator
sends (PROVE, S) to FC&P. It suffices to show that the simulated Bob never outputs (PROVE, S) such that x̂ 6∈ S.
However, to convince Bob that the committed value lies in S, Alice must first open Fσi,x̂ for all i ∈ [k]. In particular,
she must do this for the valid i considered above. Then for that i, she must open Fχi,σ̂i,x̂ . By our assumption, this
commitment can only be opened to the value 1, so the simulated Bob does not output (PROVE, S) in this case. Thus,
apart from the negligible error probability 2−k, the overall simulation is perfect.
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Lemma 4.20. Let F be any non-reactive functionality. If F is securely realizable against passive, unbounded adversaries,
then F vunt FC&P.

Proof. We describe a general-purpose procedure for compiling an arbitrary passive-secure protocol to a UC-secure
protocol in the FC&P-hybrid setting. Suppose π is a passive-secure protocol for F , in random-tape normal form (that
is, all random coin tosses are made ahead of time, and the protocol’s next message function is a deterministic function
of the random tape, input, and transcript so far). Since F is non-reactive, π takes from each party a random tape
from some domain Rk and a single input, both chosen at the beginning of the interaction. The compiled protocol is
as follows, with security parameter k:

1. On input x ∈ X, Alice chooses a random rA ← Rk and sends (COMMIT, (x, rA), X ×Rk) to an instance of FC&P.

2. Bob expects (COMMITTED, X ×Rk) from the first instance of FC&P. Otherwise he aborts.

3. On input y ∈ Y , Bob chooses a random rB ← Rk and sends (COMMIT, (y, rB), Y × Rk) to a new instance of
FC&P.

4. Alice expects (COMMITTED, Y ×Rk) from the second instance of FC&P. Otherwise she aborts.

5. Bob chooses a random r′A ← Rk and sends it to Alice.

6. Alice chooses a random r′B ← Rk and sends it to Bob.

7. Both parties maintain a partial transcript τ for the protocol π, initialized to the empty transcript. For each step
of the protocol π:

(a) If it is Alice’s turn, then she determines the next message m in the π protocol on input x, random tape
rA ⊕ r′A, and transcript τ seen before. She sends m to Bob. Both parties can compute S, the subset of
X ×Rk of input/random tape pairs that are consistent with the message m after seeing transcript τ so far.
Alice sends (PROVE, S) to his instance of FC&P, and Bob expects to receive (PROVE, S); otherwise he aborts.
Both parties update τ ← τ‖m.

(b) If it is Bob’s turn, then the parties do as above, with their roles reversed.

When π terminates, the parties output its result.

The correctness of the protocol is clear, when both parties are honest. We show a simulator for the case where the
adversary corrupts Alice alone; the other case is symmetric. It suffices to reduce the security of the compiled protocol
to the passive security of π. For this, we show a simulator interacting as a passively corrupt Alice in the π protocol
achieves the same effect as the corrupt Alice in the compiled protocol interaction.

The simulation is as follows: It first honestly samples a random tape r ← Rk for its external π interaction. Then
it starts internally running the corrupt Alice. In step (1), when Alice sends (COMMIT, (x, rA), X × Rk) to FC&P, the
simulator internally records x. In step (3), it sends (COMMITTED, Y ×Rk) to Alice, and in step (5) sends r′A = r⊕ rA.
Then the simulator starts running π honestly on input x and random tape r. If the messages sent by the corrupt Alice
in step (7a) ever disagree with the simulator’s execution of π, or if the corrupt Alice’s inputs to FC&P would cause an
honest Bob to abort, then the simulator aborts. Whenever the simulator receives a message m in the π protocol from
the external honest Bob, it simulates that Bob sent m and that Alice received (PROVE, S) for the appropriate S.

It is clear that the simulator is a passive adversary in the π protocol – it honestly samples a random tape and
executes π honestly on some fixed input throughout its interaction. It aborts whenever Bob would abort in the
compiled protocol, except possibly also in the case where the corrupt Alice sends a message that disagrees with the
simulator’s honest execution of π. However, it is easy to see that an honest Bob would have immediately aborted in
these cases as well. By construction, the simulator has computed message m as the next message in the π protocol.
If the corrupt Alice sends message m′ 6= m, then she would have to use FC&P to prove that her committed value
(x, rA) is consistent with m′ and r′A from step (5). But by construction, these values are consistent only with m, as
computed by the simulator.

We note that for deterministic protocols (which are all that are strictly necessary to prove the characterization for
SSFE), the overhead of the compiler is linear in the input size, while for randomized protocols, it is exponential in
the randomness complexity.
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4.5 Characterizing Standalone Security

Our main tool, Theorem 4.12, can apply to the standalone security setting, but only to protocols for uniquely
decomposable SSFE functionalities. In this section we first use a specialized argument for standalone security to prove
that all standalone-realizable SSFE functionalities are uniquely decomposable. Then, we can continue our approach
of applying Theorem 4.12 to identify the additional properties that exactly characterize standalone realizability.

Lemma 4.21. Let F be a 2-party SSFE functionality. If F is standalone-realizable, then F is uniquely decomposable.

Proof. Suppose F has a standalone-secure protocol π. By Lemma 4.3, we have that π is also passive-secure, and
thus F is decomposable. Without loss of generality, assume that π and F are in normal form, with the following
additional properties:

• If inputs (x, y) and (x′, y′) induce different transcripts in some canonical protocol for F (i.e., they are in
different parts of some decomposition for F), then F(x, y) 6= F(x′, y′). This is without loss of generality for
decomposable functionalities, since F is isomorphic to such a functionality.

• If either party aborts the protocol, it first announces in the protocol that it is aborting. Also recall that in our
normal form, honest parties announce in the protocol their final outputs as their last message.

In an interaction between a corrupt party and an honest party running the π protocol, call an outcome of the
interaction either the output of the honest party, or the symbol ⊥A or ⊥B , indicating an abort by honest Alice or
by honest Bob, respectively. By the properties of our normal form, the outcome of the interaction is a publicly
computable function of the transcript.

Suppose we partition the set of possible outcomes into two sets, red and blue. Let the predicate R(m1m2 · · ·mn)
denote the event that the outcome of transcript m1 · · ·mn is red, and let B(m1m2 · · ·mn) denote the event that the
outcome is blue. Then for any protocol whose outcome is a public function of the transcript, the protocol is one of
the following two kinds (suppose Alice sends the first message in the protocol):

• ∃m1∀m2 · · · : R(m1 · · ·mn). This corresponds to a strategy for a corrupt Alice to induce a red outcome with
probability 1.

• ∀m1∃m2 · · · : B(m1 · · ·mn). This corresponds to a strategy for a corrupt Bob to induce a blue outcome with
probability 1.

Now for the sake of contradiction, assume that F has two distinct decompositions. We will show that there is then
a way to partition the outcomes into red and blue so that neither of the two strategies above can be effected in the
ideal world. This will contradict the supposed security of π.

We first claim that there exists a decomposition of F that contains a step X ′ × Y ′ ⊆ X × Y where F
∣∣
X′×Y ′ is

simultaneously row- and column-decomposable. Take any two distinct decompositions of F , and consider the earliest
step at which they differ. Without loss of generality, assume that they differ at the first step. If one decomposition
starts with a row-decomposition step and the other starts with a column-decomposition step, then we are done.
Otherwise, F is (by symmetry) row-decomposable in two distinct ways, say, X × Y = (X1 ∪ · · · ∪ Xm) × Y =
(X ′1 ∪ · · · ∪X ′n) × Y , with {X1, . . . , Xm} 6= {X ′1, . . . , X ′n}. Then by symmetry, there must be some Xi and X ′j such
that Xi ∩ X ′j and Xi ∩ (X \ X ′j) are both non-empty. One can easily verify that F

∣∣
Xi×Y can be row-decomposed

starting with the step Xi = (Xi ∩X ′j)∪ (Xi \X ′j). In particular, this implies that F is not constant over Xi×Y . Also,
Xi × Y appears in one of the two row-decompositions of F , so F

∣∣
Xi×Y must also be column-decomposable (row-

and column-decomposition steps must alternate).
We will let the outcome ⊥A (an abort by honest Alice) be red, and the outcome ⊥B (an abort by honest Bob)

be blue. Now we inductively color the output-outcomes as follows. In the base case, F is both row- and column-
decomposable, say, as X ×Y = (X1 ∪ · · · ∪Xm)×Y and X ×Y = X × (Y1 ∪ · · · ∪Yn). The output ranges of F

∣∣
Xi×Yj

and F
∣∣
Xk×Yl are disjoint when (Xi, Yj) 6= (Xk, Yl), due to the normal form of F . We will color the outputs as a

checkerboard; that is, the outputs of F
∣∣
Xi×Yj are red if i + j is even and blue if i + j is odd. Note that there is no

monochromatic red row or monochromatic blue column in the function table for F .
For the inductive step, if F is row-decomposable as X × Y = (X1 ∪ · · · ∪ Xm) × Y , then for some i, F

∣∣
Xi×Y

contains a step which is both row- and column-decomposable. We color these outputs inductively (they are disjoint
from the outputs in other parts Xj × Y , for j 6= i), and color the remaining outputs of F red. Note that this cannot
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have induced a monochromatic red row or monochromatic blue column in the function table for F . Similarly, if F is
column-decomposable, we inductively color one of the subproblems and color the remaining outputs blue.

The resulting coloring leaves no monochromatic red row or monochromatic blue column. That is, there is no
input for Alice which guarantees a red output-outcome; and by not delivering Bob’s output in the ideal interaction,
Alice can only induce the blue outcome ⊥B . Similarly, there is no strategy for Bob which guarantees a blue outcome
in the ideal interaction. This suggests the following environment to distinguish the real and ideal interactions: Expect
the adversary to corrupt one party, and choose a random input for the honest party. If the honest party is Alice and
the outcome is blue, or if the honest party is Bob and the outcome is red, then output 1. We have shown that an
adversary attacking π can always cause such an environment to output 1 with probability 1. However, in the ideal
world, the environment outputs 1 with probability at most 1−min{1/|X|, 1/|Y |}, which is bounded away from 1 by
a constant. This environment distinguishes between π and the ideal interaction with constant probability, so π is not
secure. Thus we conclude that F must be uniquely decomposable.

We now develop our characterization of standalone realizability.

Decomposition strategies. Let F be a uniquely decomposable 2-party SSFE functionality. We define an Alice-
strategy as a function that maps every row decomposition stepX×Y = (X1∪· · ·∪Xt)×Y to one of theXi’s. Similarly
we define a Bob-strategy for the set of column decomposition steps. If A and B are Alice and Bob-strategies for F ,
respectively, then we define F∗(A,B) to be the subset X ′ × Y ′ ⊆ X × Y obtained by “traversing” the decomposition
of F according to the choices of A and B.

The definition of F∗ is easy to motivate: it denotes the outcome in the canonical protocol for F , as a function of
the strategies of (possibly corrupt) Alice and Bob.

Definition 4.22 (Saturation). Let F be a uniquely decomposable 2-party SSFE functionality. We say that F is saturated
if F is isomorphic to F∗.

To understand this condition further, we provide an alternate description for it. For every x ∈ X we define an
Alice-strategy Ax such that at any row decomposition step X ′ × Y ′ = (X1 ∪ · · · ∪ Xt) × Y ′ such that x ∈ X ′, the
strategy chooses the unique Xi such that x ∈ Xi. For X ′ such that x 6∈ X ′, the choice is arbitrary, say, X1. Similarly
for all y ∈ Y we define a corresponding Bob-strategy By. Note that in the canonical protocol, on inputs x and y,
Alice and Bob traverse the decomposition of F according to the strategy (Ax, By), to compute the set F∗(Ax, By). If
F is saturated, then all Alice strategies should correspond to some x that Alice can use as an input to F . That is, for
all Alice-strategies A, there exists an x ∈ X such that for all y ∈ Y , we have F∗(A,By) = F∗(Ax, By); similarly each
Bob strategy B is equivalent to some By.

As an example, 0 1
2 3 is not uniquely decomposable. 0 1 1

2 3 2 is uniquely decomposable, but not saturated. Finally,
0 1 1 0
2 3 2 3 is saturated.

Note that there is exactly one saturated function (up to isomorphism) for each decomposition structure.

Theorem 4.23. Let F be a 2-party SSFE functionality. Then F is standalone-realizable if and only if F is saturated.

Proof. (⇐) Suppose F is saturated, then we will show that its canonical protocol is standalone secure. Clearly the
canonical protocol is correct, so it suffices to construct a (possibly rewinding) simulator for a corrupt party. The
simulator for an adversary A does the following: By symmetry, suppose A corrupts Alice. First fix a random tape
ω for A, then for every Bob-strategy B, run the canonical protocol against A (using random tape ω), effecting
the strategy B. The (deterministic) choices of A at each decomposition step (equivalently, step of the canonical
protocol) uniquely determine an Alice-strategy A. By the saturation of F , A is equivalent to some Ax strategy, and
the simulator sends x to the functionality F in the ideal world. After receiving the output F(x, y), the simulator gives
to the adversary the (unique) canonical-protocol transcript consistent with F(x, y).

(⇒) Suppose F is standalone-realizable. Then by Lemma 4.21, we know that F is uniquely decomposable. By
Corollary 4.15, then the canonical protocol for F is standalone-secure. However, suppose for contradiction that F
is not saturated. Then there is (by symmetry) an Alice-strategy A that corresponds to no input-strategy Ax. We
will show that the canonical protocol is in fact not standalone-secure in this case, a contradiction. The attack on
the canonical protocol is for a corrupt Alice to effect the strategy A on the canonical protocol. The environment
chooses a random input y for Bob and outputs 1 if Bob reports an output consistent with Bob-strategy By and the
Alice-strategy A. Clearly the environment outputs 1 with probability 1 in the real protocol interaction. However, in
the ideal world, the simulator must send some input x to F (chosen independently of the environment’s choice of y)
and Bob’s output is F(x, y). But with probability at least 1/|Y |, a constant, we have that y is one of the inputs for
which F∗(A,By) and F∗(Ax, By) disagree, so the environment outputs 0.
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This environment distinguishes the real protocol interaction from the ideal interaction. Thus we conclude that F
is saturated.

4.6 Impossibility Results for Concurrent Self-Composition

Recall that in the concurrent self-composition setting, the parties can initiate several concurrent instances of a
single protocol, but with the same roles for each instance. Furthermore, the environment does not interact with
the adversary throughout the execution of these protocol instances.

Lindell [70] showed that security under general (that is, with no limit on the number of protocol instances)
concurrent self-composition is equivalent to full-fledged UC security, for almost all functionalities. His result was
framed in the PPT setting, though the proof also holds in the unbounded setting that we consider in this chapter.

Lindell’s proof heavily relies on the assumption that there is no a priori limit to the number of concurrent protocol
instances. Indeed, in the case where there is such a fixed bound, chosen before the protocol is constructed (a setting
called bounded concurrent self-composition), Lindell [69] and Pass and Rosen [80] constructed secure protocols for
all SFE functionalities.

It remained open whether there is such a difference between bounded and unbounded concurrency, in the
computationally unbounded setting as well. Backes et al. [3] gave an example protocol that was standalone-secure,
and even had a perfect, efficient (rewinding) simulator, but was not secure against 2 concurrent instances. They
left open the question of whether it is their choice of protocol which prevented security under concurrent self-
composition (that is, the protocol requires a rewinding simulation), or an inherent property of the functionality.
Using our new techniques, we are able to extend their concurrency attack and settle the question for the case of
uniquely decomposable SSFE functionalities.

Theorem 4.24. Let F be a 2-party SSFE functionality with unique decomposition. If F is not UC-realizable, then F has
no protocol secure against even two concurrent instances.

Proof. An SSFE functionality F as in the theorem statement must be uniquely decomposable with decomposition
depth at least 2 (since SSFE functionalities with decomposition depth 1 are UC-realizable; Theorem 3.21). We show
a concurrent attack against two instances of the canonical protocol for F , which by Corollary 4.15 implies that F is
not realizable under concurrent self-composition of two instances. Our attack is a simple generalization of the attack
from [3].

By symmetry, suppose Alice speaks first in the canonical protocol, and let x, x′ be two inputs which induce
different messages in the first round of the protocol. Let y, y′ be two inputs which induce different messages in the
second round of the protocol when Alice has input x (thus F(x, y) 6= F(x, y′)). We will construct an adversary that
corrupts Bob. Consider an environment which runs two instances of F , supplies inputs for Alice for the instances,
and outputs 1 if Alice reports particular expected outputs for the two instances. The environment chooses randomly
from one of the following three cases:

1. Supply inputs x and x′, respectively. Expect outputs F(x, y′) and F(x′, y), respectively.

2. Supply inputs x′ and x, respectively. Expect outputs F(x′, y) and F(x, y′), respectively.

3. Supply inputs x and x, respectively. Expect outputs F(x, y) and F(x, y), respectively.

A malicious Bob can cause the environment to output 1 with probability 1 in the real world. He waits to receive
Alice’s first message in both canonical protocol instances to determine whether she has x or x′ in each instance. Then
he can continue the protocols with inputs y or y′, as appropriate.

In the ideal world, Bob must send an input to one of the instances of F before the other (i.e., before learning
anything about how Alice’s inputs have been chosen); suppose he first sends ŷ to the first instance of F . If F(x, ŷ) 6=
F(x, y), then with probability 1/3, he induces the wrong output in case (3). But if F(x, ŷ) = F(x, y) 6= F(x, y′),
then with probability 1/3, he induces the wrong output in case (1). Similarly, if he first sends an input to the second
instance of F , he violates either case (2) or (3) with probability 1/3.

4.7 Cryptographic Complexity Reductions

In this section we develop a new technique for deriving separations among SSFE functionalities with respect to the
vunt relation. We apply the technique to specific functionalities to uncover interesting structures within the landscape
of cryptographic complexity.
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Theorem 4.25. If G is a 2-party non-reactive functionality (not necessarily deterministic or uniquely decomposable
SSFE) with a passive-secure, m-round protocol, and F is a 2-party SSFE functionality with unique decomposition of
depth n > m, then F 6vunt G.

Proof. Suppose for contradiction that π is a protocol for F in the G-hybrid setting. Without loss of generality since G
is non-reactive, assume that every instance of G invoked by π is invoked the following way: In the same step, both
parties send an input to G and then wait for their outputs to be delivered before continuing.

By Lemma 4.3, π is also passive-secure in the same setting. Define π̂ to be the result of replacing each call to G
in π with the m-round passive-secure protocol for G. For simplicity, we assume that the first message in G’s secure
protocol is always prefixed with SUBPROT-START, the last message is always prefixed with SUBPROT-END, and all other
messages are prefixed with SUBPROT. By our assumption about how instances of G are invoked (in particular, that
both parties wait for G to give output before continuing), we have that each instance of G’s protocol appears as a
continuous subsequence of the π̂ protocol — that is, messages from different G-protocol instances are not interleaved.
By the composability of passive-secure protocols, we have that π̂ is a passive-secure protocol for F in the plain (FPVT)
setting.

We will eventually apply Theorem 4.12 to derive an adversary attacking π̂. The proof of Theorem 4.12 constructs
an adversary of the following form: it maintains a local variable for its input. At each step of the protocol, it possibly
changes the contents of that variable, then runs the protocol honestly using the contents of the variable as the input
to the protocol. Say that such an adversary behaves consistently for a span of protocol rounds if throughout that span,
it does not change the contents of its input variable. We call a step of the π̂ protocol off-limits if the last message was
prefixed with SUBPROT or SUBPROT-START (but not SUBPROT-END — the subprotocol is already complete if the last
message begins with SUBPROT-END).

Now suppose that S is an adversary that behaves consistently at every off-limit step in π̂. Then there is an
adversary S ′ which achieves the same effect in the π protocol (in the G-hybrid setting) for all environments. S ′
simply simulates S, except at each point in π when the next message is expected to begin with SUBPROT-START, S ′
instead sends the input to G that π prescribes in this step when using the current contents of S ’s input variable. Since
S is guaranteed to behave consistently consistently until after the corresponding SUBPROT-END message has been
received, it behaves passively throughout the entire subprotocol. Thus S ′ uses the passive security of the protocol for
G to simulate the SUBPROT-messages of the π̂ protocol, given its input and output from G.

Thus, it suffices to construct an adversary S that violates the security of F , and that behaves consistently in every
off-limits steps of π̂. This will contradict the assumption that π is a secure realization of F in the G-hybrid setting. For
this, we first construct an attack on the canonical protocol for F and use a modification of Theorem 4.12 to derive
an adversary S attacking π̂ with the desired properties.

Let x0 ∈ X, y0 ∈ Y be inputs that cause the canonical protocol for F to take n ≥ 2 rounds, the maximum
number of rounds. Let r and r′ denote the indices of the first and last round, respectively, in which Alice speaks in
the canonical protocol for F on inputs (x0, y0). Similarly, let s and s′ denote the first and last rounds in which Bob
speaks. Then {r, s} = {1, 2}, and {r′, s′} = {n− 1, n}.

When running π̂ honestly on inputs (x0, y0), we encounter each of the n transcript frontiers (corresponding to
each round of the canonical protocol) in strict order, with overwhelming probability; that is, we do not encounter
multiple frontiers in the same step of the protocol. As such, there are at least n steps of π̂ between encountering the
first and the nth frontier, inclusively. Note that at most m − 1 ≤ n − 2 consecutive steps of π̂ are off-limits, by our
definition of off-limits. Then by the pigeonhole principle, at least one of the following probabilities must be at least
1/2:

• The probability of encountering a non-off-limits step between the s-th and the (r′ − 1)-th frontiers of π̂
(inclusively), when executing π̂ honestly on inputs (x0, y0).

• The probability of encountering a non-off-limits step between the r-th and the (s′ − 1)-th frontiers of π̂
(inclusively), when executing π̂ honestly on inputs (x0, y0).

By symmetry, suppose the second probability is at least 1/2. Let y1 be such that the unique canonical-protocol
transcripts for inputs (x0, y0) and (x0, y1) agree until Bob’s last message; thus F(x0, y0) 6= F(x0, y1). Let x1 be an
input for Alice such that x0 and x1 induce different message in Alice’s first turn of the canonical protocol, when
Bob uses input y0. Now consider an environment which expects the adversary to corrupt Bob, and which does the
following:

1. Choose random b← {0, 1}, and supply input xb to Alice.

2. Expect b′ ∈ {0, 1} from the adversary. If b′ 6= b or b = 1, then output 0.
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3. If b = 0, then choose random c← {0, 1} and give c to the adversary.

4. Output 1 if Alice reports output F(xb, yc), and 0 otherwise.

The conditions enforced by this environment are similar to those of a “split adversary” considered by [22]. We claim
that, when interacting with any adversary in the ideal world, the environment outputs 1 with probability at most
3/4. If the adversary gives an input y to F before reporting its guess of b to the environment, then its choice of y is
independent of the environment’s choice of c. With probability 1/4, the environment chooses b = 0 and chooses the
c such that F(xb, yc) disagrees with F(xb, y), so the environment outputs 0. If the adversary reports its guess of b
to the environment before interacting with F , then its guess is independent of the environment’s choice of b, so the
environment outputs 0 with probability 1/2.

Thus it suffices to design a suitable attack on the π̂ protocol that succeeds with probability noticeably greater than
3/4.

A straight-forward adversary A attacking the canonical protocol for F can make the environment output 1 with
probability 1: It runs the canonical protocol on input y0. After the first message from Alice (round r), it correctly
determines whether Alice’s input is x0 or x1, and reports accordingly. After receiving c from the environment, it
thereafter runs the canonical protocol on input yc. Note that the difference between y0 and y1 does not make a
difference in the protocol until round s′.

Applying Theorem 4.12 to A results in a S that attacks the π̂ protocol. S only needs to change its input variable
at most once: possibly from y0 to y1. By the choice of x0 and x1, S has determined whether it needs to swap as soon
as it encounters the r-th frontier. Similarly, the resulting simulation is sound if S swaps its input any time except after
leaving the (s′ − 1)-th frontier (at the (s′ − 1)th frontier, inputs y0 and y1 still induce statistically indistinguishable
transcript distributions). We modify S so that whenever it wants to swap its input from y0 to y1, it waits for a
non-off-limits step in this range to do so. If it does not encounter such a step, then S does not change its input and
continues with input y0. Thus S behaves consistently.

The probability that when interacting with S, the environment outputs 0 is at most a negligible amount plus the
probability that b = 0 and c = 1 and S is unable to swap its input. By our assumption, this event happens with
probability at most 1/8, so the environment outputs 1 with probability negligibly close to 7/8. Thus, S violates the
security of F in this environment. Since S behaves consistently, we can construct a S ′ that attacks π in the G-hybrid
setting and achieves the same effect. Finally, this attack S ′ violates the supposed security of π.

From the relationship between a functionality’s decomposition depth and the round complexity of the associated
canonical protocol, we have the following combinatorial criterion:

Corollary 4.26. If F is a 2-party SSFE functionality with unique decomposition depth m and G is a 2-party SSFE
functionality with a (not necessarily unique) decomposition of depth n < m, then F 6vunt G.

Put another way, decomposition depth (equivalently, round complexity of a passive-secure protocol; see Corol-
lary 4.16) for uniquely decomposable SSFE functionalities is a monotonic quantity in the unbounded UC security
setting, which cannot be increased via any protocol. For a certain class of 2-party SSFE functionalities G, we are able
to slightly strengthen Theorem 4.25, to also derive separations between pairs of SSFE functionalities that have the
same decomposition depth:

Theorem 4.27. If F is a 2-party SSFE that has unique decomposition depth at least 2, and G is (isomorphic to) a
functionality of the form G(x, y) = (x, y),3 then F 6vunt G.

Proof sketch. The proof follows closely that of Theorem 4.25. We sketch the important differences.
First, observe that G has two distinct 2-round canonical protocols (and thus has decomposition depth 2): one

in which Alice first announces x, then Bob announces y, and vice-versa. Now, let A be an adversary that attacks
F ’s canonical protocol and violates the security of F in some environment (such an A must exist, since F has
decomposition depth at least two and is therefore not UC-realizable; see Theorem 3.21). Suppose by symmetry that
A corrupts Alice. We will translate A to an attack against any protocol for F in the G-hybrid setting, using the
approach of Theorem 4.25, except that we will replace instances of G with the canonical protocol for G in which
Alice speaks first. (Similarly, if A corrupts Bob, we will use the canonical protocol for G in which Bob speaks first.)
In this way, every off-limits step in the protocol is a turn in which Bob speaks. Thus every adversary corrupting
Alice obtained by applying Theorem 4.12 to the π̂ protocol is an adversary which behaves consistently, and can be
translated to an adversary attacking the π protocol that achieves the same effect.

3 Functionalities of this kind are called symmetric exchange functionalities, and are an important class in the results of Chapter 5. See
Definition 5.22.
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4.7.1 Infinite Hierarchy & Incomparable Complexities

Let Gn : {0, 2, . . . , 2n}×{1, 3, . . . , 2n+1} → {0, 1, . . . , 2n} be defined as Gn(x, y) = min{x, y}. For example, G1 = 0 0
1 2

and G2 =
0 0 0
1 2 2
1 3 4

. It can be seen by inspection that Gn has a unique decomposition of depth 2n. The corresponding

canonical protocol has at most 2n rounds, and is the one in which Alice first announces whether x = 0, then (if
necessary) Bob announces whether y = 1, and so on. These are the “Dutch flower auction” protocols from [3].

Corollary 4.28. The functionalities G1,G2, . . . form a strict, infinite hierarchy of increasing complexity under the vunt
relation. That is, Gi vunt Gj if and only if i ≤ j.

Proof. By Theorem 4.25, Gi 6vunt Gj when i > j. It suffices to show that Gn vunt Gn+1, since the vunt relation is
transitive. We claim that the following is a UC-secure protocol for Gn in the Gn+1-hybrid world: both parties send
their Gn inputs directly to Gn+1, and abort if the response is out of bounds for the output of Gn (i.e., either 2n+ 1 or
2n+ 2).

The protocol is clearly correct when both parties are honest, thus it suffices to show a simulator for an adversary
who corrupts a party. Suppose a real-world adversary attempts to send s to Gn+1 in the protocol. If s ≤ 2n+ 1, then
s is a valid input for Gn, and the other party will accept, so the simulator simply sends s as the input in the ideal
world, and delivers the output; this simulation is perfect. If the corrupt party is Bob, and s = 2n+ 3, then since Alice
is honest, her input will always be the minimum and she will never abort. The simulator can send 2n+ 1 to Gn in the
ideal world (the maximum possible value) and deliver the output. If the corrupt party is Alice and s = 2n+ 2, then if
Bob’s input to the protocol was 2n+ 1, he would abort in the real world interaction. So the simulator sends 2n to Gn
and delivers the output unless the output is 2n, which indicates that Bob’s input must have been 2n + 1. Note that
we crucially use the fact that the simulator can block outputs.

A consequence of Corollary 4.28 is that there is a UC-secure protocol for Gn in the Gm-hybrid setting if and only
if there is such a protocol that is deterministic, has perfect security, and invokes only a single instance of Gm.

Corollary 4.29. There is no functionality F which is complete (with respect to the vunt relation) for the class of passively
realizable 2-party SSFE functionalities, or for the class standalone-realizable 2-party SSFE functionalities.

Proof. This follows from Theorem 4.25 and by observing that there exist functionalities of arbitrarily high decompo-
sition depth in both classes in question.

Corollary 4.30. There exist functionalities F and G whose complexities are incomparable; that is, F 6vunt G and G 6vunt F .

Proof. If F is passively realizable but not standalone realizable, and G is standalone realizable, then F 6vunt G,
since the class of standalone-realizable SFE functionalities is closed under composition. This is because without
loss of generality (as in the normal form considered in the proof of Theorem 4.25), each call to a non-reactive
functionality can be made synchronous in a single step of the calling protocol. Thus no instances of the functionality
are concurrently active.

On the other hand, if F and G are 2-party decomposable SSFE functionalities, and G has unique decomposition
depth larger than the decomposition depth of F , then G 6vunt F , by Corollary 4.26.

As a concrete example, the functionalities F and G are incomparable if we let F be the XOR function (or any
function of the form F(x, y) = (x, y)) and G be any of the Gi functionalities defined in Corollary 4.28.

4.8 Conclusion & Open Problems

We have developed a powerful new tool for analyzing the complexity of 2-party SSFE functionalities, which unifies
all of our impossibility results in a wide variety of security settings. The natural extensions of our work involve
extending these tools to apply to a larger class of functionalities.
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Non-uniquely decomposable functionalities. Our main technical tool crucially relies on unique decomposability
of the target functionality. This restriction prevents us from proving impossibility results for securely realizing
functionalities like a symmetric exchange F(x, y) = (x, y), which may have many decompositions (this class of
functionalities is important in Chapter 5). However, it seems likely that even for non-uniquely decomposable
functionalities, the decomposition structure can be used to construct conceptually simple attacks on its protocols,
in a manner similar to Theorem 4.12. For example, in any execution of any protocol for F , the parties must (at least
intuitively) reveal information about their inputs in the same order as some decomposition of F .

We conjecture that among all decomposable SSFE functionalities F and G, there is a simple combinatorial
characterization (involving the decomposition structure) for when F vunt G. For instance, let Fn : {1, . . . , n}2 →
{1, . . . , n}2 be the simultaneous exchange function defined by Fn(x, y) = (x, y). We conjecture that these
functionalities form an infinite hierarchy of complexity, so that Fi vunt Fj if and only if i ≤ j. However, unlike
the complexity hierarchy that is known in the uniquely decomposable case (Corollary 4.28), all of these functions
have decompositions of depth 2. Our current techniques are only able to prove complexity separations based on
decomposition depth (Corollary 4.26), so any complete combinatorial characterization of vunt will likely have to take
into account more details of the decomposition structure.

Nothing is known about the class of functionalities which are neither complete nor passively-realizable, other

than the simple observation that this class is non-empty. One such 2-party SSFE is the “spiral” function
0 0 1
3 4 1
3 2 2

. Clearly,

completely new techniques are needed to show any results of the form F 6vunt G among functionalities F and G in
this class. However, since this class contains functionalities possibly more complex than any of the classes studied so
far, any better understanding of the class will shed valuable insight on the nature of cryptographic complexity.

Non-SSFE functionalities. Our characterizations of passive- and standalone-realizability are known to generalize
to the case of multi-party (non-symmetric) SFE functionalities [66], so it may be possible to extend our main technical
tools in a similar way. However, our current proof techniques strongly rely on the fact that the SFE being computed
has symmetric output; we use a normal form in which the outcome of the protocol is a public function of the
transcript. Also, the communication channel (i.e., broadcast or point-to-point) makes a significant difference for
secure realizability of multi-party functionalities.

There is no known characterization of passive- or standalone-realizability for randomized functionalities. Once
randomized functionalities are better understood in the passive security setting, it is likely that our techniques can be
updated, since we currently leverage decomposability results of the passive setting in all of our impossibility proofs.

In Chapter 5, we develop some tools for studying reactive functionalities, though it is not clear whether these
automata-theoretic tools can be easily incorporated into our current approach.

Commitment compiler. We have constructed a general purpose “compiler” which converts a passive-secure
protocol into a UC-secure protocol in the FCOM-hybrid setting. We used this compiler to show that among 2-party
SSFE functionalities, F vunt FCOM if and only if F has a passive-secure protocol. We leave open the question of
whether this characterization generalizes to larger classes of functionalities. In particular, our current approach
seems severely limited to the case when F is non-reactive.

Furthermore, the compiler’s overhead is exponential in the randomness complexity of a protocol. A more practical
compiler would have polynomial overhead for all protocols, deterministic and randomized.
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Polynomial-Time Cryptographic Complexity

5.1 Overview

We have seen that the vunt reduction can distinguish infinitely many levels of cryptographic complexity among MPC
functionalities. Naturally, one might wonder whether this is also the case for the vpnt reduction, which is slightly
weaker, yet still strong, being also based on UC security. In this section, we show that, perhaps surprisingly, there are
only two levels of cryptographic complexity under the vpnt reduction.

Zero-one laws. Under any cryptographic reduction v, there are always at least two distinct complexity levels:

• Trivial functionalities: Those which can be securely realized without access to any ideal functionality. Generally,
the security model provides some kind of communication channel that protocols can use “for free”, so the trivial
functionalities are those which reduce to the communication channel. In our case, trivial functionalities are
those which can be securely realized using FPVT.

• Complete functionalities: Those to which every functionality can be reduced. Technically, however, some
functionalities can not have a secure protocol in any reasonable setting. For instance, consider the functionality
which announces the list of corrupted parties — this is valid behavior, since the functionality is provided with
this information. However, no protocol in any setting can securely realize this functionality, since if an adversary
is passive (i.e., follows the protocol), the protocol must erroneously output that no one is corrupt.

In this work, we will follow the convention of Canetti et al. [23], who call a functionality F complete if G v F
for all well-formed functionalities G. A functionality is well-formed if its behavior does not depend on its
knowledge of which parties are corrupt. We directly use the completeness of FCOM proven by Canetti et el., and
thus consider completeness only with respect to well-formed functionalities.

Within each of these two classes, all functionalities are equivalent under v reductions. In the language of
computational complexity, these classes each constitute a degree of the reduction. We say that a class of functionalities
has a zero-one law under a reduction v if every functionality in that class is either trivial or complete with respect to
v reductions.

Zero-one laws are known to exist in several security settings for MPC. However, we note that none of them are
applicable to the UC setting, and all of them are restricted to SFE functionalities:

• For 2-party SFE with one-sided output (one party’s output is a constant function) against active, computation-
ally unbounded adversaries [63].

• For 2-party randomized SFE with one-sided output against passive, computationally unbounded adver-
saries [63].

• For 2-party SFE with one-sided output against passive adversaries; both computationally bounded and
unbounded cases, shown by Beimel, Malkin, and Micali [5]. They also consider a notion of active security
for computationally bounded setting, and extends their dichotomy using a stronger notion of realizability
and a weaker, non-black-box notion of completeness; this result draws the line between realizability and
completeness differently from the above result of Kilian [63], and uses techniques not applicable in the UC
setting.

• For 2-party SFE with one-sided output in the computationally bounded setting, where the size of the function
can depend on the security parameter, shown by Harnik et al. [50]. They show characterizations for
completeness and realizability which are only nearly complementary, reflecting the gap between functions
which are efficiently invertible and one-way. Their approach uses techniques not applicable in the UC setting.

• For 2-party SFE with symmetric, boolean output against passive, computationally unbounded adversaries [64].
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5.1.1 Our Results

In this chapter we prove a zero-one law for the vpnt reduction. We note that if P = NP, then all of our results for
the vunt reduction from Chapter 4 also apply to the vpnt reduction. Thus any result that shows such a significant
difference between these two reductions must necessarily rely on some computational assumption. We consider the
following assumption:

Assumption 5.1. The oblivious transfer functionality FOT has a passive-secure protocol (using FPVT) in the PPT setting.

This assumption is well-studied, and known to be implied by many concrete cryptographic assumptions, such as
the Decisional Diffie-Hellman assumption [76] and the existence of enhanced trapdoor permutations [40]. Our main
theorem is that Assumption 5.1 is necessary and sufficient for a zero-one law under the vpnt reduction:

Theorem 5.2 (Main Theorem). There is zero-one law for 2-party deterministic finite functionalities (Definition 2.7)
with respect to the vpnt reduction if and only if Assumption 5.1 is true.

We emphasize that implicit in this result is the first characterization of secure realizability for a class of arbitrary
reactive functionalities in the UC setting, and the first characterization of completeness for arbitrary reactive
functionalities in any security model.

Our hardness assumption. It is relatively straight-forward to show that Assumption 5.1 is a necessary condition for
the zero-one law. Thus to complete the proof of our main theorem, we must construct protocols which demonstrate
the completeness of every non-trivial DFF, using the minimal hardness assumption Assumption 5.1.

Some of our protocol constructions rely on statistically binding commitment schemes, pseudorandom generators,
and zero-knowledge and witness-indistinguishable proofs (of knowledge) for NP languages. All of these primitives
exist assuming the existence of one-way functions [75, 51, 40]. One-way functions, in turn, are implied by
Assumption 5.1 [48].

Targeting (extractable) commitment. We first observe that the commitment functionality FCOM is complete under
the vpnt reduction (for well-formed functionalities), assuming Assumption 5.1, from the work of Canetti et al. [23]
Thus, to show that F is complete, it suffices to show that FCOM vpnt F .

The simulator for a UC-secure commitment protocol has two main tasks, which highlight the technical challenges
involved: First, the simulator for a corrupt sender must extract the adversary’s input during the commit phase, so
that it can commit to the appropriate bit in the ideal interaction. Second, the simulator for a corrupt receiver must
give an equivocable commitment in the reveal phase, which it must be able to later open to any value in the reveal
phase.

The main challenge in our work is achieving extractability using very simple (but still non-trivial) functionalities,
and without relying on trapdoor permutations or any other assumptions not known to be implied by Assumption 5.1.
Previous UC-secure protocols for commitment have used stronger computational assumptions (trapdoor permuta-
tions and dense cryptosystems in [23] and dual-mode cryptosystems in [82]) to achieve extractability; we use new
protocol techniques to achieve extractability from a non-trapdoor-based assumption.

To focus on the extractability requirement, we define an intermediate ideal “extractable commitment” functional-
ity FEXT-COM. This functionality formalizes the requirement that a protocol has a standalone-secure hiding guarantee,
but admits a straight-line extraction in the UC framework. Then we show that FCOM vpnt FEXT-COM (Lemma 5.26);
thus to show that a functionality is complete, it suffices to use that functionality to construct an “extractable commit-
ment” protocol (i.e., to show FEXT-COM vpnt F). In our FCOM protocol in the FEXT-COM-hybrid setting, we use witness-
indistinguishable proofs and apply an idea similar in spirit to

(
2
1

)
-commitments [78].

Classifying reactive functionalities. Since ours is the first work to consider completeness for arbitrary reactive
functionalities, one of our important contributions is developing new technical tools for reasoning about them. We
model reactive functionalities as finite-state automata, and we develop an automata-theoretic characterization of
important cryptographic properties.

Our characterization allows us to identify exactly what behaviors make a functionality non-trivial. First, a
reactive functionality can be non-trivial if in some state its input/output behavior defines non-trivial SFE behavior.
Second, a reactive functionality can be non-trivial if it uses its memory to store hidden information about the parties’
inputs, which later influences the functionality’s behavior. These intuitive properties, which are challenging to define
formally and combinatorially, completely characterize non-triviality, as demonstrated in the following result:
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Theorem. Let F be a DFF. Then F is non-trivial if and only if FCOM vnt F or G vnt F for some non-trivial SFE
functionality G.

In other words, a functionality is non-trivial if and only if it uses its memory in a non-trivial way (which is
the essence of the commitment functionality FCOM) or it gives input/output in a non-trivial way. We note that
our combinatorial definitions of these properties also provide a completely automata-theoretic characterization of
realizability for arbitrary DFFs. Indeed, the protocols constructed in this proof are unconditionally secure, so the
characterization of realizability also holds in the unbounded setting.

Classifying SFE functionalities. Theorem 5.14 effectively reduces the question of a zero-one law for DFFs to the
simpler question of a zero-one law for SFE functionalities.

We already have a combinatorial characterization of triviality for SFE functionalities from Chapter 3, as well as
a combinatorial characterization for completeness in the unbounded setting from [65] (relying on the completeness
of oblivious transfer [61, 56]). We give the following purely combinatorial classification of non-trivial SFE
functionalities:

Lemma. Let F be a non-trivial 2-party SFE functionality. Then either FOT vnt F , or FCC vnt F , or FCOIN vnt F .

The protocol for FOT is due to Kraschewski and Müller-Quade [65]. FCOIN is the coin-tossing functionality, and FCC

is the symmetric-output SFE functionality whose function table is 0 0
1 2 . We interpret FCC as a kind of cut-and-choose

functionality — Alice can choose to learn Bob’s input by choosing the bottom row input, or choose not to learn it by
choosing the top row input; Bob learns whether or not Alice has learned his input.

Obtaining extractable commitment. To complete the picture, we must finally show extractable commitment
protocols in the FCC-hybrid and FCOIN-hybrid settings.1

Our extractable commitment protocol in the FCC-hybrid setting (Lemma 5.27) achieves extractability by perform-
ing a cut-and-choose on an error-correcting encoding of a random string chosen by the sender, so that the receiver
can (adaptively) choose to see a small fraction of the bits of the codeword. The commitment will use a determin-
istically extracted bit that the receiver has no information about, as a random mask. But the simulator obtains the
entire (possibly noisy, if Alice is corrupt) codeword, which it can use to extract the committed bit.

Our extractable commitment protocol in the FCOIN-hybrid setting directly uses a passive-secure OT protocol and
“compiles” it using (standalone-secure) zero-knowledge and witness-indistinguishable proofs in a variant of the GMW
paradigm [41]. The sender gives a standalone commitment to some random bits, half of which the receiver picks up
using the compiled OT protocol. Then the parties use FCOIN to publicly agree on a random half of the bits to actually
use as the random mask in the commitment (Lemma 5.28). The simulator can arrange for these choices to coincide,
so that it learns the entire random mask and can extract.

Implications of a zero-one law. Composable security is a very desirable cryptographic property. However, the
existing models for composable security have proven to be prohibitively strong. Very few functionalities admit
composably secure protocols in these models, and thus much work has focused on tweaking the models to maintain
a protocol composition theorem while allowing more functionalities to be securely realizable. The most common
augmentation of the model is to assume the existence of a “setup” functionality like a common random string. A
zero-one law implies that all such augmentations of the model are either trivial (they do not add any expressivity) or
else all-powerful (they admit secure protocols for every task).

Indeed, many previously considered setup functionalities were known to be consistent with a zero-one character-
ization. For example, starting with Canetti et al. [23], many setup functionalities are known to be complete, while
Kidron and Lindell [60] showed that the known impossibility results in the plain UC framework also apply in the
presences of several setup functionalities.

We view a zero-one law as strong evidence that the notion of composable security against PPT adversaries is robust.
Indeed, to the best of our knowledge, all existing modifications to the UC framework (not just those involving
simply adding a setup functionality) follow a zero-one characterization, giving more evidence for the robustness of
composable security. For example, relaxing the composability requirement to self-composability yields an equivalent
model to general composability [70]. Bounding network latency [58] or allowing superpolynomial-time simulation
[87] allows secure protocols for all functionalities.

1Canetti et al. [23] gave a secure commitment protocol in the FCOIN-hybrid model, which is secure even against adaptive corruption, but relied
on enhanced trapdoor permutations and dense cryptosystems; we develop a secure commitment protocol in the FCOIN-hybrid setting (against
static corruption) using the minimal hardness assumption.
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5.2 Necessity of the Cryptographic Assumption

We first show that Assumption 5.1 is necessary for our desired zero-one to hold.

Lemma 5.3. Let F be any 2-party SFE functionality that is passively realizable but not UC-realizable (note that such
functionalities exist and that these characterizations are unconditional; see Chapter 4). If F is complete for the vpnt
reduction, then Assumption 5.1 is true.

Proof. If F is complete, then FOT vpnt F via some protocol π. We claim that π is also a passive-secure protocol.
Supposing this is true, we can compose π (a protocol in the F -hybrid setting) with the passive-secure protocol for F
(in the FPVT-hybrid setting) to obtain a passive-secure protocol for FOT to establish Assumption 5.1.

Thus it suffices to show that π is passive-secure. We will use an argument similar to Lemma 4.3 to show that
the simulator for π without loss of generality maps passive real-world adversaries to passive ideal-world adversaries.
Consider an environment that chooses random inputs for all parties (x0, x1 for the sender and b for the receiver) and
outputs 1 if the receiver reports output xb. This environment outputs 1 with probability negligibly close to 1 in the
real world by the correctness of the protocol.

Suppose A is a passive adversary that corrupts the sender. Whenever the corresponding simulator S does not
send (x0, x1) to FOT in the ideal world, the environment outputs 0 with probability 1/2. Thus with overwhelming
probability by the protocol’s security guarantee, S acts passively by sending the correct inputs. Without loss of
generality, S can be made passive with probability 1.

In the other case, suppose A is a passive adversary that corrupts the receiver. Whenever the corresponding
simulator S does not send b to FOT in the ideal world, its view is independent of the correct output xb, so the
environment outputs 0 with probability 1/2. Thus with overwhelming probability, S acts passively by sending the
correct inputs and reporting the output from FOT. Again, S can be made passive with probability 1 without loss of
generality.

5.3 Classifying Reactive Functionalities

Our first step is to develop an “automata-theoretic” language to reason about arbitrary reactive functionalities.

5.3.1 Dominating Inputs

In arguing security, it is often convenient for Alice to assume that Bob will supply an input that is the “worst possible”
for Alice, among all inputs that achieve the same effect. Towards that end, we develop the notion of dominating
inputs to formally define when one input x “achieves the same effect” as another input x′, in the context of a reactive
functionality. Intuitively, this happens when every behavior that can be induced by sending x at a certain point can
also be induced by sending x′ instead, and thereafter appropriately translating subsequent inputs and outputs. More
formally:

Definition 5.4. Let F be a finite functionality, and let x, x′ ∈ X be inputs for Alice. We say that x dominates x′ in the
first round of F , and write x ≥A x′, if there is a secure protocol for F in the F -hybrid setting, where the protocol for
Bob is to run the dummy protocol (as Bob), and the protocol for Alice has the property that whenever the environment
provides input x′ for Alice in the first round, the protocol instead sends x to the functionality in the first round.

We define domination for Bob inputs analogously, with the roles of Alice and Bob reversed. Without loss of
generality, the secure protocol from the definition above may be just the dummy protocol, except possibly when the
environment provides x′ as Alice’s first input. In this case, the definition requires that any behavior of F that is
possible when Alice uses x′ as her first input can also be induced in an online fashion by using x as her first input
(and subsequently translating inputs/outputs according to some strategy).

Note that domination is trivially reflexive, and due to the universal composition theorem, it is also transitive. Also
note that if x dominates x′, then both x and x′ must induce the same output for Bob in the first round, regardless of
Bob’s input.

Combinatorial characterization. We now show that there is also an alternative characterization of dominating
inputs that is purely combinatorial. The previous definition in terms of secure protocols is more intuitive, but the
combinatorial criteria will be useful in proving Lemma 5.8, which is crucially used in Theorem 5.14.

58



CHAPTER 5: POLYNOMIAL-TIME CRYPTOGRAPHIC COMPLEXITY

Definition 5.5. Let F be a DFF, S ⊆ Q2, let x, x′ ∈ X, and let z be a possible output of fA. We define:

next(S, x, x′, z) =
{(
δ(q, x, y), δ(q′, x′, y)

) ∣∣∣ ∃(q, q′) ∈ S, y ∈ Y : fA(q, x, y) = z
}
.

The intuition behind this definition is as follows. Suppose that in some protocol that uses F , Alice has received
inputs x′1, x

′
2, . . . from the environment but has instead sent x1, x2, . . . to F . Suppose Alice is keeping track of S, the

set of pairs (q, q′), such that:

• There is a sequence of inputs for Bob, y1, y2, . . ., such that Alice’s view of F is consistent with F ’s behavior on
input sequence (x′1, y1), (x′2, y2), . . .

• The input sequence (x1, y1), (x2, y2), . . . would put F in state q.

• The input sequence (x′1, y1), (x′2, y2), . . . would put F in state q′.

Then next(S, x, x′, r) defines the subsequent value of S if the environment then provides input x′ but the protocol
instead sends x to F and receives output z.

Definition 5.6. Let F be a DFF, S ⊆ Q2, and x, x′ ∈ X. We say that (x, x′) is good for S if the following are true:

1. For all (q, q′) ∈ S, we have fB(q, x, ·) ≡ fB(q′, x′, ·),
2. For all outputs z, we have

∣∣{fA(q′, x′, y) | ∃(q, q′) ∈ S, y ∈ Y such that fA(q, x, y) = z}
∣∣ = 1,

3. For all outputs z and all x′ ∈ X, there exists x ∈ X such that (x, x′) is good for next(S, x, x′, z).

Intuitively, suppose Alice has been sending different inputs to F than requested by the environment, but is trying
to make the behavior of F reflect the environment’s requests. If S represents Alice’s knowledge about F ’s state so
far (as defined above), and S is not good for x, x′, then Alice has a chance of being caught in the future if in the next
round the environment asks her to send x but she sends x′ instead.

In case (1), there is a chance (depending on Bob’s sequence of inputs) that Alice may induce the wrong output
for Bob in this round. In case (2), Alice might send x to F and get response z as the response, but this new view
might be consistent with at least 2 states which would require Alice to send conflicting outputs to the environment.
In case (3), Alice may be able to induce correct outputs in this round, but she has a chance of being caught in the
next round if the environment happens to provide input x′.

Lemma 5.7. x ≥A x′ if and only if (x, x′) is good for {(q0, q0)}.
Proof. (⇐) Suppose (x, x′) is good for {(q0, q0)}. We must describe a strategy for Alice to send x in the first round,
but make it appear as if she had sent x′ and is running the dummy protocol. Without loss of generality, suppose the
environment internally simulates an instance of F , with the inputs of its choice, and compares the parties’ outputs
with the expected outputs from this simulated instance of F .

Then the protocol for Alice is to maintain a state of knowledge S according to her view, as above, starting with
S = {(q0, q0)}. She maintains the following invariants:

• For all x′ ∈ X that the environment might supply in the next round, there is some x ∈ X such that (x, x′) is
good for S.

• If the external instance of F is in state q and the environment’s internally simulated instance of F is in state q′,
then (q, q′) ∈ S.

The claim is true for the base case of S = {(q0, q0)}, since the environment will send x′ in the first round, and (x, x′)
is good for S.

The protocol proceeds as follows: If the environment provides input x′ for Alice, then Alice sends input x to F
such that (x, x′) is good for S. Such an x must exist by the inductive hypothesis. Then we have:

• Bob reports the correct output in this round, since his output is fB(q, x, y), and the environment is expecting
fB(q′, x′, y), and fB(q, x, ·) ≡ fB(q′, x′, ·) from case (1) of Definition 5.6.

• Alice receives input z = fA(q, x, y), and the environment is expecting z′ = fA(q′, x′, y). By case (2) of
Definition 5.6, given S, x, x′, and z, Alice can compute a singleton set which contains z′, so she reports
this output to the environment.

• Alice updates S ← next(S, x, x′, z). By case (3) of Definition 5.6 and the definition of next(·), the inductive
invariants are maintained for the next round.
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(⇒) Assume that (x, x′) is not good for {(q0, q0)}, and consider any Alice protocol that replaces x′ by x in the first
round. It suffices to construct an environment that successfully distinguishes this interaction from an interaction in
which Alice uses the dummy protocol.

Let n be the minimum number of times that case (3) of Definition 5.6 needs to be applied to show that (x, x′) is
not good for {(q0, q0)}. We note that n is always at most m = 2|Q|

2 |X|2, a constant.
We will construct Z0, which sends x′ to Alice in the first round, and otherwise sends randomly chosen inputs, for

a total of m rounds. As usual, it also internally simulates an instance of F , to which it sends the inputs that it has
chosen for Alice and Bob. Z0 outputs 1 if Alice and Bob’s outputs always match that of its simulated instance of F ,
and 0 otherwise.

Clearly Z0 outputs 1 with probability 1 when both parties run the dummy protocol. It suffices to show that when
Alice runs a protocol which in the first round sends x instead of x′, the environment Z0 outputs 0 with at least some
constant probability. We will prove via induction that Z0 outputs 0 with probability at least 2(|Y ||X|)−n, where n is
defined as above. Let qk be the state of the external instance of F after k rounds, and q′k be the state of the internally
simulated instance of F after k rounds. As before, we let Sk ⊆ Q2 denote the set of pairs (q, q′) that are consistent
with Alice’s view after k rounds.

We first claim that Pr[(qk, q′k) = (q, q′) | (q, q′) ∈ Sk] ≥ |Y |−k. In other words, after k rounds of interacting with
F , every (q, q′) ∈ Sk has some constant probability of being the “correct” pair, from Alice’s point of view. The claim
is trivially true for k = 0. For the inductive step, observe that by the definition of next(·), every (p, p′) ∈ Sk+1 is in
the set owing to at least one particular predecessor (q, q′) ∈ Sk and Bob input y ∈ Y . Thus the probability that (p, p′)
is correct is at least the probability that the predecessor (q, q′) is correct, and the appropriate y ∈ Y is chosen, which
is |Y |−k−1 as desired.

We will prove the claim about Z0’s distinguishing probability inductively in n. We will maintain the invariant that
(xk+1, x

′
k+1) is not good for Sk, which is true in the base case.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (1) of Definition 5.6. Then with probability at least |Y |−k,

the two instances of F are in the “bad” states (q, q′) from the negation of case (1). Conditioned on this event, then
with probability 1/|Y |, the environment chooses input yk such that Bob’s output and expected output disagree. The
environment outputs 0 with probability at least |Y |−k−1.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (2) of Definition 5.6. Then there are two triples (q, q′, y) such

that if the two instances of F are in states q and q′ respectively, and Bob’s input is chosen as y, then Alice’s output is
the same, but her expected output is different. The correct value of (qk, q

′
k, yk) is indeed one of these triples (q, q′, y)

with probability at least 2/|Y |k+1, and conditioned on this being the case, Alice’s reported output is incorrect with
probability 1/2. Overall, the environment outputs 0 with probability at least |Y |−k−1.

Suppose (xk+1, x
′
k+1) is not good for Sk due to case (3) of Definition 5.6. Then with probability at least 1/|X||Y |,

the environment chooses x′k+2 and yk+2 to be among the “bad” ones so that Alice receives output z and for all
xk+2, (xk+2, x

′
k+2) is not good for next(Sk, xk+1, x

′
k+1, z). We may condition on this event and apply the inductive

hypothesis.
We see that the total probability that Z0 outputs 0 is at least |X|−n|Y |−2n.

The first half of the above proof also immediately implies the following useful lemma:

Lemma 5.8. Let F be a DFF. Then there is an environment Z0 with the following properties:

• Z0 sends a constant number of inputs to F ,

• Z0 always outputs 1 when interacting with two parties running the dummy protocol on an instance of F ,

• For every x, x′ ∈ X, if x 6≥A x′, then Z0 has a constant probability of outputting 0 when interacting with an Alice
protocol that sends x instead of x′ in the first round.

The Z0 in question is the environment that simply chooses random inputs, and compares the responses to the
known, deterministic behavior of F . From the proof of Lemma 5.7, we see that Z0 needs to execute for only m
rounds, where m is a constant that depends only on the size of F . The distinguishing probability of Z0 is at least
|X|−m|Y |−2m, a constant.

5.3.2 Simple States & Safe Transitions

Definition 5.9. Let F be a DFF, and let q be one of its states. We define F [q] as the functionality obtained by modifying
F so that its start state is q.

Definition 5.10. Let F be a DFF, and let q be one of its states. We say that q is a simple state if:
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• The input/output behavior of F at state q — (fA(q, ·, ·), fB(q, ·, ·)) — is a trivial SFE; and

• For all Alice inputs x, x′ ∈ X such that fB(q, x, ·) ≡ fB(q, x′, ·), there exists an Alice input x∗ ∈ X such that
x∗ ≥A x and x∗ ≥A x′ in F [q]; and

• For all Bob inputs y, y′ ∈ Y such that fA(q, ·, y) ≡ fA(q, ·, y′), there exists a Bob input y∗ ∈ Y such that y∗ ≥B y
and y∗ ≥B y′ in F [q].

Suppose q is a simple state. We write x
q∼ x′ if fB(q, x, ·) ≡ fB(q, x′, ·). The relation

q∼ induces equivalence classes
over X. When q is a simple state, then within each such equivalence class, there exists at least one input x∗ which
dominates all other members of its class. For each equivalence class, we arbitrarily pick a single such input x∗ and
call it a master input for state q. Similarly we define master inputs for Bob by exchanging the roles of Alice and Bob.

Definition 5.11. Let F be a DFF, We say that a transition is safe if it leaves a simple state q on inputs (x, y), where x
and y are both master inputs for state q.

We define r(F) to be the functionality which runs F , except that in the first round only, it allows only safe transitions
to be taken. r(F) can be written as a copy of F plus a new start state. The new start state of r(F) duplicates all the safe
transitions of F ’s start state.

Observation 5.12. If a safe transition was just taken in F , then Alice (resp. Bob) can uniquely determine Bob’s (resp.
Alice’s) input in the previous round and the current state of F , given only the previous state of F and Alice’s (resp. Bob’s)
input and output in the previous round.

Proof. We will show that Alice has no uncertainty about which master input Bob used, thus no uncertainty about
the resulting state of F . If a safe transition was just taken from q, then q was a simple state and its associated SFE
(fA(q, ·, ·), fB(q, ·, ·)) is trivial. Thus either fA(q, ·, ·) is insensitive to Bob’s input, or fB(q, ·, ·) is insensitive to Alice’s
input.

If fA(q, ·, ·) is insensitive to Bob’s input, then Bob has a single master input y for q (all of his inputs are in a single
equivalence class under

q∼). There is no uncertainty for Alice regarding which master input Bob used.
If fB(q, ·, ·) is insensitive to Alice’s input, then let x∗ be Alice’s unique master input. If y, y′ are distinct master

inputs for Bob, then fA(q, ·, y) 6≡ fA(q, ·, y′). In other words, fA(q, x, y) 6= fA(q, x, y′) for some s. Since x∗ ≥A x,
we must have fA(q, x∗, y) 6= fA(q, x∗, y′), so Alice (who must have used input x∗) has no uncertainty about which
master input Bob used.

Lemma 5.13. If the start state of F is simple, then r(F) vnt F vnt r(F). Furthermore, if q is reachable from the start
state of F via a safe transition, then F [q] vnt F .

Proof. The protocol for r(F) vnt F is the dummy protocol, since r(F) implements simply a subset of the behavior
of F . Simulation is trivial unless in the first round, the corrupt party (say, Alice) sends an input x to F which is not
a master input for q0. The simulator must send the corresponding master input x∗ (from the

q0∼ equivalence class of
x) in the ideal world, and then it uses the translation protocol guaranteed by the definition of x∗ ≥A x to provide a
consistent view to Alice and induce correct outputs for Bob.

Similarly, the protocol for F vnt r(F) is simply the dual of the above protocol. On input x in the first round, Alice
sends x∗ to r(F), where x∗ is the master input from the

q0∼-equivalence class of x. Thereafter, Alice runs the protocol
guaranteed by the fact that x∗ ≥A x. Bob’s protocol is analogous. Simulation is a trivial dummy simulation, since
any valid sequence of inputs to r(F) in the real world also produces the same outcome in the F -ideal world (r(F)
implements a subset of the behavior of F).

Note that in r(F), the added start state has no incoming transitions; thus (r(F))[q] = F [q] if q is a state in F .
So to show F [q] vnt F , it suffices to show that (r(F))[q] vnt r(F). Suppose q is reachable in F from the start state
via safe transition on master inputs x∗, y∗. The protocol for F [q] is for Alice and Bob to send x∗ and y∗ to r(F),
respectively, as a “preamble”. Each party can determine with certainty, given their input and output in this preamble,
whether r(F) is in state q (since only safe transitions can be taken from the start state of r(F)). If the functionality
is not in q, then the parties abort. Otherwise, the functionality is r(F) in state q as desired, so the parties thereafter
run the dummy protocol. Simulation is trivial – the simulator aborts if the corrupt party does not send its specified
input (x∗ or y∗) in the preamble; otherwise it runs a dummy simulation.
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5.3.3 Complete Characterization of DFFs

We now prove our main classification regarding reactive functionalities, which is a useful alternative characterization
of secure realizability for DFFs. Interestingly, though this chapter focuses exclusively on the PPT setting, our
characterization of DFFs in this section also applies in the unbounded setting. Our characterization is as follows:

Theorem 5.14. Let F be a DFF. Then the following are equivalent:

1. F vnt FPVT

2. FCOM 6vnt F and G 6vnt F for all non-trivial SFE functionalities G
3. No non-simple state in F is reachable via a sequence of safe transitions from F ’s start state.

First, this lemma implies that if FCOM is vpnt-complete, and if there is a zero-one law for SFE functionalities, then
there is a zero-one law for all DFFs. Thus we have reduced the proof of the zero-one law to the much simpler case of
SFE. To prove Theorem 5.14, we construct two protocols in the following lemmas, both of which are unconditionally
secure. Also, the definition of triviality for SFE functionalities is the same in both the PPT and unbounded settings.
Thus, the lemma provides a complete characterization of secure realizability for DFFs in both settings. Finally, note
that condition (3) of Theorem 5.14 can be expressed completely combinatorially (automata-theoretically) using
Lemma 5.7, giving the first such alternate characterization of realizability for any large class of arbitrary reactive
functionalities.

We have that (1)⇒ (2) of Theorem 5.14, by the fact that FCOM is non-trivial (in the unbounded and PPT settings).
We prove (2)⇒ (3) and (3)⇒ (1) in the following two lemmas:

Lemma 5.15. If a non-simple state in F is reachable via a sequence of safe transitions from F ’s start state, then either
FCOM vnt F or G vnt F for some non-trivial SFE functionality G.

Proof. Without loss of generality (by Lemma 5.13) we assume that the start state of F is non-simple.
First, suppose the start state q0 of F is non-simple because its input/output behavior in the first round is non-

trivial. Then in the F -hybrid setting we can easily securely realize the SFE functionality G = (fA(q0, ·, ·), fB(q0, ·, ·)),
by the simple dummy protocol. Even though F may keep in its memory arbitrary information about the first-round
inputs, the information can never be accessed since honest parties never send inputs to F after its first round, and F
waits for inputs from both parties before giving any output. Thus G vnt F .

Otherwise, assume that the input/output behavior in the first round is a trivial SFE, and that q0 is non-simple for
one of the other reasons in Definition 5.10. The two cases are symmetric, and we present the case where Alice can
commit to Bob. Suppose there are Alice inputs x∗0, x

∗
1 ∈ X such that fB(q0, x

∗
0, ·) ≡ fB(q0, x

∗
1, ·), but for all x ∈ X,

either x 6≥A x∗0 or x 6≥A x∗1. Intuitively, this means that F binds Alice to her choice between inputs x∗0 and x∗1 —
there are behaviors of F possible when her first input is x∗b , which are not possible when her first input is x∗1−b. We
formalize this intuition by using the first input round of F to let Alice commit a bit to Bob.

Recall the “complete” environment Z0 from Lemma 5.8, and suppose it runs form rounds and has a distinguishing
probability p > 0. Our protocol for FCOM is to instantiate N = 2dlog1−p 0.5eκ = Θ(κ) independent instances of F ,
where κ is the security parameter. We will write Fi to refer to the ith instance of F . The protocol is as follows:

1. (Commit phase, on Alice input (COMMIT, b), where b ∈ {0, 1}) Alice sends x∗b to each Fi. For each i, Bob sends
a random yi1 ∈ Y to Fi and waits for output fB(q0, yi1, x

∗
0) = fB(q0, yi1, x

∗
1). If he receives a different input, he

aborts. Otherwise, he outputs COMMITTED.

2. (Reveal phase, on Alice input REVEAL) Alice sends b to Bob. For each i, Alice sends her input/output view
of Fi to Bob (x∗b and the first-round response from Fi). If any of these reported views involve Alice sending
something other than x∗b to Fi, then Bob aborts. Otherwise, Bob sets xi1 = x∗b for all i.

3. For j = 2 to m:

(a) Bob sends Alice a randomly chosen xij ∈ X. Alice sends xij to Fi.
(b) Bob sends a randomly chosen input yij ∈ Y to Fi.
(c) For each i, Alice reports to Bob her output from Fi in this round.

4. If for any i, Alice’s reported view or Bob’s outputs from Fi does not match the (deterministic) behavior of F on
input sequence (xi1, yi1), (xi2, yi2), . . ., then Bob aborts. Otherwise, he outputs (REVEAL, b).
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When Bob is corrupt, the simulation is to do the following for each i: When Bob sends yi1 to F in the commit phase,
simulate Fi’s response as fB(q0, x

∗
0, yi1) = fB(q0, x

∗
1, yi1). In the reveal phase, to open to a bit b, simulate that Alice

sent Bob x∗b and the view that is consistent with that input: fA(q0, x
∗
b , yi1). Maintain the corresponding state qi of Fi

after seeing inputs (x∗b , yi1). Then when Bob sends xij to Alice and yij to Fi, simulate that Fi gave the correct output
to Bob and that Alice reported back the correct output from Fi that is consistent with F receiving inputs xij , yij in
state qi. Each time, also update the state qi according to those inputs. It is clear that the simulation is perfect.

When Alice is corrupt, the simulation is as follows: The simulator faithfully simulates each instance of F and
the behavior of an honest Bob. If at any point, the simulated Bob aborts, then the simulation aborts. Suppose Alice
sends x̃i1 to each Fi in the commit phase, and that the simulation has not aborted at the end of the commit phase.
If the majority of x̃i1 values satisfy x̃i1 ≥A x∗0, then the simulator sends (COMMIT, 0) to FCOM; otherwise it sends
(COMMIT, 1). Note that by the properties of F , each x̃i1 cannot dominate both x∗0 and x∗1. Let b be the bit that the
simulator sent to FCOM.

If the simulated Bob ever outputs (REVEAL, b), then the simulator sends REVEAL to FCOM. The simulation is perfect
except for the case where the simulated Bob outputs (REVEAL, 1 − b) (in this case, the real world interaction ends
with Bob outputting (REVEAL, 1− b), while the ideal world interaction aborts). We show that this event happens with
negligible probability, and thus our overall simulation is statistically sound.

Suppose Alice sends b′ = 1− b at the beginning of the reveal phase. Say that an instance Fi is bad if x̃i1 6≥A x∗1−b.
Note that at least half of the instances of Fi are bad. When an instance Fi is bad, Z0 can distinguish with probability
at least p between the cases of F receiving first input x̃i1 and x∗1−b from Alice. However, in each instance of Fi, Bob is
sending random inputs to Alice (who sent x̃i1 as the first input to Fi), sending random inputs himself to Fi, obtaining
his own output and Alice’s reported output from Fi in an on-line fashion, and comparing the result to the known
behavior of F (when x∗1−b is the first input of Alice). This is exactly what Z0 does in the definition of x̃i1 ≥A x∗1−b, so
Bob will detect an error with probability p in each bad instance. In the real world, Bob would accept in this reveal
phase with probability at most (1− p)−N/2 ≤ 2−κ, which is negligible as desired.

Lemma 5.16. If no non-simple state in F is reachable via a sequence of safe transitions from F ’s start state, then F is
trivial (F vnt FPVT).

Proof. We first define an intermediate functionality R(F), which is F with all its non-safe transitions removed. We
first observe that R(F) is trivial (in fact, R(F) is trivial for all F). Only safe transitions may be taken in R(F), thus
both parties’ views uniquely determine the state of R(F). If the current state q was non-simple in F , then q is a dead
state in R(F) and the protocol is trivial. Otherwise, note that restricting a simple state’s transition function to its
safe transitions preserves the triviality of the SFE round function. Thus the protocol’s behavior when in state q is to
simply evaluate a trivial SFE.

Next, to prove the main claim it suffices to show that F vnt R(F), since R(F) is trivial. We prove a stronger
claim; namely that if q is safely reachable (i.e., reachable from the start state by a sequence of safe transitions) in F ,
then F [q] vnt (R(F))[q]. To prove this stronger claim, we construct a family of protocols π̂q, for every such q.

First, let πq denote the protocol guaranteed by F [q] vnt r(F [q]) (Lemma 5.13). Then the protocol π̂q is as follows:

1. Run πq to interact with the functionality.

2. After the first round, we will have sent an input to the functionality and received an output. Assuming that the
functionality was (R(F))[q], use the first round’s input/output to determine the next state q′ (Observation 5.12)

3. Continue running πq, but hereafter, instead of letting it interact directly with the functionality, we recursively
instantiate π̂q′ . We let our πq instance interface with π̂q′ , which we let interact directly with the functionality.

The protocol is recursive, and after k rounds, must maintain a stack depth of size k. We prove by induction on k
that π̂q is a secure protocol for F [q] using (R(F))[q], against environments that run the protocol for k ≥ 0 steps. The
claim is trivially true for k = 0.

Note that simulation is trivial if either party is corrupt. Such an adversary is running the protocol interacting with
(R(F))[q], which is a subset of the functionality F [q]. Thus the simulator is a dummy simulator. It suffices to show
that the output of the protocol is correct (indistinguishable from the ideal interaction) when both parties are honest.

In the first round, both parties are running πq, interacting with (R(F))[q]. Although πq is designed to interact with
r(F [q]), the behavior of both these functionalities is identical in the first round (including the next-state function).
Thus the first round of outputs is correct, by the security of πq. For the same reason, step 2 of π̂q correctly identifies
the next state q′ of (R(F))[q]. Clearly (R(F))[q][q′] = (R(F))[q′], so after step 1 of the protocol, the functionality
is identical to a fresh instantiation of (R(F))[q′]. At the same time, we also instantiate a fresh instance of π̂q′
to interact with this functionality. By the inductive hypothesis, hereafter πq is interacting with an interface that
is indistinguishable from an ideal interaction with F [q′]. However, an external functionality which behaves like
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R(F)[q] in the first round, then after transitioning to state q′ behaves like F [q′], is simply the functionality r(F [q]).
In other words, the entire protocol π̂q is indistinguishable from running πq on r(F [q]). By definition of πq, this is
indistinguishable from an ideal interaction with F [q] itself.

5.4 Classifying SFE Functionalities

2×2 minors. Our classification of SFE functionalities is combinatorial, and relies on identifying crucial 2×2 minors
in the function table of the SFE.

Definition 5.17. Let F = (fA, fB) be a 2-party SFE. We say that F has a generalized CC-minor at {x, x′} × {y, y′} if
F has the following form:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ i k

where b 6= c and h 6= i and j 6= k

or the symmetric condition with the roles of Alice and Bob exchanged.

In a generalized CC-minor, Alice chooses input x if she wants no information about Bob’s input (y or y′), and
chooses input x′ if she wants to receive Bob’s input. Bob learns which option Alice chose.

We call the following (symmetric-output) function the symmetric cut-and-choose function FCC:

fA = fB 0 1
0 0 0
1 1 2

It is the canonical function that contains a generalized CC-minor, and it plays an important role in our results.

Definition 5.18 ([65]). Let F = (fA, fB) be a 2-party SFE. We say that F has a generalized OR-minor at
{x, x′} × {y, y′} if F has the following form:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ h k

where b 6= c or j 6= k

Lemma 5.19 ([65]). If F is a 2-party SFE functionality that contains a generalized OR-minor after removing all
redundant inputs, then F is complete under vnt reductions.

In fact, the lemma proven by Kraschewski and Müller-Quade [65] is stronger, giving a complete characterization
of completeness against computationally unbounded adversaries. That is, they prove that F is vnt-complete if and
only if it contains a generalized OR-minor. We note that the protocol and simulator in their reduction are both
efficient when F has constant size, but the security holds against computationally unbounded adversaries. Thus the
completeness of these functions holds with respect to the vunt and vpnt reductions. Of course, we will show that many
other SFE functions are also complete under the vpnt reduction.

Definition 5.20. F = (fA, fB) is a symmetric exchange function if F is isomorphic to the symmetric function
F(x, y) = (x, y) for some input domain X × Y .

In a symmetric exchange function, each party learns the other party’s input (the function’s output also includes
that party’s own input, which it already knows). The cryptographic non-triviality of symmetric exchange functions is
due to the fact that each party’s input is chosen independently of the other party’s input.

Combinatorially classifying non-reactive functionalities. We now prove the first characterization of SFE func-
tionalities, using two technical lemmas:

Lemma 5.21. Let F = (fA, fB) be an SSFE functionality. If F has a generalized CC-minor and no generalized OR-minor,
then FCC vnt F .

64



CHAPTER 5: POLYNOMIAL-TIME CRYPTOGRAPHIC COMPLEXITY

Proof. Suppose F has a generalized CC-minor at {x, x′} × {y, y′}. We will show that the protocol in which parties
simply restrict their inputs to this 2× 2 minor is a UC-secure protocol for computing that minor.2 If the output from
F is not consistent with the party’s input and one of the two allowed inputs for the other party, then we abort. Since
every generalized CC-minor is isomorphic to symmetric CC, the claim will be established.

Suppose the function table of F is as follows for the CC-minor:

fA y y′

x a a
x′ b c

fB y y′

x h j
x′ i k

where b 6= c, h 6= i, and j 6= k

We first consider the case where Alice is corrupt. If Alice provides input x or x′, then the simulator also gives the
same input in the ideal world, and returns the output to Alice. Otherwise, suppose Alice sends some other input x′′:

fA y y′

x a a
x′ b c
x′′ p q

fB y y′

x h j
x′ i k
x′′ r s

where b 6= c, h 6= i, and j 6= k

We consider several cases, depending on the values of p, q, r, s:

• If r 6∈ {h, i} and s 6∈ {j, k}, then honest Bob will always abort in the real world. The simulator sends input x′

in the ideal world. The simulator can determine from its output whether Bob’s input was y or y′, and simulate
either output p or q to Alice accordingly, and finally abort.

• If [r = h and s = j and p 6= q] or [r = h and s 6= j] or [r 6= h and s = j]. then {x, x′′}×{y, y′} is a generalized
OR-minor in F . This is not possible in F .

• If r = h and s = j and p = q, then the simulator sends input x in the ideal world. Bob receives the same output
as in the real world, and the simulator gives Alice output p = q.

• If r = i and s = k, then the simulator sends input x′ in the ideal world. Bob receives the same output as in the
real world, the simulator can determine from its output whether Bob’s input was y or y′, and simulate either
output p or q to Bob, accordingly.

• If r = i and s 6∈ {j, k}, then Bob will abort in the real world if his input was y′. The simulator sends input x′ in
the ideal world. If Bob’s input is y, then Bob receives the same output as in the real world. The simulator can
determine from its output whether Bob’s input was y or y′, and simulate either output p or q to Bob, accordingly.
The simulator aborts if Bob’s input is y′.

The definition of generalized CC-minor is symmetric with respect to y and y′, so all other cases are obtained by
symmetry.

The other case to consider is when Bob is corrupt. Similarly, the simulation is trivial when Bob uses either y or y′.
Otherwise, suppose Bob uses some other input y′′:

fA y y′ y′′

x a a p
x′ b c q

fB y y′ y′′

x h j r
x′ i k s

where b 6= c, h 6= i, and j 6= k

We again consider several cases:

• If p 6= a and q 6∈ {b, c}, then similar to above, Alice will always abort in the real world. The simulator sends
input y in the ideal world. It can determine from its output whether Alice’s input was x or x′, and simulate
either output r or s to Bob accordingly, and finally abort.

• If p = a and q = b, then the simulator sends input y in the ideal world. Alice receives the same output as in the
real world. The simulator can determine from its output whether Alice’s input was x or x′, and simulate either
output r or s to Bob, accordingly.

• If p = a and q = c, the simulation is identical to the previous case, except the simulator sends input y′ in the
ideal world.

2Note that for an arbitrary F , it does not necessarily follow that restricting inputs is a secure protocol for evaluating that minor, since adversaries
may carefully choose other inputs to send to F .
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• If p = a and q 6∈ {b, c}, then Alice aborts in the real world if her input was x′. The simulator sends input y in the
ideal world. Alice receives the same output as in the real world if her input was x. The simulator can determine
from its output whether Alice’s input was x or x′, and simulate either output r or s to Bob, accordingly. The
simulator aborts if Alice’s input was x′.

• If p 6= a and q = b, then Alice aborts in the real world if her input was x. Similar to above, the simulator sends
input y in the ideal world, simulates the appropriate output for Bob, and aborts if Alice’s input was x.

• If p 6= a and q = c, then the simulation is identical to the previous case, except the simulator sends input y′ in
the ideal world.

Lemma 5.22. If F = (fA, fB) has no generalized CC-minor and no generalized OR-minor, then F is a symmetric
exchange function.

Proof. If F is not a symmetric exchange function, then different inputs to F for (without loss of generality) Alice
let her learn different distinctions among Bob’s inputs. That is, for some x, x′, y, y′, we have: fA(x, y) = fA(x, y′)
and fA(x′, y) 6= fA(x′, y′). Now no matter how fB behaves on inputs {x, x′} × {y, y′}, that 2 × 2 minor is either a
generalized CC-minor or generalized OR-minor.

Finally, we prove our main classification of SFE functionalities:

Lemma 5.23. Let F be a non-trivial 2-party SFE functionality. Then either FOT vnt F , or FCC vnt F , or FCOIN vnt F .

Proof. If F contains no generalized OR-minor, but contains a generalized CC-minor, then FCC vnt F (Lemma 5.21).
Otherwise, if F contains neither a generalized CC-minor nor a generalized OR-minor, then F is a symmetric exchange
function (Lemma 5.22). Suppose F is (isomorphic to) the symmetric function F(x, y) = (x, y), where F has input
domain X × Y . If |X| < 2 or |Y | < 2, then F is trivial, by Theorem 3.21.

Otherwise, suppose |X| ≥ 2 and |Y | ≥ 2. Then let x0 6= x1 ∈ X and y0 6= y1 ∈ Y . A secure protocol for FCOIN in
the F -hybrid setting is for Alice to choose a random bit a← {0, 1} and Bob to choose a random bit b← {0, 1}. They
compute F(xa, yb) = (xa, yb) and use a ⊕ b as the output of the coin toss. Alice aborts if she observes that Bob did
not use y0 or y1 as his input, and likewise Bob aborts if he observes that Alice did not use x0 or x1 as her input. It is
straight-forward to see that this protocol is UC-secure.

5.5 Extractable Commitment

In this section we show how full-fledged commitment can be realized using only a weak intermediate variant. We
start off by introducing some convenient terminology.

Definition 5.24. A protocol is a syntactic commitment protocol if:

• It is a two phase protocol between a sender and a receiver (using only plain communication channels).

• At the end of the first phase (commitment phase), the sender and the receiver output a transcript τ . Further the
sender receives an output γ (which will be used for opening the commitment).

• In the reveal phase the sender sends a message γ to the receiver, who extracts an output value opening(τ, γ) ∈
{0, 1}κ ∪ {⊥}.

In the above description, as is implicit in all our protocol specifications, the parties may choose to abort at any
point in the protocol.

Definition 5.25. We say that two syntactic commitment protocols (ωL, ωR) form a pair of complementary statistically
binding commitment protocols if the following hold:

• ωR is a statistically binding commitment scheme (with standalone security).

• In ωL, at the end of the commitment phase the receiver outputs a string z ∈ {0, 1}κ. If the the receiver is honest, it
is only with negligible probability that there exists γ such that opening(τ, γ) 6= ⊥ and opening(τ, γ) 6= z.
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We name the two parties Sender and Receiver. The functionality’s behavior depends on who is corrupt.

If both Sender and Receiver are honest, the functionality behaves as follows:

1. (Commitment phase.) It accepts (COMMIT, x) from Sender. Then it internally simulates a session of
ωR (simulating both the sender and the receiver in ωR), with the sender’s input being x. It gives
(TRANSCRIPT, τ, γ) to Sender and (COMMITTED, τ) to Receiver.

2. (Reveal phase.) On receiving the message REVEAL from Sender, it sends (REVEAL, x) to Receiver.

If Sender is corrupt and Receiver is honest, the functionality does the following:

1. (Commitment phase.) It runs the commitment phase of ωL with Sender, playing the part of the receiver
in ωL, to obtain (τ, z). It sends (COMMITTED, τ) to Receiver and internally records z.

2. (Reveal phase.) It receives (REVEAL, γ) from Sender. If opening(τ, γ) = z, it sends (REVEAL, z) to Receiver.

If Sender is honest and Receiver is corrupt, the functionality does the following:

1. (Commitment phase.) It accepts (COMMIT, x) from Sender. Then it runs the commitment phase of ωR
with Receiver, playing the sender’s role in ωR, with x as input. It obtains the output (τ, γ) at the end of
this phase, and sends (TRANSCRIPT, τ, γ) to Sender.

2. (Reveal phase.) it sends (γ, x) to Receiver.

(We do not define the behavior of the functionality when both Sender and Receiver are corrupt.)

Figure 5.1: Functionality F (ωL,ωR)
EXT-COM : Extractable commitment, parameterized by two syntactic commitment protocols ωL and ωR.

Note that ωL by itself is not an interesting cryptographic goal, as the sender can simply send the committed string
in the clear during the commitment phase; however, in defining F (ωL,ωR)

EXT-COM below, we will require a single protocol to
satisfy both the security guarantees.

We define the extractable commitment functionality F (ωL,ωR)
EXT-COM in Figure 5.1. The functionality is parameterized

by a pair of complementary statistically binding commitment protocols.
Our main result in this section is that extractable commitment can be used to securely realize full-fledged

commitment:

Lemma 5.26. If (ωL, ωR) form a pair of complementary statistically binding commitment protocols, then FCOM vpnt
F (ωL,ωR)

EXT-COM .

Proof. Our protocol uses additional witness-indistinguishable proofs, which are guaranteed to exist if standalone-
secure commitment schemes exist. The protocol uses a “1-out-of-2 binding commitment” scheme, similar to the
notion introduced by Nguyen and Vadhan [78].

Our protocol for FCOM is as follows, with security parameter κ. It uses ideal access to 3 independent instances of
F (ωL,ωR)

EXT-COM , which for clarity we will name F0,F1,F2. Bob is identified as the sender in F0, and the receiver in F1 and
F2.

1. (Commit phase, on Alice input (COMMIT, x)) Bob chooses a random string r ← {0, 1}κ and sends (COMMIT, r)
to F0. Alice receives output (COMMITTED, τ0) and Bob receives output (TRANSCRIPT, τ0, γ0).

2. Alice sends (COMMIT, x) to F1. Alice receives output (TRANSCRIPT, τ1, γ1) and Bob receives output
(COMMITTED, τ1).

3. Alice sends (COMMIT, 0κ) to F2. Alice receives output (TRANSCRIPT, τ2, γ2) and Bob receives output
(COMMITTED, τ2).

4. Bob sends REVEAL to F0, and Alice receives output (REVEAL, γ0, r). Bob outputs COMMITTED.

5. (Reveal phase, on Alice input REVEAL) Alice sends x to Bob, then uses a WI proof to prove the following
statement S(x, r, τ1, τ2):

There exists γ such that either opening(τ1, γ) = x or opening(τ2, γ) = r.

Bob outputs (REVEAL, x) if the proof verifies.
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It is straight-forward to see that the protocol is correct; i.e., simulation is trivial when both parties are honest.
Simulation is trivial when both parties are corrupt, too. We consider the other two cases.

Simulation when Alice is corrupt: Since Bob has no private inputs to FCOM, the simulator faithfully simulates the
honest Bob protocol and honest functionalities F0,F1,F2. If the simulated Bob ever aborts, then the simulation also
aborts. In step (2), the simulator obtains the value z1 the value recorded by F1. When the commit phase finishes, the
simulator sends (COMMIT, z1) to FCOM. Later, in the reveal phase, if the simulated ever Bob outputs (REVEAL, z1), then
the simulator sends REVEAL to FCOM; if the simulated Bob outputs (REVEAL, x) for some x 6= z1, then the simulation
aborts. The simulation is clearly perfect except in the case where the simulated Bob outputs (REVEAL, x) for some
x 6= z1. We will show that this event happens with only negligible probability.

First, we argue that at the end of the commitment phase, the probability that there exists γ such that
opening(τ2, γ) = r is negligible. By the security property of ωL, the functionality F2 records a value z2 such that
(except with negligible probability) there does not exist γ such that opening(τ2, γ) 6= z2. Hence, it suffices to show
that F2 records z2 = r with at most negligible probability. However, consider an adversaryA attacking the standalone
hiding property of ωR. Adversary A internally simulates Alice and the functionality instances F0 and F2. It simulates
Alice’s interaction with F1 by interacting in a challenge commit phase of ωR, to a random value r. After the commit
phase, A outputs the value z2 output by its internally simulated F2. By the standalone hiding property of ωR, this
output can equal r with only negligible probability.

Given this, with overwhelming probability, the second clause of the WI proof statement is false. By the security
property of ωL, the first clause is only true when Alice is attempting to reveal to x = z1, except with negligible
probability. Thus by the soundness of WI proof, if the simulated Bob outputs (REVEAL, x), then x = z1 except for
negligible probability, as desired.

Simulation when Bob is corrupt: Here, the simulator will simulate F0, F1 and F2 during the commitment phase,
as follows:

1. First, it carries out an honest simulation of step (1), where it faithfully runs F0 and the receiver’s protocol with
F0. At the end of this it obtains a value z0 as the value recorded by F0.

2. Then it simulates step (2) by internally simulating F1 and the honest sender, but with the sender’s input as 0κ

(instead of Alice’s input x, which it does not know yet).

3. It simulates step (3) similarly, but this time using z0 as the sender’s input (instead of 0κ); note that this yields
(τ2, γ2) such that opening(τ2, γ2) = z0.

4. Then it simulates step (4), the reveal phase of F2. If the simulated F2 outputs (REVEAL, r) to the simulated
sender, then the simulator ensures that r = z0. If this is not the case, then the simulator fails.

The reveal phase is simulated as follows:

1. First the simulator obtains (REVEAL, x) from FCOM. It simulates the protocol execution by sending x and then
gives a WI proof for the statement S(x, r, τ1, τ2), by using the witness γ2 and the fact that opening(τ2, γ) = r.

First, we observe that the probability of the simulator failing (in step (4)) of commitment is negligible (by the
security of ωL). To show that the simulation is indistinguishable from the real protocol execution (conditioned on
the simulator not failing), we shall rely on the hiding property of ωR and the witness indistinguishability of the WI
proof. In more detail, we employ the following hybrid simulators:

Hybrid 1: Same as the simulation, except that in step (2) the simulator uses Alice’s true input x rather than 0κ

as the input to the (simulated) sender in its interaction with (simulated) F1. The entire interaction
can be carried out by an adversary in the standalone hiding experiment for ωR: the adversary receives
either a commitment to x or to 0κ, and it can simulate the rest of the interaction without receiving the
opening of that commitment (the opening is not used as a witness to the WI proof later). Thus these two
interactions are indistinguishable.

Hybrid 2: Same as above, except that in the reveal phase, the simulator uses the witness γ1 in the WI proof,
since opening(τ1, γ1) = x. This interaction is indistinguishable from the previous by a straightforward
application of the witness-indistinguishability property in the WI proof.

Real world: Same as above, except that the simulator sends 0κ to F2 instead of z0, in step (3). This interaction is
indistinguishable from the previous hybrid, by an identical argument as was used to show that Hybrid 1
and the simulation are indistinguishable.
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5.6 Obtaining Extractable Commitment from FCC

In this section, we show how FEXT-COM can be securely realized using FCC. We first show a protocol π in the FCC-hybrid
world, and then define appropriate (πL, πR) protocols such that π is a secure realization of F (πL,πR)

EXT-COM .

Parameters. Let Com be a statistically binding, standalone-secure commitment scheme with a non-interactive
reveal phase (for instance, Naor’s commitment scheme [75], which relies only on the existence of one-way functions).
Let C1, . . . be a family of error-correcting codes, with the following properties:

• Ci is a linear (ni, ki) code over GF (2), with generator matrix Mi.

• ki, ni ∈ Θ(i).

• It is possible to efficiently (polynomial time in i) correct Θ(ni) errors in Ci.

These parameters can be easily achieved, for instance, by a Justesen code [72].

The protocol. We define the following interactive protocol π in the FCC-hybrid model. The security parameter is κ.

1. (Commit phase.) On input (COMMIT, b) (for b ∈ {0, 1}), Alice chooses random string s ∈ {0, 1}kκ and computes
the associated codeword t = (Mκ)s. She commits to t using Com.

2. Bob chooses a string y ∈ {0, 1}nκ by setting each yi = 0 with probability kκ/2nκ = Θ(1).

3. For i ∈ {1, . . . , nκ}, do:

(a) Alice and Bob invoke a session of FCC with Alice as sender. Alice sends ti, the ith bit of t, as her input to
FCC, and Bob sends input yi.
Recall that in FCC, Alice learns yi; Bob learns ti whenever yi = 0.

(b) If Alice sees that Bob has set yi = 0 as many as kκ times so far, then Alice aborts the protocol.

4. The bits of t that Bob has picked up are a linear function of s (a subset of the rows of Mκ), but are insufficient
to completely determine s. Let g be a vector in {0, 1}kκ linearly independent of all the rows of Mκ for which
Alice has revealed the corresponding bits of t. g can be computed by both parties in some canonical way. Then
Alice sends c = b⊕ 〈g, s〉 to Bob.

5. Both parties locally output τ to consist of y, y ∧ t, g, c, and the transcript of the commitment to t in step (1).

6. Alice locally outputs γ to consist of s, t and the non-interactive opening to the commitment t.

7. (Reveal phase) Alice sends γ to Bob. We define opening(τ, γ) = ⊥ if it does not contain a valid opening of the
commitment of t to a valid codeword Mκs, or if the bits of t are not consistent with y and y ∧ t computed in
step (3). Otherwise, opening(τ, γ) = c⊕ 〈g, s〉.

We define two protocols πL and πR (in the plain model, without access to FCC), as follows.

• πL is identical to π, except that Bob honestly plays the role of FCC. Thus in step (3), Alice sends every bit ti to
Bob, and Bob responds by sending yi to Alice.

After the commit phase, Bob uses the error-decoding algorithm of Cκ to decode the sequence of bits t = t1t2 · · ·
to its maximum likelihood dataword s̃, and locally outputs the extracted value z = c⊕ 〈g, s̃〉.

• πR is identical to π, except that Alice honestly plays the role of FCC. Thus in step (3), Bob sends each yi to Alice
and Alice responds appropriately according to ti.

Lemma 5.27.

1. If Com is a statistically binding commitment scheme with non-interactive reveal, then (πL, πR) are a pair of
complementary statistically binding commitment protocols.

2. The protocol π securely realizes F (πL,πR)
EXT-COM in the FCC-hybrid model.
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Proof. Given that part (1) is true, part (2) is easily demonstrated via a trivial simulation, since (πL, πR) are simply
π with FCC honestly “collapsed” into the responsibilities of one party. The non-trivial step is to show that part (1) is
true.

First, we claim that πR is a statistically binding standalone commitment scheme. This is straight-forward by the
security of the component Com commitment scheme. We remark that, by applying a standard Chernoff bound, we
see that an honest Bob will request to see more than kκ bits of t only with exponentially low probability κ.

Next, we must show that πL is extractable. As in Definition 5.25, we consider an interaction between a corrupt
Alice and honest Bob. Let t̃ be the sequence of inputs sent by Alice in step (3). After step (4), Bob decodes t̃ to obtain
maximum likelihood dataword s̃, and locally outputs z = c⊕ 〈g, s̃〉.

We now argue that the extracted value z is correct. In step (1) of πR, Alice gives a statistically binding
commitment, so with overwhelming probability there is a well-defined unique value t∗ such that the commitment
can be successfully opened only to t∗. We condition on this overwhelming-probability event. If t∗ is not a codeword
of Cκ, then Bob will never accept in the reveal phase of π̂, and our extraction is trivially correct. Otherwise, assume
t∗ is a codeword, t∗ = (Mκ)s∗. If s∗ is equal to s̃ computed by Bob, then the extraction is also correct.

However, if s̃ 6= s∗, then the Hamming distance between t̃ and codeword t∗ is at least the minimum distance of
Cκ, which is d = Θ(nκ). With overwhelming probability 1− (kκ/2nκ)d = 1−O(1)Θ(κ), one of these d positions would
have appeared in τ as a result of Bob choosing yi = 0. When this happens, then Bob will never accept in the reveal
phase and our extraction is correct.

5.7 Obtaining Extractable Commitment from FCOIN

In this section, we show how FEXT-COM can be securely realized using FCOIN. We first show a protocol ρ in the FCC-
hybrid world, and then define appropriate (ρL, ρR) protocols such that ρ is a secure realization of F (ρL,ρR)

EXT-COM . Protocol
ρ uses as a component the following protocol ψ̂:

Compiled OT protocol ψ̂. Suppose ψpsv is a passive-secure OT protocol (as in Assumption 5.1) with security
parameter κ, that uses R(κ) bits of randomness. Let Com denote a statistically binding, standalone-secure
commitment scheme with non-interactive reveal phase (for instance, Naor’s commitment scheme [75], which relies
only on the existence of one-way functions). Finally, let Gn : {0, 1}n → {0, 1}2n be a PRG family.

We define the following OT protocol ψ̂ as follows, with security parameter κ. We assume Alice is the sender, with
input bits x0, x1, and Bob the receiver with input bit b.

1. Alice and Bob use FCOIN to generate a random σ ← {0, 1}2κ.

2. Alice chooses a random string rA ← {0, 1}R(κ) and commits to x0, x1, and rA using Com.

3. Alice uses a zero-knowledge proof of knowledge scheme to prove that she knows a valid opening for the
commitment in the previous step.

4. Bob sends a random string r′A ← {0, 1}R(κ) to Alice.

5. Bob chooses a random string rB ← {0, 1}R(κ) and commits to (b, rB) using Com.

6. Bob uses a zero-knowledge proof of knowledge scheme to prove that he knows a valid opening for the
commitment in the previous step.

7. Alice sends a random string r′B ← {0, 1}R(κ) to Bob.

8. Both parties start running the ψpsv protocol, with Alice using input (x0, x1) and random tape rA ⊕ r′A, and Bob
using input b and random tape rB ⊕ r′B . At each step, the parties do the following: Suppose the transcript so
far in the ψpsv protocol is τ :

(a) If it is Alice’s turn in the ψpsv protocol, then she sends m according to the ψpsv protocol. Then she uses
a zero-knowledge proof scheme to prove that there exists (x̃0, x̃1, r̃A) such that her commitments in step
(2) can be successfully opened to x̃0, x̃1, and r̃A respectively, and the ψpsv protocol instructs Alice to send
m when her input is (x̃0, x̃1), her random tape is r̃A ⊕ r′A, and the transcript so far is τ .

(b) If it is Bob’s turn in the ψpsv protocol, then he sends m according to the ψpsv protocol. Then he uses a
witness-indistinguishable proof scheme to prove that there exists (b̃, r̃B , s) such that either Gκ(s) = σ, or
his commitment in step (5) can be successfully opened to (b̃, r̃B), and the ψpsv protocol instructs Bob to
send m when his input is b̃, his random tape is r̃B ⊕ r′B , and the transcript so far is τ .
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9. If at any point, a zero-knowledge or witness-indistinguishable proof by the other party fails to verify, the parties
immediately abort. Otherwise, they both output the values prescribed by the ψpsv protocol when it terminates.

Some explanation of ψ̂ is in order. We have essentially applied the GMW compiler [41] to ψpsv, with the following
important differences:

• In steps (3) and (6), the parties prove knowledge of the commitments to their inputs and random-tape shares.
This is important because we eventually reduce an adversary running ψ̂ to a passive adversary running ψpsv. For
technical reasons, we need to extract inputs and the random tape share in this step, but rewinding extraction
is sufficient.

• Bob does not prove the standard GMW-style statement. Instead, he gives a witness-indistinguishable proof of
a statement containing a trapdoor clause related to the public randomness σ. This extra trapdoor allows a
straight-line simulator for a corrupt Bob to prove false statements (by choosing σ from the range of G and using
the trapdoor witness), which is crucial in our subsequent security reductions.

• Note that ψ̂ involves Alice committing to her inputs x0, x1 separately, but never opening these commitments.
We use this fact and eventually open these commitments in our overall protocol.

Interactive commitment protocol ρ. We now define a statistically binding standalone-secure commitment protocol
ρ̂. The protocol ρ̂ has security parameter κ, and is as follows:

1. (Commit phase, on Alice input (COMMIT, b), with b ∈ {0, 1}) For i ∈ {1, . . . , κ}, do:

(a) Alice chooses random bits x(0)
i and x(1)

i , and Bob chooses a random bit ai.

(b) The parties run the ψ̂ OT protocol, so that Bob obtains x(ai)
i . This interaction also results in commitments

to x(0)
i and x(1)

i under the Com commitment scheme.

2. Alice and Bob obtain r ∈ {0, 1}κ using FCOIN.

3. Alice sends c = b⊕
(⊕

i x
(ri)
i

)
to Bob.

4. Both parties output τ consisting of all of the Com-commitments to values x(ri)
i .

5. Alice locally outputs γ to consist of the non-interactive openings for the commitments to each x(ri)
i .

6. (Reveal phase, on Alice input REVEAL) Alice sends γ. We define opening(τ, γ) = ⊥ if the decommitments to x(ri)
i

bits are not valid. Otherwise, opening(τ, γ) = c⊕
(⊕

i x
(ri)
i

)
.

We then define the two related protocols, in the plain model:

• ρL is identical to π, except that Bob honestly plays the role of FCOIN. However, he chooses the coins r for step
(2) at the beginning of the protocol, and in step (1c) he runs the ψ̂ protocol obtaining x(ri)

i instead of x(ai)
i .

After the commit phase, Bob locally outputs the extracted value z = c⊕
(⊕

i x
(ri)
i

)
.

• ρR is identical to ρ, except that Alice honestly plays the role of FCOIN.

Lemma 5.28.

1. If ψpsv is a passive-secure OT protocol, and Com is a statistically binding commitment scheme with non-interactive
reveal, then (ρL, ρR) are a pair of complementary statistically binding commitment protocols.

2. The protocol ρ securely realizes F (ρL,ρR)
EXT-COM in the FCOIN-hybrid model.

Proof. (1) We first show that ρR is a statistically binding standalone-secure commitment protocol. Statistical binding
follows directly from the fact that the opening value of the commitment is a fixed function of the openings of n
statistically binding Com-commitments.

To show that ρR is computationally hiding, we consider an interaction between an honest Alice and a malicious
Bob, in the commit phase of ρR. To establish the computational hiding property, we construct a (rewinding) simulator
that simulates the commit phase against Bob without knowledge of Alice’s bit. We construct the simulator via the
following sequence of hybrids:
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Real world: The simulator simply runs the honest Alice protocol, on Alice’s input. This is exactly what happens in
the real interaction between Alice and Bob.

Hybrid 1: Same as above, but each time in the ψ̂ subprotocol, the simulator extracts Bob’s input (b, rB), possibly
by rewinding, from the proof of knowledge in step (6). The simulator flips fair coins R and sends
r′B = R ⊕ rB in step (7) of ψ̂. Intuitively, the simulator will force Bob to run ψpsv on the coins R of its
choice. This hybrid is distributed exactly as the previous.

Hybrid 2: Same as above, but each time in the ψ̂ protocol, the simulator also computes the next-message function
of ψpsv on input b and random tape R. If the honest next message disagrees with the message Bob gives
in step (8b), then the simulator aborts. By the soundness of the extraction of (b, rB), the statistical
binding of the commitment to (b, rB), and the soundness of the WI proof that Bob gives in step (8b),3

this hybrid is indistinguishable from the previous. However, we are guaranteed that in this hybrid (and
subsequent hybrids), Bob is running the ψpsv sub-protocol honestly on some input on a randomly chosen
random tape (note that it is important that the simulator honestly sampled the random tape — it not
enough for the random tape to be distributed uniformly, since Bob may be able to generate correctly
distributed random tapes with some trapdoor).

Hybrid 3: Same as above, but each time in steps (3) and (8a) of the ψ̂ protocol, the simulator gives simulated
zero-knowledge proofs (perhaps by rewinding Bob). This difference is indistinguishable by the security
of the zero-knowledge proof schemes.

Hybrid 4: Same as above, but each time in the ψ̂ protocol, the simulator chooses two sets of independent random
bits: x′0, x

′
1 for the commitment in step (2), and x0, x1 to use as input to the ψpsv protocol in step (8a).

This difference is indistinguishable by the computational hiding guarantee of the Com commitments,
since the openings for these commitments are never needed (they are no longer used as witnesses in the
ZK proof protocols).

Hybrid 5: Same as above, but the simulator chooses the string r from step (2) of ρR uniformly from the set
{0, 1}κ \ {a1a2 · · · aκ}, where ai is Bob’s input to the ith instance of the ψ̂ subprotocol, extracted above
(instead of randomly from {0, 1}κ). This difference is statistically indistinguishable from the previous
hybrid.

Simulation: Same as above, but the simulator chooses the message c from step (3) of ρR randomly. This hybrid
defines our final simulation, since it does not need to know Alice’s bit, as desired. To see that these last
two hybrids are indistinguishable, choose an i such that ai 6= ri (such an i must exist by our assumption
in hybrid 5). Then in hybrid 5, the value of x(ri)

i influences Bob’s view only in the ith instance of ψpsv,
and in the value c. However, since Bob is running ψpsv honestly with input ai 6= ri, the transcript of
this ψpsv execution is computationally indistinguishable from a transcript that is independent of x(ri)

i .
Thus the value c is pseudorandom, and our final simulation is computationally indistinguishable from
the previous hybrid.

We next show that ρL has the desired extraction property. For this, we consider an interaction between a malicious
Alice and honest Bob. We show that with overwhelming probability, Bob’s outputs from step (1) of ρL are the only
values to which Alice can successfully open the commitments of x(ri)

i in the reveal phase. We omit the details, which
follow very closely to the approach taken above. Briefly, we can argue that Alice runs the ψpsv protocol honestly on
some inputs, using an honestly sampled random tape (again by extracting from the proof of knowledge). As such,
the correctness of the ψpsv protocol implies that Bob will always learn the correct value of x(ri)

i that underlies Alice’s
relevant Com-commitments. Thus, by the statistical binding property of these commitments, Bob has learned (with
overwhelming probability) the only values to which Alice can successfully open.

(2) Finally, we show that ρ is a secure protocol for F (ρL,ρR)
EXT-COM in the FCOIN-hybrid model. The simulation is trivial,

in that the simulator honestly engages in ρL against a corrupt Alice, and engages in ρR against a corrupt Bob. What
remains is to argue that this simulation is indistinguishable from the real-world interaction. This is straight-forward
for ρR, since there the honest party faithfully simulates the behavior of FCOIN.

In the case of ρL, the simulation is sufficiently different from the real-world interaction, since in the simulation
Bob runs ψ̂ with inputs ri instead of ai. We carefully establish the soundness of the simulation through the following
sequence of hybrids:

3Only with negligible probability is σ in the range of the PRG, so that clause of the WI proof is false.
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Hybrid 1: Same as the real world, except that each time in step (1) of ψ, the simulator picks σ from the
pseudorandom distribution G. This difference is indistinguishable by the pseudorandomness of the
PRG G.

Hybrid 2: Same as before, except that each time in step (8b) of ψ̂, the simulator uses the “trapdoor” witness corre-
sponding to the preimage of σ. This difference is indistinguishable by the witness-indistinguishability of
the WI proof scheme.

Hybrid 3: Same as before, except that each time in step (8) of ψ̂, the simulator uses ri as its inputs to the ψpsv

protocol, instead of ai (recall that these have been chosen at the beginning of the simulation, and that
the actual inputs to ψpsv are no longer being used in the witness for the WI proof in this hybrid). The
difference is indistinguishable by the passive security guarantee of the receiver in the ψpsv protocol. To
show this formally requires some care, but it follows the same approach as the previous reductions to
passive security properties used earlier in this proof.

Hybrid 4: Same as before, except that each time in step (5) of ψ̂, the simulator commits to ri instead of ai. Since
the contents of these commitments are never used later (either by revealing them later, or as a witness
in the WI proofs), this difference is indistinguishable by the hiding property of Com.

Hybrid 5: Same as before, except that each time in step (8b) of ψ̂, the simulator uses the “legitimate” witness to
the WI proof, corresponding to the opening of the commitment to ri. This difference is indistinguishable
by the witness-indistinguishability of the WI proof scheme.

Simulation: Same as before, except that each time in step (1) of ψ, the simulator faithfully chooses random coins σ
instead of pseudorandom coins. Since the previous hybrid did not use the preimage to the pseudorandom
coins σ, these two hybrids are indistinguishable by the pseudorandomness of G. We observe that
this final hybrid represents exactly what our simulator does: runs ρL honestly. Thus the simulation
is indistinguishable from the real-world interaction.

5.8 Extensions & Open Problems

We now identify some possible extensions to our zero-one law, and some directions for future work suggested by our
results.

5.8.1 Strengthening the Reduction

We have shown a zero-one law under the vpnt reduction. Since there is no zero-one law for the significantly stronger
vunt reduction (Chapter 4), a natural question is how much the vpnt reduction can be strengthened to still admit a
zero-one law?

Fixed roles. Our definition F v G allows parties to access many instances of the functionality G, and accessing G
as either of the two parties that it expects to interact with. One may consider a stronger reduction called a fixed-
role reduction, in which the protocol for F is required to interact with all instances of G in the same role. Some
functionalities like FCOIN are symmetric with respect to the two parties, but others like FCC are not.

Theorem 5.29. There is no fixed-role reduction from FCOM to FCC.

Proof. Suppose there is a protocol that securely realizes FCOM in the FCC-hybrid setting where Alice, the committer
for FCOM, is always the “sender” in FCC. Then Alice can equivocate in such a protocol, as follows: she internally runs
the simulator for when Bob is corrupt, playing the role of corrupt Bob, and relaying the messages from the simulator
to Bob. When the protocol requires Alice and Bob to access FCC, Alice obtains an input to be sent to FCC from the
simulator by telling it that Bob’s input to FCC is 1 (i.e., Bob chooses to see Alice’s input); then Alice sends this input
to FCC. If it turns out that Bob indeed chooses to see Alice’s input, the simulation continues normally. However, if
Bob chooses to not see Alice’s input, Alice rewinds the simulator, tells it that Bob’s input to FCC is 0; she obtains an
input to FCC from the simulator, but does not forward it to FCC (because she has already sent an input). Note that
it does not matter if the input to FCC by the simulator changes after rewinding, as this input is not revealed to Bob.
Thus a corrupt Alice can faithfully run the simulator, and in particular open the commitment to any bit specified at
the beginning of the opening phase, and the protocol is not secure.
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On the other hand, suppose there is a protocol for FCOM in the FCC-hybrid model, in which Alice, the committer
for FCOM is always the “receiver” in FCC. In this case, we show that Bob can learn Alice’s input after the commit phase
and before the reveal phase. For this Bob will internally run the simulator for when Alice is corrupt, relaying the
messages from Alice in the actual protocol to this simulator. Now again, when Alice and Bob are required to access
FCC, Bob (who is the sender in FCC) will generate an input for FCC by telling the simulator that Alice’s input to FCC is
1. Subsequently, if her input turns out to be 0, Bob will rewind the simulator, give it 0 as Alice’s input, as above. In
this case, Bob obtains Alice’s input as the bit extracted by the simulator at the end of the commitment phase.

Since FCC is unconditionally non-trivial, this theorem demonstrates that there is no zero-one law under this fixed-
role reduction. This impossibility highlights the fact that FCC is indeed a functionality of rather low complexity, and
justifies our somewhat complicated protocol used to realize FCOM using FCC.

Weakening the communication channel. We formulated our results in the private channel model, where the two
parties can communicate with each other privately via an ideal communication channel. (However, the adversary is
allowed learn the number of bits communicated.) This is perhaps the natural model for capturing the cryptographic
complexity of 2-party computation. Nevertheless, our main result readily extends to a model where the parties use
a public channel completely controlled by the adversary. This follows from the fact that under Assumption 5.1,
private channels can be securely realized using public channels [38]. (If the public channels are not authenticated
channels, then digital signatures are used to achieve authentication, with identities of the parties being their
signature verification keys. Note that digital signatures also follow from one-way functions [90], in turn implied
by Assumption 5.1.)

Even if the reduction is strengthened so that no additional channel is given (i.e., the protocol is allowed to access
only instances of F), our zero-one results still hold, since FPVT vnt F for all non-trivial F (in the terminology of [70],
non-trivial functionalities F enable bit transmission). Suppose F is some DFF, and suppose for all sequences of inputs
~x0, ~x1, ~y, the output for Bob is the same when F is given input sequence (~x0, ~y) or (~x1, ~y), and vice-versa with the
roles of Alice and Bob reversed. Then F is trivial, since either party’s output does not depend on the other’s inputs.
So if F is non-trivial, then the above condition (or its symmetric variant) holds. Then FPVT vnt F as follows: To send
a bit b to Bob, Alice sends input sequence ~xb to F , and to receive it Bob sends sequence ~y. It is straight-forward to
see that this protocol is secure.

Hardness assumptions. Our results rely on the existence of passive-secure protocols forFOT. From this assumption,
we obtain one-way functions and other useful primitives. However, in our protocol constructions we use most of
these primitives in a non-black-box way (in particular, we use witness-indistinguishable and zero-knowledge proofs
of statements relating to these primitives). It is not known whether the zero-one law holds with respect to protocols
that use Assumption 5.1 in a black-box way. In particular, it is not obvious how witness-indistinguishable/zero-
knowledge proofs can be avoided in our constructions (or how our proofs can be made to avoid statements involving
the evaluation of one-way functions or commitment scheme algorithms).

While we have shown that Assumption 5.1 is necessary for the zero-one law to hold, we do not know the state
of affairs if only a weaker assumption (like the existence one-way functions) is true. Intuitively, the weaker the
cryptographic assumptions considered, the closer the vpnt reduction acts to the vunt reduction. In Lemma 5.3, we
showed that if the vpnt-completeness class expands (in comparison to the vunt-completeness class) to intersect the
class of passively realizable functionalities, then Assumption 5.1 is true, and in fact the completeness class expands to
contain all non-trivial functionalities. However, Lemma 5.3 does not rule out the possibility that thevpnt-completeness
class is larger than the vunt-completeness class, but is disjoint from the class of passively realizable functionalities. In
this case, perhaps only a much weaker hardness assumption is needed.

As a concrete example, consider the SSFE functionality whose function table is
0 0 1
3 4 1
3 2 2

. This functionality is

neither passively realizable nor vunt-complete. Is it vpnt-complete under a cryptographic assumption weaker than
Assumption 5.1; say, the existence of one-way functions? Alternatively, is vpnt-completeness equivalent to vunt-
completeness, assuming only one-way functions?

Adaptive security. We consider protocols which are secure only against static adversaries, and we do not know
whether our results extend to the case of adaptive corruption. It is likely that a completely different approach, and
also a much stronger hardness assumption will be needed to achieve adaptive security. The current state of the art
is the result of Canetti et al. [23], who showed that FCOIN is complete for adaptive security, under the assumption of
dense cryptosystems. Thus it suffices to identify a hardness assumption under which FCC is complete for adaptive
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security. Our current approach of obtaining full-fledged commitment from the intermediate extractable commitment
FEXT-COM is not adaptively secure.

Of independent interest would be to identify the minimal hardness assumption necessary for a zero-one law for
adaptive security. In particular, it is not clear how an adaptively secure protocol for, say, FOT in theFCOIN-hybrid setting
would imply a dense cryptosystem. However, this must be the case if the currently known hardness assumption is
optimal.

5.8.2 Larger Classes of Functionalities

Our zero-one result is for the class of deterministic, finite functionalities. Some of the restrictions of this class are
necessary for our result, while we conjecture that the result extends if some of the restrictions are relaxed.

Unbounded memory. In this work we strictly considered functionalities with finite memory. This restriction was
crucial for our techniques, and we show that some memory restriction is crucial for the zero-one law to hold:

Theorem 5.30. Let g : {0, 1}∗ → {0, 1}∗ be a one-way function, and define

f(x) =

{
g(x) if |x| is of the form 22n for some n
x otherwise.

Let F be the functionality that takes input x from Alice and delivers f(x) to Bob. Then F is neither complete nor trivial
under the vpnt reduction.

Proof. First, F is not trivial. This can be seen by an appeal to the splittability characterization of Theorem 3.20. F is
not completely invertible, in particular it is non-invertible on security parameters of the form 22n .

On the other hand, F is not complete. Consider any purported protocol for FOT in the F -hybrid setting.
For most values of the security parameter k, access to F is equivalent to FPVT, since messages of length 22n are
superpolynomially long in k (and thus can never be sent to F), or are sub-logarithmically short in k (and thus f can
be efficiently inverted to a canonical pre-image). As such, for these values of k, a real-world adversary has exactly as
much power as a simulator. Thus, a corrupt receiver can run the simulator algorithm for a corrupt sender, to extract
both of the honest sender’s inputs. This violates the security of FOT for these values of the security parameter, so the
purported protocol is not secure.

The functionality F is admittedly contrived. While this impossibility result still does indicate the necessity of
making some restriction on the class of functionalities, we leave open the problem of identifying the largest “natural”
class of unbounded-memory functionalities that does satisfy the zero-one law.

For instance, in this paper we model functionalities as finite state automata; a natural model which allows
unbounded memory but avoids letting the functionality evaluate one-way functions is to consider automata equipped
with a counter or stack. We leave this as an interesting open question.

Randomized functionalities. Our restriction to deterministic functionalities is crucial for several parts of our proof.
We conjecture that the zero-one law holds also for randomized (but still finite-memory) functionalities. A particular
challenge is to consider that the transition function of a finite-memory functionality might be randomized. However,
even some simpler questions about randomized functionalities are unresolved. For instance, which randomized SFE
functionalities admit unconditional protocols for FOT?

Non-well-formed functionalities. Two other restrictions we require are that functionalities take inputs from both
parties and give outputs to each party in a series of rounds, and that functionalities interact with the adversary
only to model an asynchronous adversarially controlled communication network. We leave open the problem of
relaxing these requirements, both for realization results (i.e., considering a functionality complete if a larger class of
functionalities can be reduced to it) and for extending the scope of the zero-one result (i.e., developing techniques
to analyze a larger class of functionalities).

Indeed, it is often very convenient to define intermediate functionalities which crucially use more sophisticated
communication with the adversary, and which do not have a round-based input/output structure. Our splittability
characterization (Chapter 3) does indeed completely characterize triviality for arbitrary functionalities like these, so
it may be possible to develop tools for classifying them in the context of completeness.

Of secondary interest would be to have a convincing, tighter definition of when a functionality “abuses” its
knowledge of which parties are corrupt. The current definition of well-formedness is motivated by ruling out
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pathological cases, like a functionality which announces the list of corrupt parties. Such a functionality cannot
be securely realized by any protocol in any realistic setting. However, since many realizable functionalities do
indeed require knowledge of the corrupt parties, the current definition of well-formedness (which rules out all such
dependence on the identities of corrupt parties) seems overkill. To extend the zero-one law to functionalities whose
behavior depends on the identities of the corrupt parties, it will likely be necessary to develop a more refined notion
of well-formedness.
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CHAPTER 6

Reconciling Non-Malleability & Homomorphic
Encryption

6.1 Overview

A recurring theme in cryptography is the tension between achieving powerful functionality and making strong
security guarantees. In the case of encryption, a recent trend is towards achieving various kinds of computations
on encrypted data, e.g., rerandomizability [43, 45], proxy re-encryption [11, 20], searchability [94, 26], predicate
encryption [59], and various homomorphism properties [36, 79]. Encryption schemes with computational features
are interesting and useful in their own right, but also are convenient in designing simple, intuitive protocols for many
tasks that combine data privacy and computation (like mix-nets and voting schemes).

On the other hand, non-malleability is usually required for an encryption scheme to be directly useful in providing
guarantees against malicious adversaries, in a composable security setting. In a very general sense, non-malleability
means that an adversary cannot manipulate ciphertexts in any “unexpected” way. Unfortunately, existing non-
malleability security definitions are incompatible with encryption schemes with computational features. CCA security
(security against chosen ciphertext attack)1 rules out the possibility of manipulating encrypted data in any way, CPA
security (security against chosen plaintext attack) permits every possible kind of manipulation, and the very few
security notions between these two extremes are not expressive enough to cover the many desired uses of encryption
with computational features.

An ideal security definition for encryption with computational features would be one that realizes a sharp tradeoff;
for example, “this encryption scheme allow operations x, y, and z, but no other operations are possible.”

In this work we address this problem in the context of homomorphic public-key encryption schemes — those
which allow (as a feature) anyone to obtain an encryption of T (m1, . . . ,mk) given only the encryptions of unknown
messages m1, . . . ,mk, for some allowed set of functions T . Homomorphic encryption schemes hide not only the
underlying plaintext, but also the “history” of a ciphertext — i.e., whether it was derived by encrypting a known
plaintext, or by applying a homomorphic operation applied to some other ciphertext(s). Such schemes have been
extensively studied for a long time and have a wide variety of applications (cf. [10, 91, 29, 92, 52, 57, 33, 43, 54, 31]).

Challenges and Related Work. The first challenge is formally defining (in a convincing way) the intuitive
requirement that a scheme “allow particular features but forbid all others.” Security notions for regular encryption
developed and matured over many years [42, 77, 89, 8, 35, 16], while arguably security definitions for homomorphic
encryptions have lagged behind — to date, homomorphic encryptions are almost exclusively held to the weak
standard of CPA security. In some applications (e.g., [31]) CPA security is indeed sufficient, but for others (e.g.
[34]) it is not. In practical terms, this means that protocols that use homomorphic encryption usually have to employ
the heavy machinery of zero-knowledge proofs or verifiable secret sharing to extend to security against malicious
adversaries.

Very little work has addressed the possibility of homomorphic encryption schemes having malleability beyond the
desired operations; one exception is Wikström [95], who addresses this question in a simpler setting for El Gamal
encryption. Benignly-malleable (also called gCCA) security [93, 1] was proposed as a relaxation of CCA security,
and was further relaxed in the definition of Replayable-CCA (RCCA) security [21]. RCCA security allows a scheme
to be malleable, but only in ways which are guaranteed to preserve the underlying plaintext. However, relaxing CCA
security in the same way does not yield an acceptable level of security when applied to more expressive homomorphic
operations (see Section 6.3.1); a new approach to defining security is needed.

The second challenge is achieving the desired security with a construction based on standard assumptions —
i.e., an encryption scheme that has a particular set of expressive homomorphic operations, but is non-malleable with
respect to all other operations. Note that even if the set of allowed operations is very simple, supporting it can be very
involved. Indeed, the problem of rerandomizable RCCA encryption considered in a recent series of works [21, 45, 83]
corresponds to the simplest special case of our definitions.

1We will use the term CCA to refer to adaptive chosen-ciphertext security, also known as CCA2. When referring to CCA1 (also known as static
CCA or “lunchtime attack”) security, we will be explicit.
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6.1.1 Our Results

We give several new security definitions to precisely capture the desired requirements in the case of unary
homomorphic operations (those which transform a single encryption of m to an encryption of T (m), for a particular
set of functions T ). We provide two new indistinguishability-based security definitions. The first definition,
called Homomorphic-CCA (HCCA) security, formalizes the intuition of “non-malleability except for certain prescribed
operations,” and the second definition, called unlinkability, formalizes the intuition that ciphertexts not leak their
“history.” To justify our non-malleability definition, we show that it subsumes the standard CCA, gCCA, and RCCA
security definitions (Theorem 6.5). We further show that our two new security requirements imply a natural
definition of security in the Universal Composition framework (Theorem 6.9). Using the UC framework to define
security of encryption schemes was already considered in [16, 21, 81, 19].

Our main result is to describe a parameterized encryption scheme which achieves our definitions for a wide range
of allowed (unary) homomorphism operations. The construction is secure under the standard DDH assumption, and
supports homomorphic operations related to a cyclic group operation as its homomorphic feature. We also describe
a very efficient construction that supports homomorphic operations in arbitrary groups, but which only achieves a
weak level of unlinkability.

To demonstrate the practical utility of our definitions, we show a simple, intuitive protocol for an anonymous
opinion polling functionality, which uses HCCA-secure encryption as a key component. Even though the component
encryption scheme supports only unary operations, we are able to perform non-trivial computations on a set of
independently encrypted inputs, crucially using the scheme’s homomorphic features. Furthermore, because of the
strong non-malleability guarantee, this simple protocol achieves UC security against malicious adversaries without
resorting to the overhead of zero-knowledge proofs or general-purpose multi-party computation. Our protocol can
be instantiated with either of our two new constructions, resulting in a very efficient protocol.

Finally, we consider extending our definitions to the case of binary homomorphic operations (those which
combine pairs of ciphertexts). We show that the natural generalization of our UC security definition to this scenario
is unachievable for a large class of useful homomorphic operations (Theorem 6.16). However, we also give a positive
result when one of our requirements is slightly relaxed. In particular, if we allow a ciphertext to leak only the number
of homomorphic operations that were applied to obtain the ciphertext, then it is possible to construct a homomorphic
scheme that supports the binary group operation (that is, it is possible to obtain Enc(α ∗ β) from Enc(α) and Enc(β),
but no other operations are possible).

6.2 Preliminaries

6.2.1 Homomorphic Encryption Syntax

Let M be a space of plaintext messages, let ⊥ be a special error indicator symbol not in M, and let T be a
“transformation space” — i.e., a set of polynomial-time computable functions from (M∪{⊥})k toM∪{⊥}. We call
the elements of T the allowable transformations.

An encryption scheme consists of three probabilistic polynomial-time (polynomial in the implicit security
parameter) algorithms: KeyGen, Enc and Dec.

A T -homomorphic encryption scheme comes with an additional probabilistic polynomial-time algorithm CTrans,
the homomorphic operation feature, which takes k ciphertexts and (the description of) a transformation from T , and
outputs another ciphertext.2 For much of this work, we focus on the case where k = 1; i.e., when the homomorphic
operation is unary.

Syntax of unary homomorphic encryption. Below we give the correctness properties for unary homomorphic
encryption. These requirements can be slightly relaxed (e.g., to hold only with overwhelming probability over the
randomness of they various procedures), but for simplicity we present the stronger formulations.

For all key pairs (PK,SK) in the support of KeyGen, we require the following:

1. For every plaintext msg ∈ M, we require DecSK(EncPK(msg)) = msg, with probability 1 over the randomness
of Enc.

2. For every purported ciphertext ζ and every T ∈ T , we require DecSK(CTrans(ζ, T )) = T (DecSK(ζ)), with
probability 1 over the randomness of CTrans.

2Allowing CTrans to take the public key as additional input would also be a meaningful relaxation, but may not be suitable in some applications.
See Section 6.8.
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m ζ

m′ ζ ′

Enc

Dec

T CTrans(·, T )

Dec

Figure 6.1: Illustration of the syntax and
correctness of a homomorphic encryption
scheme.

6.2.2 Decisional Diffie-Hellman (DDH) Assumption

Let G be a (multiplicative) cyclic group of prime order p. The Decisional Diffie-Hellman (DDH) assumption in G is
that the following two distributions are computationally indistinguishable:

{(g, ga, gb, gab)}g←G;a,b←Zp and {(g, ga, gb, gc)}g←G;a,b,c←Zp .

Here, x← X denotes that x is drawn uniformly at random from a set X.

Cunningham chains. Our construction requires two (multiplicative) cyclic groups with a specific relationship: G
of prime order p, and Ĝ of prime order q, where Ĝ is a subgroup of Z∗p. We require the DDH assumption to hold in
both groups (with respect to the same security parameter).

As a concrete example, the DDH assumption is believed to hold in QR∗p, the group of quadratic residues modulo
p, where p and p−1

2 are prime (i.e, p is a safe prime). Given a sequence of primes (q, 2q + 1, 4q + 3), the two groups
Ĝ = QR∗2q+1 and G = QR∗4q+3 satisfy the needs of our construction. A sequence of primes of this form is called a
Cunningham chain (of the first kind) of length 3 (see [2]). Such Cunningham chains are known to exist with q as
large as 220,000. It is conjectured that infinitely many such chains exist, and with sufficient density.

6.2.3 Existing Security Definitions for Encryption

Several existing security definitions for encryption — CCA security, benignly-malleable (gCCA) security [93, 1], and
Replayable-CCA (RCCA) security [21] — follow a similar paradigm: The adversary has access to a decryption oracle,
and receives an encryption of one of two messages of his choice. His task is to determine which of the two messages
has been encrypted, and we say that security holds if no adversary can succeed with probability significantly better
than chance.

Since the adversary can simply submit the challenge ciphertext to the decryption oracle, it is necessary to restrict
the oracle in some way. The difference among these three security definitions is in how the decryption oracle is
restricted. This restriction corresponds intuitively to identifying when a ciphertext has been (potentially) derived
from the challenge ciphertext. In Figure 6.2, we give a unified overview of these three security notions.

6.3 New Security Definitions for Homomorphic Encryption

In this section we present our formal security definitions. The first two are traditional definitions based on
indistinguishability security games, while the third is a definition in the Universal Composition framework.

6.3.1 Homomorphic-CCA (HCCA) Security

Our first indistinguishability-based security definition formalizes the intuitive notions of message privacy and “non-
malleability other than certain operations.”

A natural idea for formalizing our desired notion of non-malleability is to start with the standard CCA security
experiment and sufficiently relax it. Indeed, this is the approach taken in the definitions of benignly-malleable
(gCCA) security [93, 1] and Replayable CCA (RCCA) security [21], which allow for a scheme to be only “mostly”
non-malleable. In these security experiments (see Figure 6.2), the decryption oracle is guarded so as not to decrypt
ciphertexts that may be legitimate “derivatives” of the challenge ciphertext. In CCA security, the only derivative is the
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Setup: Pick (PK,SK)← KeyGen and give PK to A.

Phase I: A is given access to the decryption oracle DecSK(·).

Challenge: Flip a coin b← {0, 1}. Receive from A two plaintexts msg0,msg1. Compute ζ∗ ← EncPK(msgb), and
give ζ∗ to A.

Phase II: A is given access to the following “guarded” decryption oracle:

GDecSK(ζ) =

{
“GUARDED” if G(SK, ζ, ζ∗,msg0,msg1) = 1

DecSK(ζ) otherwise
.

Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

By using different predicates for G, different levels of security are obtained:

Security: G(SK, ζ, ζ∗,msg0,msg1):

CCA ζ
?
= ζ∗

gCCA R(ζ, ζ∗)
?
= 1, for arbitrary predicate R, provided that R

satisfies R(ζ, ζ∗) = 1⇒ DecSK(ζ) = DecSK(ζ∗)

RCCA DecSK(ζ)
?∈ {msg0,msg1}

Figure 6.2: Security experiment for CCA security and its relaxations gCCA and RCCA

challenge ciphertext itself; in gCCA, derivatives are those which satisfy a particular binary relation with the challenge
ciphertext; in RCCA, derivatives are those which decrypt to either of the two adversarially-chosen plaintexts.

However, the same approach of guarding the decryption oracle fails in the case of more general homomorphic
encryption. For some sets of allowed transformations, it may be legal (i.e., possible via a feature of the scheme)
to change the underlying plaintext of a ciphertext to any other possible plaintext. Indeed, in some instantiations
of our construction, every ciphertext in the support of the Enc operation is a possible derivative of every other such
ciphertext. Letting the decryption oracle refuse to decrypt possible derivatives in such a scenario would essentially
weaken the security requirement to IND-CCA1 (i.e., “lunchtime attack”) security, which is unsatisfactory.

Our approach to identifying “derivative” ciphertexts is completely different, and as a result our definition initially
appears incomparable to these other standard definitions. However, Theorem 6.5 demonstrates that our new
definition gives a generic notion of non-malleability which subsumes these existing definitions.

Overview and intuition. The formal definition, which we call Homomorphic-CCA (HCCA) security, appears below.
Informally, in the security experiment we identify derivative ciphertexts not for normal encryptions, but for special
“rigged” ciphertexts.

When b = 0 in the experiment, the adversary simply receives an encryption of his chosen plaintext msg∗, and
gets access to an unrestricted decryption oracle. However, when b = 1 in the experiment, instead of an encryption
of msg∗, the adversary receives a “rigged” ciphertext, generated by RigEnc without knowledge of msg∗. Such a
rigged ciphertext need not encode any actual message, so if the adversary asks for it (or any of its derivatives) to
be decrypted, we must compensate for the decryption oracle’s response in some way, or else it would be easy to
distinguish the b = 0 and b = 1 cases. For this purpose, the RigEnc procedure also produces some (secret) extra
state information, which makes it possible to identify (via the RigExtract procedure) all ciphertexts derived from that
particular rigged ciphertext, as well as how they were derived. So in the b = 1 scenario, the decryption oracle first
uses RigExtract to check whether the given ciphertext was derived via a homomorphic operation of the scheme, and
if so, compensates in its response. For example, if the query ciphertext was derived by applying the T transformation,
then the decryption oracle should respond with T (msg∗), to mimic the b = 0 case.

It is easily seen that if it is feasible for an adversary to modify an encryption of Enc(msg) into a related encryption
Enc(T (msg)), but RigExtract never outputs T , then there is a way for an adversary to distinguish between b = 0 and
b = 1 in the experiment. Conversely, if RigExtract never outputs T , and yet no adversary has nonnegligible advantage
in the IND-HCCA experiment, then the scheme is intuitively non-malleable with respect to T . Thus by restricting the
range of the RigExtract procedure in the security definition, we enforce a limit on the malleability of the scheme.

Finally, because RigExtract uses the private key, as well as secret auxiliary information from RigEnc, we provide
an oracle for these procedures. We do so in a “guarded” way that keeps the auxiliary shared information hidden from
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the adversary in the experiment. These oracles are useful in security reductions where we replace several encryptions
with rigged encryptions.

Definition 6.1. A unary homomorphic encryption scheme is Homomorphic-CCA (HCCA) secure with respect to T if
there are PPT algorithms RigEnc and RigExtract, where the range of RigExtract is T ∪ {⊥}, and such that for all PPT
adversaries A, the advantage of A in the IND-HCCA experiment (Figure 6.3) is negligible.

Setup: Pick (PK,SK)← KeyGen and give PK to A.

Phase I: A is given access to the DecSK(·) oracle and the following two “guarded” RigEnc and RigExtract oracles,
which keep shared state to keep RigEnc’s auxiliary information hidden:

GRigEncPK: Takes no input. Run (ζ, S)← RigEncPK , store (ζ, S), and return ζS .

GRigExtractSK: On input (ζ, ζ ′), if (ζ ′, S) is stored for some S, then return RigExtractSK(ζ, S).

Challenge: Flip a coin b ← {0, 1}. Receive from A a plaintext msg∗. If b = 0, compute ζ∗ ← EncPK(msg∗); if
b = 1, compute (ζ∗, S∗)← RigEncPK . Give ζ∗ to A.

Phase II: A is given access to the same GRigEnc and GRigExtract oracles as in Phase I, as well as a “rigged”
version of the decryption oracle RigDecSK(·). When b = 0, RigDecSK(·) is simply implemented as the
normal decryption oracle DecSK(·). When b = 1, RigDecSK(·) is implemented as follows:

RigDecSK(ζ) =

{
T (msg∗) if ⊥ 6= T ← RigExtractSK(ζ, S∗)

DecSK(ζ) otherwise
.

Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Figure 6.3: IND-HCCA experiment, parameterized by set of allowed transformations T

Simpler formulation. Some of constructions do not need the full power of the IND-HCCA experiment. For instance,
consider the case where RigExtract may evaluate DecSK as a black-box, but otherwise does not use SK. Then the
guarded oracles GRigEnc and GRigExtract are superfluous in the IND-HCCA experiment. An adversary can simulate
the behavior and shared state of these two oracles using the public key PK and access to its own decryption oracle
Dec/GDec.

Without these extra oracles, the IND-HCCA experiment collapses to a much simpler experiment, which we call
IND-HCCA-simp (Figure 6.4). Several of our results involve RigExtract procedures of this required special form,
and our corresponding proofs are made simpler by considering the IND-HCCA-simp experiment. However, our main
construction (Section 6.5.2) does require the full power of the original experiment.

Setup: Pick (PK,SK)← KeyGen and give PK to A.

Phase I: A is given access to the DecSK(·) oracle.

Challenge: Flip a coin b ← {0, 1}. Receive from A a plaintext msg∗. If b = 0, compute ζ∗ ← EncPK(msg∗); if
b = 1, compute (ζ∗, S∗)← RigEncPK . Give ζ∗ to A.

Phase II: A is given access to a “rigged” version of the decryption oracle RigDecSK(·), which is implemented as
follows. When b = 0, RigDecSK(·) is simply implemented as the normal decryption oracle DecSK(·). When
b = 1, RigDecSK(·) is implemented as follows:

RigDecSK(ζ) =

{
T (msg∗) if ⊥ 6= T ← RigExtractSK(ζ, S∗)

DecSK(ζ) otherwise
.

Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Figure 6.4: IND-HCCA-simp experiment, parameterized by set of allowed transformations T
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6.3.2 Unlinkability

There indeed is some tension between the HCCA definition given above and the intuitive notion of unlinkability that
we desire. HCCA security implies that it is possible to track transformations applied to rigged ciphertexts, while
unlinkability demands that ciphertexts not leak whether they were generated via a transformation. To reconcile
this, we require unlinkability to apply only to ciphertexts that successfully decrypt under a private key chosen by
the challenger. This excludes linkability via the RigEnc and RigExtract procedures, since tracking ciphertexts using
RigExtract in general requires the tracking party to know the private key.

Our formal definition of unlinkability is given below. We note that the definition is more than just a correctness
property, as it involves the behavior of the scheme’s algorithms on maliciously-crafted ciphertexts. The security
experiment also includes a decryption oracle, making it applicable even to adversaries with chosen-ciphertext attack
capabilities.

Definition 6.2. A unary homomorphic encryption scheme is unlinkably homomorphic with respect to T (T -unlinkable)
if for all PPT adversaries A, the advantage of A in the IND-UH experiment (Figure 6.5) is negligible.

Setup: Pick (PK,SK)← KeyGen and give PK to A.

Phase I: A is given access to the decryption oracle DecSK(·).

Challenge: Flip a coin b← {0, 1}. Receive from A a ciphertext ζ and a transformation T ∈ T . If DecSK(ζ) = ⊥,
do nothing; otherwise:

• If b = 0, give the adversary ζ∗ ← EncPK(T (DecSK(ζ)).

• If b = 1, give the adversary ζ∗ ← CTrans(ζ, T ).

Phase II: Same as Phase I.

Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Figure 6.5: IND-UH experiment, parameterized by set of allowed transformations T

Relaxations. Unlinkability is a strong security guarantee that considers even maliciously crafted ciphertexts. We
also consider relaxations of unlinkability which are implied by simple indistinguishability properties of the scheme’s
CTrans procedure, but are nonetheless useful.

Definition 6.3. A unary homomorphic encryption scheme is weakly unlinkably homomorphic with respect to T (T -
weakly-unlinkable) if for all PPT adversariesA, the advantage ofA in the IND-WUH experiment (Figure 6.6) is negligible.

Setup: Pick (PK,SK)← KeyGen and give PK to A.

Phase I: A is given access to the decryption oracle DecSK(·).

Challenge: Flip a coin b← {0, 1}. Receive from A a plaintext msg and transformation T ∈ T .

• If b = 0, give the adversary ζ∗0 ← EncPK(msg) and ζ∗1 ← EncPK(T (msg)).

• If b = 1, give the adversary ζ∗0 ← EncPK(msg) and ζ∗1 ← CTrans(ζ∗0 , T ).

Phase II: Same as Phase I.

Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Figure 6.6: IND-WUH experiment, parameterized by set of allowed transformations T

Unlike the stronger variant, weak unlinkability is implied by a simple indistinguishability condition: namely, that
for all transformations T ∈ T , plaintexts msg, and ciphertexts ζ ← EncPK(msg), the distributions of EncPK(T (msg))
and CTrans(ζ, T ) are computationally indistinguishable given SK.

Definition 6.4. A unary homomorphic encryption scheme is transformation hiding with respect to T (T -
transformation-hiding) if for all PPT adversaries A, the advantage of A in the IND-TH experiment (Figure 6.7) is
negligible.

82



CHAPTER 6: RECONCILING NON-MALLEABILITY & HOMOMORPHIC ENCRYPTION

Setup: Pick (PK,SK)← KeyGen and give PK to A.

Phase I: A is given access to the decryption oracle DecSK(·).

Challenge: Flip a coin b← {0, 1}. Receive from A a plaintext msg and transformation T ∈ T .

• If b = 0, give the adversary ζ∗ ← EncPK(T (msg)).

• If b = 1, generate ζ ← EncPK(msg) and give the adversary ζ∗ ← CTrans(ζ, T ).

Phase II: Same as Phase I.

Output: A outputs a bit b′. The advantage of A in this experiment is Pr[b′ = b]− 1
2 .

Figure 6.7: IND-TH experiment, parameterized by set of allowed transformations T

Note that the IND-TH experiment is identical to the IND-WUH experiment, except that the adversary does not
receive ζ∗0 in the IND-TH experiment. Thus transformation hiding is a strictly weaker requirement.

Transformation hiding is also implied by a simple indistinguishability criterion: namely, that for all transfor-
mations T and plaintexts msg, the distributions EncPK(T (msg)) and CTrans(EncPK(msg), T ) are computationally
indistinguishable given SK, over the randomness of both Enc and CTrans in the second expression. In particular,
CTrans need not be randomized for a scheme to be transformation hiding.

6.3.3 Defining Security Using an Ideal Functionality

We also define the “Homomorphic Message Posting” functionality FTHMP in the framework of Universally Composable
security [16] as a natural security definition encompassing both unlinkability and our desired notion of non-
malleability. The complete definition appears in Figure 6.8.

Setup: On receiving a command SETUP from a party P : If a previous SETUP command has been processed,
abort. Else, send (ID-REQ, P ) to the adversary, and expect in response a string id. Broadcast (ID-ANNOUNCE, P, id)
to all other parties.

Message posting: On receiving a command (POST,msg) from a party sender: If msg 6∈ M, ignore the request.
If P is corrupt, send (HANDLE-REQ, sender,msg) to the adversary; otherwise send (HANDLE-REQ, sender) to the
adversary. In both cases expect a string handle in return. If handle has been previously used, abort; else internally
record (handle,msg) and broadcast (HANDLE-ANNOUNCE, handle) to all parties.

Dummy handles: On receiving a command (DUMMY, handle) from a corrupt party, internally record (handle,⊥)
and broadcast (HANDLE-ANNOUNCE, handle) to all parties.

Homomorphic reposting: On receiving a command (REPOST, handle, T ) from a party sender: If handle is not
recorded internally or T 6∈ T , ignore the request. Otherwise, suppose (handle,msg) is recorded internally. If
msg 6= ⊥, then do the same as if (POST, T (msg)) were received. Otherwise, send (HANDLE-REQ, sender, handle, T )
to the adversary and expect a string handle′ in return. If handle′ has been previously used, abort; else record
(handle′, T (msg)) internally and send (HANDLE-ANNOUNCE, handle′) to all parties.

Message reading: On receiving a command (GET, handle) from party P (and only party P ): If a record
(handle,msg) is recorded internally, give msg to P ; otherwise ignore this request.

Figure 6.8: UC ideal functionality FTHMP.

FTHMP allows parties to post private messages for other parties, as on a bulletin board, represented by abstract
handles which reveal no information about the message (they are generated by the adversary without knowledge
of the message). Only the designated receiver is allowed to obtain the corresponding message for a handle. To
model the homomorphic features, the functionality allows parties to post messages derived from other handles. The
functionality is parameterized by the set of allowed transformations T . When a party provides a previously posted
handle and a transformation T ∈ T , the functionality retrieves the message m corresponding to the handle and then
acts as if the party had actually requested T (m) to be posted. The sender does not need to know, nor is it told, the
underlying message m of the existing handle.
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FTHMP models the non-malleability we require, since the only way a posted message can influence a subsequent
message is via an allowed transformation.

The functionality also models unlinkability by internally behaving identically (in particular, in its interaction with
the adversary) for the two different kinds of posts. The only exception is that corrupt parties may generate “dummy”
handles which look like normal handles but do not contain any message. When a party derives a new handle
from such a dummy handle, the adversary learns the transformation. This apparent slight weakness is natural3 and
it mirrors the tradeoff between our indistinguishability definitions. In our security proofs, this additional dummy
handle feature is crucial.

Homomorphic encryption schemes and protocols for FTHMP. The UC framework defines when a protocol is said
to securely realize the functionality FTHMP: for every PPT adversary in the real world interaction (using the protocol),
there exists a PPT simulator in the ideal world interaction with FTHMP, such that no PPT environment can distinguish
between the two interactions.

We associate homomorphic encryption schemes with candidate protocols for FTHMP in the following natural way
(for simplicity assume all communication is on an authenticated broadcast channel). To setup an instance of FTHMP,
a party generates a key pair and broadcasts the public key. To post a message, a party encrypts it under the public
key and broadcasts the resulting ciphertext. The “derived post” feature is implemented via the CTrans procedure. To
retrieve a message from a handle, the receiver decrypts it using the private key.

6.4 Relationships Among Security Definitions

To justify our new security definitions, we prove some relationships among them and among the more established
definitions of CCA, gCCA [1, 93], and RCCA [21] security. We first give some simple observations.

6.4.1 Simple Observations

In order to achieve HCCA security, T must be closed under composition, and must also contain the identity function,
since the adversary can simply submit the challenge ciphertext ζ∗ to the RigDec oracle.

Simultaneously achieving HCCA security and unlinkability. We have defined unlinkability and HCCA security
with the goal that a scheme can be both T -unlinkably homomorphic, and T -HCCA-secure (for the same T ). Indeed,
it is easy to see that if a scheme is T -unlinkably homomorphic and T ′-HCCA-secure, then T ⊆ T ′. For simplicity,
and to highlight the compatibility and sharp tradeoff between these two definitions, we only focus on schemes which
satisfy them both with respect to the same transformation space T .

Triviality of HCCA without (weak) unlinkability or transformation-hiding. Without a requirement of (weak)
unlinkability or transformation-hiding, it is relatively trivial to construct a scheme that is HCCA-secure with respect
to any space of message transformations T . Consider modifying any CCA-secure encryption scheme by considering an
additional kind of ciphertext of the form (ζ, T ), where ζ is a ciphertext in the original scheme and T is a description of
a transformation in T . To decrypt a ciphertext of this new form, first decrypt ζ and then if T ∈ T , apply T to the result.
The scheme has a homomorphic transformation procedure: CTrans(ζ, T ) = (ζ, T ), and CTrans((ζ, T ), T ′) = (ζ, T ′◦T ).

It is not hard to see that such a scheme achieves HCCA security with respect to T . RigEnc should encrypt some
fixed message and use the ciphertext itself as the auxiliary information S. Then on input (ζ, T ), S, the RigExtract
procedure should return T if T ∈ T and ζ = S, and return ⊥ otherwise. Since T is included explicitly in the
ciphertext itself, the scheme is clearly not even transformation-hiding.

6.4.2 HCCA Generalizes Existing Non-Malleability Definitions

Theorem 6.5. CCA, gCCA, and RCCA security can be obtained as special cases of the HCCA definition, by appropriately
restricting RigEnc and RigExtract.

3For example, an adversary may broadcast a single encryption under a public key that he keeps hidden. The ciphertext will be meaningless to
the recipient, but if the adversary later encounters another ciphertext that decrypts under this same key, he can deduce that the it was derived
from his previous ciphertext.
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Proof. The restrictions on RigExtract are progressively relaxed as we go from CCA to gCCA to RCCA, making it explicit
that the non-malleability requirements get weaker in that order.

First, consider a variant of the traditional CCA security experiment (Figure 6.2), in which the adversary provides
only one of the two challenge plaintexts msg1, while the other challenge plaintext msg0 is fixed and publicly known.
This variant realizes the same level of security as the original CCA definition (in which the adversary chooses both
plaintexts).4 We can further modify the experiment cosmetically so that when the adversary submits the challenge
ciphertext to the decryption oracle, the response is msg1 (regardless of whether msg0 or msg1 was chosen), instead
of “GUARDED”.

This modified CCA experiment can be directly obtained as a special case of IND-HCCA as follows: RigEnc
generates an encryption of msg0, and uses the ciphertext itself as the auxiliary information. RigExtract simply checks
if an input ciphertext is identical to the auxiliary information; if so, it outputs the identity transformation (indicating
that the given ciphertext encodes the same plaintext as the output of RigEnc); otherwise, it outputs⊥. This RigExtract
does not use the private key at all, thus the corresponding IND-HCCA experiment can be simplified to the IND-HCCA-
simp experiment without loss of generality. Then it is easy to see that the resulting IND-HCCA-simp experiment is
exactly equivalent to the modified CCA experiment described above, with RigDec acting as the decryption oracle.

Similarly, benignly non-malleable (or gCCA) security is obtained if RigExtract is allowed to compute an arbitrary
equivalence relation among the two ciphertexts (but still without being given the private key). RCCA security is
obtained if RigEnc encrypts a random plaintext (using that plaintext as the auxiliary information), and RigExtract
simply decrypts the given ciphertext and checks whether the result equals the auxiliary information. In this case,
RigExtract only uses the private key to implement Dec as a black box, so again the corresponding IND-HCCA
experiment collapses to the IND-HCCA-simp experiment.

Note that in all these cases RigExtract is allowed to output only ⊥ or the identity transformation. This highlights
the fact that schemes satisfying these security definitions are not malleable in ways which alter the message.

We note that all of these special cases of HCCA involve a RigEnc procedure which simply encrypt a plaintext as
normal. In our construction (Section 6.5.2), we exploit the flexibility of the full HCCA definition to achieve larger
classes of transformations, by letting RigEnc generate a “ciphertext” that is not in the range of Enc(·).

Rerandomizable RCCA. The notion of rerandomizable RCCA encryption was introduced in [21] and later con-
sidered by [45, 83]. Briefly, rerandomizable RCCA security demands that given any ciphertext in the support of
Enc(m), anyone should be able to freshly sample the distribution of Enc(m) (rerandomizability), but the scheme is
non-malleable in ways which alter the plaintext (RCCA security).

Rerandomizable RCCA security corresponds to the special case of unlinkable HCCA security, where the only
allowed transformation is the identity transformation,5 and we will use the term “rerandomizable RCCA” security
when appropriate. However, for the general case, we prefer the term “unlinkable”, as it emphasizes a concrete
security end goal, and not the technique used to achieve it.

6.4.3 CCA From HCCA

Given a (not necessarily unlinkable) HCCA-secure scheme satisfying a reasonable condition, we show a black-box
construction of a CCA-secure scheme. The reduction is a simple modification of the Canetti-Halevi-Katz (CHK)
transformation to construct a CCA-secure scheme from any identity-based encryption (IBE) scheme [18]. A similar
black-box transformation appeared independently in [71]. The CHK transformation relies on the fact that IBE
ciphertexts are non-malleable with respect to the identity string. Using the verification key of a strong one-time
signature scheme as the identity, the CHK transformation thwarts any potential malleability of the IBE ciphertext’s
message. Similarly, if the homomorphic transformations of an HCCA-secure scheme preserve any part of the plaintext,
then that part of the plaintext is non-malleable and can be used to store a signature verification key, as in the CHK
transformation, to thwart the possible malleability of the remainder of the plaintext.

Let E = (KeyGen,Enc,Dec,CTrans) be a T -HCCA-secure scheme with the following properties:

• The message spaceM is isomorphic to A×B. That is, there are efficiently computable maps betweenM and
A×B. Without loss of generality, we assumeM = A×B.

• For all T ∈ T , there exists a function t : B → B such that T (a, b) = (a, t(b)). That is, each transformation
preserves the A-component of the plaintext.

4If an adversary can successfully distinguish between encryptions of msg versus msg′ in the CCA experiment, then a related adversary can
successfully distinguish between either (msg,msg0) or (msg′,msg0).

5Technically, our unlinkability requirement is slightly stronger than the rerandomizability requirement as stated above.
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Intuitively, these are the minimal requirements so that E enforces non-malleability on some part of the message.
These requirements are sufficient to adapt the CHK transformation.

Let Σ = (SigGen,Sign,Ver) be a strong one-time signature scheme6 with A as its space of verification keys. We
define the new CCA-secure scheme E CHK, with message space B, as follows:

• KeyGenCHK: same as KeyGen.

• EncCHK
PK(msg): Run (vk, ssk) ← SigGen. Compute ζ ← EncPK(vk,msg) and σ ← Signssk(ζ), then output

(vk, ζ, σ).

• DecCHK
SK(vk, ζ, σ): If Vervk(ζ, σ) 6= 1, then output ⊥. Else, compute (vk′,msg) ← DecSK(ζ). If the decryption

fails, or if vk 6= vk′, then output ⊥. Otherwise, output msg.

Theorem 6.6. If E and Σ are as above, then E CHK is CCA-secure.

Proof. Consider the standard CCA experiment (Figure 6.2) against E CHK, in which the adversary receives an
encryption of msg∗ = msgb. Now consider a hybrid experiment in which the challenge ciphertext is generated as
follows:

• Enc∗PK(msg∗): Run (vk∗, ssk) ← SigGen. Compute (ζ∗, S∗) ← RigEncPK and σ∗ ← Signssk(ζ∗), then output
(vk∗, ζ∗, σ∗).

and the decryption oracle is replaced by:

• Dec∗SK(vk, ζ, σ): If Vervk(ζ, σ) 6= 1, then output ⊥. If ⊥ 6= T ← RigExtractSK(ζ, S∗), then set (vk′,msg) =
T (vk∗,msg∗). By the properties of E , vk′ = vk∗ in this case. Otherwise set (vk′,msg) ← DecSK(ζ). If the
decryption fails, or if vk 6= vk′, then output ⊥. Otherwise, output msg.

By the HCCA security of E , this hybrid experiment is indistinguishable from the original experiment (to simulate
the CCA experiment and this hybrid variant in the IND-HCCA experiment requires no access to the GRigEnc or
GRigExtract oracles). Note that in the hybrid experiment, the challenge ciphertext is generated independently of the
message msg∗, but the hybrid decryption oracle still depends on msg∗.

However, in the case that RigExtractSK(ζ, S∗) 6= ⊥, we have that vk′ will be set to vk∗. But since the decryption
oracle is only called when (vk, ζ, σ) 6= (vk∗, ζ∗, σ∗), we must have either vk′ 6= vk, or Vervk′(ζ, σ) = 0 with
overwhelming probability by the strong unforgeability of Σ. Thus the experiment is indistinguishable from one
in which the decryption oracle rejects whenever RigExtractSK(ζ, S∗) 6= ⊥. That is:

• Dec∗SK(vk, ζ, σ): If Vervk(ζ, σ) 6= 1, or if RigExtractSK(ζ;S∗) 6= ⊥, then output ⊥. Set (vk′,msg) ← DecSK(ζ).
If the decryption fails, or if vk 6= vk′, then output ⊥. Otherwise, output msg.

Now in this final hybrid, the challenge ciphertext and decryption oracle responses are computed independently of
msg∗, so the adversary’s advantage is 1/2. By the indistinguishability of our sequence of hybrids, the scheme is
CCA-secure.

We also note that if Σ is not strongly unforgeable, then the above transformation results in an RCCA-secure
scheme instead of a CCA-secure scheme.

Given an HCCA-secure scheme E with message space isomorphic to A × B, and all allowed transformations
preserving the A-component, the above construction gives a CCA-secure scheme with message space B. We also
observe that one can also construct an RCCA-secure [21] scheme with message space A using E: simply add an
arbitrary B-component when encrypting and ignore the B-component when decrypting.

Black-box separation from CPA. Given the black-box separation results of [39], our construction above implies
that there is no shielding7 black-box construction of a HCCA-secure scheme satisfying the condition of Theorem 6.6
from a CPA-secure scheme.

6Strong one-time signature schemes are implied by one-way functions, and it is easy to construct a one-way function from the KeyGen
procedure of any HCCA-secure scheme.

7A shielding construction is one in which the HCCA scheme’s decryption algorithm does not make calls to the CPA scheme’s encryption
algorithm.
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6.4.4 Restricting the Transformation Space

In general, one cannot easily modify a T1-unlinkable-HCCA-secure scheme into a T2-unlinkable-HCCA-secure scheme,
even if T2 ⊆ T1. The problem of “disabling” the transformations in T1 \ T2 while at the same time maintaining those
in T2 appears just as challenging as constructing a T2-unlinkable-HCCA scheme from scratch. However, a simple
black-box transformation is possible for the special case where T2 is a singleton set containing only the identity
transformation. Recall that this special case is known as rerandomizable RCCA security [21].

Definition 6.7. Let E = (KeyGen,Enc,Dec,CTrans) be a unary homomorphic encryption scheme, and let E ′ =
(KeyGen′,Enc′,Dec′) be a (not necessarily homomorphic) encryption scheme. We define the encapsulation of E ′ inside
E , denoted E ◦ E ′, to be a unary homomorphic encryption scheme, given by the following algorithms:

• KeyGen∗: Run (pk, sk)← KeyGen and (pk′, sk′)← KeyGen′. Output PK = (pk, pk′) and SK = (sk, sk′).

• Enc∗pk,pk′(msg) = Encpk(Enc′pk′(msg)).

• Dec∗sk,sk′(ζ) = Dec′sk′(Decsk(ζ)), where we let Dec′sk′(⊥) = ⊥ for simplicity.

• CTrans∗: same as CTrans.

Theorem 6.8. If EH is a T -unlinkable-HCCA-secure scheme (for any T ) and ER is a (not necessarily rerandomizable)
RCCA-secure scheme, then EH ◦ ER is rerandomizable RCCA-secure.

Intuitively, the outer scheme’s unlinkability is preserved by the encapsulation, but the inner scheme’s non-
malleability renders useless all transformations but the identity transformation.

Note that RCCA security without rerandomizability is a weaker requirement than CCA security [21]. Thus,
for example, an unlinkable HCCA-secure scheme encapsulating a plain CCA-secure encryption scheme will yield a
rerandomizable RCCA-secure encryption scheme. For many instantiations of HCCA-secure schemes, there is a black-
box reduction to a CCA-secure scheme (Theorem 6.6), and in these cases we get a direct black-box reduction from
unlinkable HCCA security to rerandomizable RCCA security.

Proof. For clarity, we superscript with “H” the algorithms of EH , and superscript with “R” the algorithms of ER.
We write the keys of EH as (hpk, hsk), and similarly the keys of ER as (rpk, rsk). We write the algorithms of the
encapsulated scheme EH ◦ ER without superscripts.

Note that CTransH accepts possibly many allowed transformations as input when viewed in the context of EH .
However, in the context of the encapsulated scheme EH ◦ER, CTrans = CTransH is only meaningful when called with
the identity transformation. We note that to achieve HCCA security with respect to T , T must indeed contain the
identity function (see Section 6.4.1). It is easy to see that the unlinkability of the outer scheme (with respect to the
identity transformation) is preserved by the construction.

To show RCCA security (HCCA security with the identity function as the only allowed transformation), we must
demonstrate appropriate RigEnc and RigExtract procedures for the new scheme. Let (RigEncH ,RigExtractH) and
(RigEncR,RigExtractR) be the procedures guaranteed by the two schemes, respectively. Then the new scheme satisfies
HCCA security with the following procedures:

• RigEnchpk,rpk does the following: Run (ζ, SH) ← RigEncHhpk and (ζR, SR) ← RigEncRrpk. Set S = (SH , ζR, SR)
and output (ζ, S).

• RigExtracthsk,rsk(ζ, S) does the following: Parse S as (SH , ζR, SR). Run T ← RigExtractHhsk(ζ, SH). If T = ⊥,
output ⊥; otherwise output RigExtractRrsk(T (ζR), SR), which must be either the identity function or ⊥, by the
RCCA security of the inner scheme.

Consider a hybrid HCCA experiment where the challenge ciphertext is generated from msg∗ as:

• Run (ζ∗, S∗)← RigEncHhpk and ζ∗R ← EncRrpk(msg∗). Remember ζ∗R and output ζ∗.

and RigDec in Phase II of the IND-HCCA experiment is implemented as:

RigDechsk,rsk(ζ) =

{
DecRrsk(T (ζ∗R)) if ⊥ 6= T ← RigExtractHhsk(ζ, S∗)

DecRrsk(DecHhsk(ζ)) otherwise.

It is straight-forward to verify that this hybrid experiment is indistinguishable from both the b = 0 and b = 1
branches of the HCCA experiment instantiated with the new scheme and its RigEnc and RigExtract procedures
described above.
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6.4.5 Unlinkable HCCA Implies the UC Definition

Theorem 6.9. Every T -homomorphic encryption scheme which is HCCA-secure, unlinkably homomorphic (with respect
to T ) and satisfies the correctness properties, is a UC-secure realization of FTHMP, against static (non-adaptive) corruptions.

Let E = (KeyGen,Enc,Dec,CTrans) be an unlinkably homomorphic, HCCA-secure encryption scheme (with
allowable homomorphisms T ). To prove Theorem 6.9, for any real-world adversaryA, we must demonstrate an ideal-
world adversary (simulator) S, so that for all PPT environments Z, EXEC[Z,A, E ,FBCAST] ≈ EXEC[Z,S, πdummy,FTHMP].
We assume that all communication is done on an authenticated broadcast channel FBCAST.

In the case where the recipient P is corrupt, the simulation is trivial. Each time it is asked to generate a handle,
it is given the underlying message. Each time the adversary itself outputs a ciphertext, the simulator can register it
as a dummy handle, after which it is notified each time that handle is REPOST’ed. We now focus on the case where P
is not corrupt.

We construct S in a sequence of hybrids, starting from the real-world interactions and altering it step by step to
get an ideal-world adversary, at every stage ensuring that each change remains indistinguishable to all environments.
All the simulators below exist in the ideal world, but are also given (progressively less) information about the inputs
to the honest parties. We conveniently model this access to extra information using modified functionalities.

S0 and F0 (correctness): F0 behaves exactly like FTHMP except that in its HANDLE-REQ interactions with the
adversary, it reveals the message and whether the handle is being requested for a repost. Thus S0 effectively learns
all the honest parties’ inputs to F0. S0 internally simulates the encryption scheme algorithms for all honest parties,
and lets the adversary A interact with these simulated parties and directly with the environment, as follows:

1. When an honest party P sends a SETUP command to F0, the functionality sends (ID-REQ, P ) to S0 and expects
an ID in return. S0 generates a key pair (PK,SK) ← KeyGen and uses PK as the ID string. It also internally
simulates to A that P broadcast the public key.

2. When an honest party sender sends a command (POST,msg) to F0, the functionality sends
(HANDLE-REQ, sender,msg) to S0 and expects a handle in return. S0 computes handle ← EncPK(msg)
and uses it as the handle. It also internally simulates to A that sender broadcast handle.

3. When an honest party sender sends a command (REPOST, handle, T ) to F0, and handle is internally recorded,
the functionality sends (HANDLE-REQ, sender, handle, T ) to S0 and expects a handle in return. S0 computes
handle′ ← CTrans(handle, T ) and uses it as the handle. It also internally simulates to A that sender broadcast
handle′.

4. When the adversary broadcasts a ciphertext ζ, S0 does the following:

• If DecSK(ζ) = msg 6= ⊥, then S0 sends (POST,msg) to the functionality on behalf of A. It uses ζ as the
corresponding handle.

• Otherwise, S0 sends (DUMMY, ζ) to F0.

Claim 6.10. For any given PPT adversary, let F0 and S0 be as described above. Then for all PPT environments Z,
EXEC[Z,A, E ,FBCAST] ≈ EXEC[Z,S0, πdummy,F0].

Proof. This follows from the correctness properties of encryption scheme E , and the fact that S0 exactly emulates the
real world actions of all parties.

S1 and F1 (unlinkable homomorphism): F1 is identical to F0 except that it does not tell the adversary whether
a HANDLE-REQ was the result of a POST or REPOST command, except for dummy handles. The exact differences are
as follows:

1. When an honest party sender sends a command (REPOST, handle, T ) to F1, and (handle,msg) is internally
recorded, and msg 6= ⊥, the functionality now does the same thing as if sender had given the command
(POST, id, T (msg)) command. If msg = ⊥, the functionality sends (HANDLE-REQ, sender, handle, T ) to the
simulator just as in F0.

2. S1 and S0 are identical, although they receive different types of HANDLE-REQ requests when interacting with
F1 instead of F0.
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Claim 6.11. For any given PPT adversary A, let S0, F0, S1 and F1 be as described above. Then for all PPT environments
Z, EXEC[Z,S0, πdummy,F0] ≈ EXEC[Z,S1, πdummy,F1].

Proof. This follows from the unlinkable homomorphism property of the encryption scheme. The only manner in
which the adversary’s view differs in the two executions is in whether certain ciphertexts are generated via a
transformation (just as S0 does on receiving a (HANDLE-REQ, sender, handle, T ) request) or as a fresh encryptions
of the appropriate message (just as S1 does on receiving a (HANDLE-REQ, sender, T (msg)) request). We note that F1

only behaves differently when msg 6= ⊥. Thus the difference between executions only involves ciphertexts which
were either honestly generated by the simulator, or adversarially generated ciphertexts that successfully decrypted
under PK. The unlinkable homomorphism property of the scheme implies that the difference in these interactions’
outcomes is negligible.

More formally, we can only apply the unlinkable homomorphism property to one ciphertext at a time. It
is straightforward to construct a sequence of hybrid simulators where the difference between successive hybrids
is in whether a single handle was freshly re-encrypted or had a transformation applied, and such that the
rest of the interaction can be carried out within the unlinkability experiment. Thus EXEC[Z,S0, πdummy,F0] ≈
EXEC[Z,S1, πdummy,F1].

S2 and F2 (HCCA security): F2 is identical to F1 except that it does not tell the adversary the contents of the posted
messages when the receiver is not corrupted. S2 differs from S1 accordingly, and uses the RigEnc and RigExtract
features guaranteed by HCCA security. The exact differences are as follows:

1. When P is not corrupt and F1 would send (HANDLE-REQ, sender,msg) to the simulator (i.e, when a party posts
or reposts a non-dummy handle), F2 instead sends (HANDLE-REQ, sender).

2. When S2 receives a request of the form (HANDLE-REQ, sender) from F2, it computes (handle, S) ← RigEncPK
and uses handle as the message’s handle. It internally keeps track of (handle, S) for later use.

3. When the adversary broadcasts a ciphertext ζ, S2 does the following: For each (handle, S) recorded above, S2

checks if RigExtractSK(ζ, S) = T 6= ⊥. If so, S2 sends (REPOST, handle, T ) to F2 and uses ζ as the handle. If
none of these RigExtract calls succeed, then S2 proceeds just as S1 (i.e, attempts to decrypt ζ under SK and so
on).

Claim 6.12. For any given PPT adversary A, let S1, F1, S2 and F2 be as described above. Then for all PPT environments
Z, EXEC[Z,S1, πdummy,F1] ≈ EXEC[Z,S2, πdummy,F2].

Proof. This follows from the HCCA security of the scheme. Intuitively, the only way the two executions differ is in
whether the simulator provides honest ciphertexts (as S1 does) or “rigged” ciphertexts (as S2 does).

More formally, we can only apply the HCCA guarantee to one ciphertext at a time. It is straightforward to
construct a sequence of hybrid simulators where the difference between successive hybrids is in whether a single
handle was encrypted with the correct message or else via RigEnc, and such that the rest of the interaction can be
carried out within the HCCA experiment. We note that in most hybrids, there must be calls to RigEnc and RigExtract
for other ciphertexts, so the GRigEnc and GRigExtract oracles are crucial in the HCCA definition.

Concluding the proof. Combining the above claims we get that for all adversaries A, there exists a simulator S2

such that EXEC[Z,A, E ,FBCAST] ≈ EXEC[Z,S, πdummy,F2] for all environments Z. Note that F2 is in fact identical to
FTHMP. So letting S = S2 completes the proof.

Weak unlinkability. If a scheme achieves only weak unlinkability (Definition 6.3), then a slight relaxation of the
UC functionality can realized. In the FTHMP UC functionality, call a handle adversarially influenced if:

• it is the result of a POST or REPOST command issued by a corrupted party,

• or it is the result of a (REPOST, handle) command, where handle is adversarially influenced.

An encryption scheme which is HCCA secure and only weakly unlinkably homomorphic is a secure realization of a
variant of FTHMP, in which the adversary is notified every time an adversarially influenced handle is reposted (in the
same way it is notified when its dummy handles are reposted). The proof is very similar to that of Theorem 6.9,
except that unlinkability is only applied to handles which are not adversarially influenced (i.e., a ciphertext which
was generated by the simulator honestly using Enc).
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6.5 Constructions

We now present several constructions of various strengths, and supporting different classes of homomorphic
operations.

6.5.1 Achieving Transformation Hiding

Our first construction is an encryption scheme which is HCCA secure with respect to any unary group operation, and
achieves the transformation hiding property.

The construction. Let E = (KeyGen,Enc,Dec) be any RCCA-secure encryption scheme with message space G, which
is an abelian group with group operation “∗”. Without loss of generality, we assume that G isomorphic to the direct
product H1×H2, where H1 is a parameter of our scheme, and elements in G are represented as (m1,m2) ∈ H1×H2.8

For t ∈ H1, let Tt denote the “multiplication by t” transformation Tt(m1,m2) = (t ∗m1,m2). For simplicity, we let
Tt(⊥) = ⊥.

Our construction has message space M, and supports transformations T = {Tt | t ∈ H1}. The construction is
specified by the following algorithms:

• KeyGen∗: Same as KeyGen.

• Enc∗PK(m1,m2): Choose random r ← H1, and set s = m1 ∗ r ∈ H1. Output (EncPK(r,m2), s).

• Dec∗SK(ζ, s): Decrypt (r,m2)← DecSK(ζ), and output ⊥ if the decryption fails. Otherwise, output (s∗r−1,m2).

• CTrans∗((ζ, s), Tt): Output (ζ, s ∗ t).

Intuitively, our desired transformations preserve the H2-component of the plaintext, but allow the group operation
to be applied to the H1-component. Thus our encryption scheme places the H2-component of the plaintext into
the RCCA-secure encryption. We also place inside the RCCA encryption a random one-time pad that masks the H1-
component of the plaintext. The masked H1-component is provided in the clear of the ciphertext, so that anyone can
apply the appropriate algebraic operations to it.

Theorem 6.13. The above construction is HCCA-secure with respect to T , and is transformation-hiding.

Proof. First, it is easy to see that the scheme is transformation-hiding, since the distributions of Enc∗PK(Tt(m1,m2))
and CTrans∗(Enc∗PK(m1,m2), Tt) are identical.

To show that the scheme is HCCA-secure, we must demonstrate appropriate RigEnc and RigExtract procedures.
Let RigEnc and RigExtract be the procedures guaranteed by the RCCA security of the component scheme E . We define
the following procedures:

• RigEnc∗PK : Choose random s ← T1 and compute (ζ, S) ← RigEncPK . Output (ζ, s) and private information
(S, s).

• RigExtract∗SK((ζ ′, s′); (S, s)): If RigExtractSK(ζ ′;S) = ⊥, then output ⊥. Otherwise, the output of
RigExtractSK(ζ ′;S) is the identity transformation, by the RCCA security of E . In that case, output t = s′ ∗ s−1.

Our definition of RigExtract∗ does not use the private key except to implement Dec∗ as a black box, so we can
consider the simplified HCCA experiment, IND-HCCA-simp.

We must prove that the two branches of the IND-HCCA-simp experiment are indistinguishable. First consider the
branch b = 1 of the experiment that involves RigEnc∗ and RigDec. We can equivalently write the branch as follows:

• Generating the challenge ciphertext: Given message (m∗1,m
∗
2), choose random r ← T1 and set s = m∗1 ∗ r.

Compute (ζ∗, S)← RigEncPK , and output (ζ∗, s).

• Implementation of the RigDec(ζ ′, s′) oracle: If RigExtractSK(ζ ′;S) 6= ⊥, then compute t = s′ ∗ s−1. Then
output (m∗1 ∗ t,m∗2). Otherwise, set (r′,m′2) ← DecSK(ζ ′). If this decryption fails, output ⊥; otherwise output
(s′ ∗ (r′)−1,m′2).

8For example, one may choose H1 = G and H2 = {1}, leading to a useful instantiation of our scheme.

90



CHAPTER 6: RECONCILING NON-MALLEABILITY & HOMOMORPHIC ENCRYPTION

We have simply filled in the steps of the IND-HCCA-simp experiment, but generated the value s slightly differently
than in RigEnc∗. However, the value s is still uniform in H1, so this does not affect the outcome of the experiment.

However, suppose we modify this branch as follows: Let ζ∗ be instead generated via EncPK(r,m∗2); and in RigDec,
we remove the condition that checks RigExtract. By the RCCA security of E , this difference is indistinguishable, since
whenever RigExtractSK(ζ ′;S) 6= ⊥ in the RigDec algorithm above, we have that DecSK(ζ ′) = (r,m∗2) in the modified
interaction, so the other clause of RigDec will give a consistent answer.

But in this modified interaction, the challenge ciphertext is generated according to the honest Enc∗ procedure,
and RigDec is implemented exactly as Dec∗. Thus the modified experiment is exactly the b = 0 branch of the IND-
HCCA-simp experiment. We established that the two branches of the experiment are indistinguishable, thus the
scheme is HCCA secure.

6.5.2 Achieving Full Unlinkability

Our main result is a parameterized constructions which achieves both HCCA security and unlinkable homomorphism,
with respect to a wide range of transformations, under the standard DDH assumption in two related groups.

Requirements. Our construction requires two (multiplicative) cyclic groups with a specific relationship: G of prime
order p, and Ĝ of prime order q, where Ĝ is a subgroup of Z∗p. We require the DDH assumption to hold in both groups
(with respect to the same security parameter). Given a sequence of primes q, 2q + 1, 4q + 3 (a Cunningham chain of
the first kind of length 3 [2]), the two quadratic-residue groups Ĝ = QR∗2q+1 and G = QR∗4q+3, in which the DDH
assumption is believed to hold, represent a suitable choice.

Notation and supported transformations. Let “∗” denote the group operation in the product group Gn defined
by (α1, . . . , αn) ∗ (β1, . . . , βn) = (α1β, . . . αnβn).

For τ ∈ Gn, define Tτ to be the “multiplication by τ” transformation in Gn; i.e., Tτ (m) = τ ∗ m. We also let
Tτ (⊥) = ⊥ for simplicity. Now let H be a subgroup of Gn. Our construction provides a scheme whose message space
is Gn, and whose set of allowable transformations is TH = {Tτ | τ ∈ H}. By choosing H appropriately, we can obtain
the following notable classes TH:

• The identity function alone (i.e., rerandomizable RCCA security), by setting H = {1}.
• All transformations Tτ (that is, all component-wise multiplications in Gn), by setting H = Gn.

• “Scalar multiplication” of tuples in Gn by coefficients in G, by setting H = {(s, . . . , s) | s ∈ G}.

Double-strand malleable encryption scheme. We now define a homomorphic encryption scheme which we call
the “Double-strand malleable encryption” (DSME), and which we use as a component in our main construction.

System parameters: A cyclic multiplicative group Ĝ of prime order q. Ĝ also acts as the message space for this
scheme. Similar to above, we denote Tσ as the multiplication-by-σ transformation in Ĝ, with Tσ(⊥) = ⊥.

Key generation (MKeyGen): Pick random generators ĝ1, ĝ2 from Ĝ, and random ~a = (a1, a2),~b = (b1, b2) from (Zq)2.
The private key is (~a,~b). The public key consists of ĝ1, ĝ2, and the following values:

A =
∏2
j=1 ĝ

aj
j ; B =

∏2
j=1 ĝ

bj
j

Encryption (MEnc): To encrypt u ∈ Ĝ under public key (ĝ1, ĝ2, A,B), first pick random v ∈ Zq, w ∈ Z∗q . Output

(ĝv1 , ĝ
v
2 , uA

v, Bv; ĝw1 , ĝ
w
2 , A

w, Bw).

Decryption (MDec): To decrypt U = (V1, V2, AV , BV ;W1,W2, AW , BW ) under private key (~a,~b): First, if W1 =
W2 = 1, then output ⊥. Then check the following constraints:

AW
?
=
∏2
j=1W

aj
j ; BV

?
=
∏2
j=1 V

bj
j ; BW

?
=
∏2
j=1W

bj
j ;

If any fail, output ⊥. Otherwise, output u = AV /
∏2
j=1 V

aj
j .
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Ciphertext transformation (MCTrans): To apply transformation Tσ to the ciphertext
U = (~V ,AV , BV ; ~W,AW , BW ) , choose random s ∈ Zq, t ∈ Z∗q and output

(V1W
s
1 , V2W

s
2 , σAVA

s
W , BVB

s
W ;W t

1 ,W
t
2 , A

t
W , B

t
W )

It is not hard to see that if U is in the support of MEnc
P̂K

(u) (with random choices v and w), then the
MCTrans(U, Tσ) is in the support of MEnc

P̂K
(σu), corresponding to random choices v′ = v + sw and w′ = tw.

We emphasize that this DSME scheme does not achieve our desired definitions of a multiplicative homomorphic
scheme, because given an encryption of u and a value r ∈ Zq, one can easily construct an encryption of ur,
and exponentiation by r is not an allowed transformation. Our main construction uses only the multiplicative
transformation of DSME as a feature, although the security analysis accounts for the fact that other types of
transformation are possible.

Main construction. We now present our main construction, which uses the previous DSME scheme as a component.

System parameters: A cyclic multiplicative group G of prime order p. A space of messages. We also require a secure
DSME scheme over a group Ĝ of prime order q, where Ĝ is also a subgroup of Z∗p. This relationship is crucial, as
the ciphertext transformation MCTrans of the DSME scheme must coincide with multiplication in the exponent
in G.

As described above, we let Gn be the message space, for any parameter n. The scheme is also parameterized by
the subgroup H of allowed transformations. For m ∈ Gn, let f(m) be an injective encoding (say, an arbitrary
representative) of the coset m ∗H to {0, 1}∗. Let H be a family of collision-resistant hash functions from {0, 1}∗
to Zp.9 Finally, we require any fixed vector ~z ∈ (Zp)4, which is not a scalar multiple of the all-ones vector.

Key generation (KeyGen): Run (P̂K, ŜK) ← MKeyGen for the DSME scheme in Ĝ. Pick random generators
g1, . . . , g4 from G. For i ∈ [n], choose random ~ci = (ci,1, . . . , ci,4) from (Zp)4 and compute Ci =

∏4
j=1 g

ci,j
j .

Choose random ~d = (d1, . . . , d4), ~e = (e1, . . . , e4) from (Zp)4 and compute D =
∏4
j=1 g

dj
j and E =

∏4
j=1 g

ej
j .

Choose a random hash H← H.

The private key is (ŜK,~c1, . . . ,~cn, ~d,~e). The public key is (P̂K, g1, . . . , g4, C1, . . . , Cn, D,E,H).

Encryption (Enc): To encrypt (m1, . . . ,mn) ∈ Gn under a public key of the preceding form, first compute µ =

H(f(m1, . . . ,mn)). Then pick random x ∈ Zp, y ∈ Z∗p and random u ∈ Ĝ, and output

g
(x+z1)u
1 , . . . , g

(x+z4)u
4 , m1C

x
1 , . . . , mnC

x
n, (DEµ)x;

gyu1 , . . . , gyu4 , Cy1 , . . . , Cyn, (DEµ)y;
MEnc

P̂K
(u)

Decryption (Dec): Let ζ be a ciphertext of the preceding form, say, ζ = ( ~X, ~CX , PX ; ~Y , ~CY , PY ;U), where

~X = (X1, . . . , X4) ~CX = (CX,1, . . . , CX,n)

~Y = (Y1, . . . , Y4) ~CY = (CY,1, . . . , CY,n)

First compute u = MDec
ŜK

(U). If u = ⊥, output ⊥. Otherwise, strip off u and ~z from the exponents as follows:

For j = 1, . . . , 4: set Xj = X
1/u
j g

−zj
j and Y j = Y

1/u
j .

Compute the purported plaintext (m1, . . . ,mn) via mi = CX,i/
∏4
j=1X

ci,j
j , and then compute

µ = H(f(m1, . . . ,mn)). Finally, check the integrity of the ciphertext in the following way. If Y1 = · · · = Y4 = 1
(the identity element in G), output ⊥. Check the following conditions:

PX
?
=
∏4
j=1X

dj+µej
j ; CY,i

?
=
∏4
j=1 Y

ci,j
j (for each i ∈ [n]);

PY
?
=
∏4
j=1 Y

dj+µej
j

If any checks fail, output ⊥, otherwise output (m1, . . . ,mn).

9Using the same technique as in the Cramer-Shoup scheme [30], our use of a hash can be removed, but at the expense of longer public keys.
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Ciphertext transformation (CTrans): Let ζ be a ciphertext of the preceding form. To apply transformation T(τ1,...,τn)

to ζ, choose random σ ∈ Ĝ and random s ∈ Zp, t ∈ Z∗p. Output:

(X1Y
s
1 )σ, . . . , (X4Y

s
4 )σ, τ1CX,1C

s
Y,1, . . . , τnCX,nC

s
Y,n, PXP

s
Y ;

Y tσ1 , . . . , Y tσ4 , CtY,1, . . . , CtY,n, P tY ;

MCTrans(U, Tσ)

It is not hard to see that if ζ is in the support of EncPK(m1, . . . ,mn), say, with random choices x, y, and u, then
the above ciphertext is in the support of EncPK(τ1m1, . . . , τnmn), corresponding to random choices x′ = x + sy,
y′ = ty, and u′ = σu.

High-level overview. Disregarding ~z and u, ciphertexts in our scheme resemble those in the original Cramer-
Shoup scheme [30]. Two similar-looking “strands” are given, with only the first one directly carrying the message.
This allows us to refresh the randomness x and y and achieve unlinkability when applying a transformation to the
ciphertext. A similar “double-strand” paradigm was used by Golle, et al. [43], applied to the ElGamal encryption
scheme to achieve a rerandomizable and anonymous CPA-secure scheme.

Without the additional random value u appearing in the exponents of some of the ciphertext components, the
second strand’s components would be completely independent of the first strand’s. Thus, the scheme would be
malleable via an attack which combined the first strand of one ciphertext and the second strand of another – the
combination would result in a valid ciphertext if and only if the two ciphertexts shared the same µ value. The
addition of u and its encryption under MEnc correlates the two strands, leaves u hidden from eavesdroppers, yet still
allows for the random choice of u to be refreshed.

In our “double-strand” paradigm of achieving unlinkability, x’s randomness is refreshed additively (as x + sy)
and y’s multiplicatively (as ty). However, without the ~z vector perturbing the randomness in x, there is a possible
attack whereby x can be rerandomized multiplicatively and still result in a valid ciphertext (say, by squaring each
component of the first strand). By adding ~z, (intuitively) any attack that would multiply x would also multiply ~z
as well. The decryption procedure only strips away one copy of ~z, so x would remain perturbed for the Cramer-
Shoup-like integrity checks on the ciphertext. In our analysis, it is important that ~z is linearly independent of the
all-ones vector, so that an adversary would not be able to successfully compensate for additional perturbances in the
Cramer-Shoup integrity checks.

We achieve our desired level of non-malleability by a technique similar to the Cramer-Shoup CCA-secure scheme
[30]. It uses a ciphertext component of the form (DEµ)x, where D,E are parts of the public key, x is a random value
used in encryption, and µ is a hash of the ciphertext’s prefix. The rerandomizable RCCA scheme of [83] uses the
same paradigm, except that the value µ is a direct encoding of the plaintext (in rerandomizable RCCA, ciphertexts
are malleable but only in ways which preserve the plaintext). In our HCCA-secure scheme, µ is a hash of an encoding
of the coset m ∗H. Intuitively, our scheme can therefore only be malleable in ways which preserve the H-coset of the
plaintext. A similar variation the Cramer-Shoup hashing was used in [71] to construct an encryption scheme which
is non-malleable with respect to public “tags.” In our construction, however, the tag/invariant is a function of the
(private) plaintext.

Theorem 6.14. The construction satisfies the correctness requirements, HCCA security, and unlinkable homomorphism
properties with respect to TH, for any subgroup H of Gn, under the DDH assumption in the two cyclic groups.

The lengthy proof follows in Appendix A.1. An overview is given below:

Proof Sketch. To show HCCA security, we must demonstrate appropriate RigEnc and RigExtract procedures. Our
RigEnc encrypts a fixed dummy plaintext and uses a randomly chosen µ value instead of one derived from the
plaintext. Our RigExtract similarly checks the integrity of the ciphertext using the same random µ value, and checks
that the dummy plaintext was altered by an allowed transformation.

To show the suitability of these procedures in the HCCA experiment, we first describe an alternate encryption
procedure which is implemented using the private key instead of the public key. When this procedure is used in
place of Enc or RigEnc to generate the challenge ciphertext ζ∗ in the HCCA security experiment, it follows from the
DDH assumption that the difference is indistinguishable to any adversary. The ciphertexts produced by this alternate
procedure are information-theoretically independent of the secret coin flip in the HCCA experiment, as well as some
internal randomness used to generate the ciphertext.

Next, we show that given a fixed view of an adversary in the HCCA experiment, any ciphertext which is not in the
support of EncPK(·) or CTrans(ζ∗, ·) is rejected by the decryption oracles Dec and RigDec (i.e, they output ⊥ for such
ciphertexts) with overwhelming probability over the remaining randomness in the experiment (which is independent
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of the adversary’s view). This is the most delicate part of our proof. It uses a linear-algebraic characterization of our
scheme, and relies on the fact that certain quantities in the challenge ciphertext are distributed independently of the
adversary’s view. We also show an analogous statement for the GRigExtract oracles.

From the previous observation, we may replace the Dec, RigDec, and GRigExtract oracles (which use the secret
key) with oracles that can be implemented using only information that is public to the adversary (e.g, the public key
and challenge ciphertext). These oracles are computationally unbounded, as they exhaustively search the supports
of EncPK(·) and CTrans(ζ∗, ·). Only with negligible probability do these alternate oracles give an answer which
disagrees with the original oracles.

Finally, we conclude that with these two modifications — alternate encryption and decryption procedures — the
adversary’s entire view (the public key, challenge ciphertext and responses from the oracles) in the HCCA security
experiment is independent of the secret bit b, and so the adversary’s advantage is zero. Furthermore, this modified
experiment is indistinguishable from the original experiment for any PPT adversary, so the HCCA security claim
follows.

The correctness and unlinkable homomorphism properties are a direct consequence of the lemmas needed to
prove the HCCA security.

6.6 Opinion Polling Protocol Application

We now present an “opinion poll” protocol that elegantly illustrates the power of HCCA-secure encryption. The
protocol is motivated by the following scenario:

A pollster wishes to collect information from many respondents. However, the respondents are concerned about
the anonymity of their responses. Indeed, it is in the interest of the pollster to set things up so that the respondents
are guaranteed anonymity, especially if the subject of the poll is sensitive personal information. To help collect
responses anonymously, the pollster can enlist the help of an external tabulator. The respondents require that the
external tabulator too does not see their responses, and that if the tabulator is honest, then responses are anonymized
for the pollster (i.e., so that he cannot link responses to respondents). The pollster, on the other hand, does not want
to trust the tabulator at all: if the tabulator tries to modify any responses, the pollster should be able to detect this
so that the poll can be invalidated.

More formally, we give a secure protocol for the UC ideal functionality FPOLL, described in Figure 6.9, where Pclient

is the pollster, Pserver is the tabulator, and P1, . . . , Pn are the respondents.

On input (SETUP, Pclient, Pserver, P1, . . . , Pn) from party Pclient:

• Give output (SETUP, Pclient, Pserver) to each party Pi.

• Give output (SETUP, Pclient, P1, . . . , Pn) to Pserver.

On input (INPUT, xi) from input party Pi:

• Give output (INPUTFROM, Pi) to Pserver, and remember xi.

On input OK from Pserver:

• If Pserver is corrupt, expect to receive from Pserver a permutation σ on {1, . . . , n}. If Pserver is honest, choose σ
at random.

• If not all P1, . . . , Pn parties have supplied an input, or if some xi = ⊥, then give output ⊥ to Pclient.

• Otherwise, give output (xσ(1), . . . , xσ(n)) to Pclient.

On input CANCEL from a corrupt Pserver, give output ⊥ to Pclient.

Figure 6.9: UC ideal functionality FPOLL.

Verifiable shuffling, mix-nets, and voting. Our opinion poll functionality can be viewed as an instantiation of
verifiable shuffling (see e.g., [44, 47]). In a verifiable shuffle, a server takes in a collection of ciphertexts and outputs
a random permutation in such a way that other parties are convinced that the shuffling server did not cheat; i.e., a
shuffler cannot tamper with or omit any input ciphertext.

Verifying a shuffle typically involves using special-purpose zero-knowledge proofs, which are generally interactive
and complicated. Even protocols whose verification is non-interactive rely on a common reference string setup [46].
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Our approach is novel in that the shuffle’s integrity can be verified without any zero-knowledge proof mechanism.
Instead we leverage the strong limitations that the encryption scheme places on a malicious shuffler, resulting in a
very efficient and simple protocol, which is secure even in the UC framework with no setups.

Verifiable shuffles are used in mix-nets [24] and in voting protocols. However, in our setting the shuffle is only
verified to the pollster, and not to the respondents. In an election, the respondents also have an interest in the
integrity of the shuffle (to know that their votes are included in the tally). We note that an election protocol (in
which all participants receive guaranteed correct results) is not possible in the UC framework without trusted setups,
given the impossibility results of Chapter 3.

The protocol. Our protocol is described in detail in Figure 6.10. The main idea is to use an HCCA-secure,
transformation-hiding scheme, whose message space G2 (for a cyclic group G), and whose only allowed operations
are those of the form (α, β) 7→ (α, tβ). In other words, anyone can apply the group operation to (multiply) the
second plaintext component with a known value t, but the first component is completely non-malleable, and the
two components remain “tied together.” Both of our construction from Section 6.5 can easily accommodate these
requirements.

To initiate the opinion poll, the pollster generates a (multiplicative) secret sharing r1, . . . , rn of a random secret
group element R, then sends to the ith respondent a share ri. Each respondent sends Enc(mi, ri) to the tabulator,
where mi is his response to the poll. Now the tabulator can blindly re-randomize the shares (multiply the ith share
by a random si, such that

∏
i si = 1), shuffle the resulting ciphertexts, and send them to the pollster. The pollster

will ensure that the shares encode the secret R and accept the results.
The security of the protocol is informally argued as follows. An honest pollster only sees a random permutation

of the responses, and a completely random sharing of R. There is no way to link any responses to the ri shares he
originally dealt to the respondents, either by looking at the new shares of R, or via the encryption scheme itself.
The tabulator sees only encrypted data, and in particular has no information about the shares ri. The only way the
tabulator could successfully generate ciphertexts whose second components are shares of R is by making exactly one
of his ciphertexts be derived from each respondent’s ciphertext. By the non-malleability of the encryption scheme,
each response mi is inextricably “tied to” the corresponding share ri and cannot be modified, so each respondent’s
response must be represented exactly once in the tabulator’s output without tampering. Finally, observe that the
responses of malicious respondents must be independent of honest parties’ responses – by “copying” an honest
respondent’s ciphertext to the tabulator, a malicious respondent also “copies” the corresponding ri, which would
cause the set of shares to be inconsistent with overwhelming probability.

Let E = (KeyGen,Enc,Dec,CTrans) be a homomorphic encryption scheme with message space G2. We suppose the
CTrans operation accepts arguments as CTrans(C, t), where t ∈ G indicates the transformation (α, β) 7→ (α, tβ).
The protocol proceeds as follows:

1. Pclient generates a key pair (SK,PK)← KeyGen and chooses random elements r1, . . . , rn ← G, remember-
ing R =

∏
i ri. She then broadcasts PK, sends (ri, Pserver) to each party Pi, and sends (Pclient, P1, . . . , Pn) to

Pserver.

2. Each input party Pi holds input xi (encoded into an element of G). He receives PK and (ri, Pserver) from
Pclient, then sends EncPK(xi, ri) to Pserver through a secure channel.

3. Pserver collects ciphertext Ci from each input party Pi, then chooses a random permutation σ on [n] and
random s1, . . . , sn ← G subject to

∏
i si = 1. He computes C ′i = CTrans(Cσ(i), sσ(i)) for each i and sends

(C ′1, . . . , C
′
n) to Pclient.

4. Pclient receives (C ′1, . . . , C
′
n) from Pserver and decrypts each C ′i as (x′i, r

′
i) ← DecSK(C ′i). If any decryptions

fail, or if
∏
i r
′
i 6= R, she aborts. Otherwise, she outputs (x′1, . . . , x

′
n).

Figure 6.10: Opinion poll protocol

Theorem 6.15. If E is HCCA-secure and transformation-hiding with parameters as described above, and |G| is
superpolynomial in the security parameter, then our protocol is a secure realization of FPOLL against static adversaries.

Proof. Given a real-world adversary A, we construct an ideal-world simulator S. We break the proof down into 4
cases according to which parties A corrupts:
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Case 1: If A corrupts neither Pserver nor Pclient, then suppose by symmetry that A corrupts some input parties
P1, . . . , Pk. Then the main task for S is to extract the inputs of each corrupt Pi and send them to FPOLL. S simply
does the following:

• On receiving (SETUP, Pclient, Pserver, P1, . . . , Pn) from FPOLL, generate (PK,SK) ← KeyGen. Choose random
r1, . . . , rk ← G and simulate that Pclient broadcast PK and sent (ri, Pserver) to each corrupt input party Pi.

• If not all corrupt parties Pi send a ciphertext Ci to Pserver, then abort. Otherwise, set (xi, r
′
i)← DecSK(Ci).

• If any of the above decryption fails, or if
∏
i r
′
i 6=

∏
i ri, then send (INPUT,⊥) to FPOLL on behalf of each corrupt

input party Pi.

• Otherwise send (INPUT, xi) to FPOLL on behalf of each corrupt input party Pi.

It is straight-forward to see that in the cases where S sends (INPUT,⊥), then by the honest behavior of Pserver and
Pclient, the protocol would have mandated that Pclient refuse the output.

Case 2: If A corrupts Pclient and (without loss of generality) input parties P1, . . . , Pk, then S does the following:

• When corrupt Pclient broadcasts PK and sends (ri, Pserver) to each honest input party Pi, send
(SETUP, Pclient, Pserver, P1, . . . , Pn) to FPOLL on behalf of Pclient.

• When a corrupt input party Pi sends a ciphertext Ci to honest Pserver, send (INPUT, x0) to FPOLL on behalf of Pi,
where x0 is any arbitrary fixed message.

• When FPOLL gives the final output to S, remove as many x0’s from the output list as there are corrupt input
parties. Arbitrarily order the remaining outputs as xk+1, . . . , xn. For each i ∈ [n], choose a random si such that∏
i si = 1. Simulate that Pserver sends a random permutation of {EncPK(xi, risi) | i > k} ∪ {CTrans(Ci, si) | i ≤

k} to Pclient.

Since Pclient is corrupt, S can legally obtain the set of honest input parties’ inputs. The only difference therefore be-
tween the view ofA in the real world and our simulation is that in the real world, Pclient sees CTrans(EncPK(xi, ri), si)
for each honest party Pi, while in the simulation, Pclient sees EncPK(xi, risi). By the transformation-hiding property
of the scheme, this difference is indistinguishable. Also in the simulation, each xi is paired with a potentially dif-
ferent ri than might be the case in the real world protocol (since the simulator receives a shuffled list of xi values).
However, the distribution of (xi, risi) pairs is independent of the initial assignments of xi’s to ri’s.

Case 3: If A corrupts Pserver and input parties P1, . . . , Pk, then S does the following:

• When FPOLL gives (SETUP, Pclient, P1, . . . , Pn) to S, generate (PK,SK) ← KeyGen. Pick random r1, . . . , rn ← G
and simulate that Pclient broadcast PK and sent (ri, Pserver) to each corrupt Pi.

• When FPOLL gives (INPUTFROM, Pi) to S for an honest party (i > k), generate (Ci, Si)← RigEncPK and simulate
that Pi sent Ci to Pserver. Remember Si.

• When Pserver sends Pclient a list of ciphertexts (C ′1, . . . , C
′
n), do the following for each i:

– If DecSK(C ′i) 6= ⊥, then set (xi, r
′
i)← DecSK(C ′i).

– Else, if RigExtractSK(C ′i, Sj) 6= ⊥ for some j, set r′i := ri · RigExtractSK(C ′i, Sj).

– If both these operations fail, send CANCEL to FPOLL on behalf of Pserver.

If
∏
i r
′
i 6=

∏
i ri or for some j > k, there is more than one i such that RigExtractSK(C ′i, Sj) 6= ⊥, then send

CANCEL to FPOLL on behalf of Pserver.

Otherwise, let σ be any permutation on [n] that maps each j > k to the unique i such that
RigExtractSK(C ′i, Sj) 6= ⊥. Send (INPUT, xσ(i)) to FPOLL on behalf of corrupt Pi (i ≤ k), and then send
OK to FPOLL on behalf of Pserver, with σ as the permutation that FPOLL expects.

In this case, the primary task of S is to determine whether the corrupt Pserver gives a valid list of ciphertexts
to Pclient. Applying the HCCA definition in a sequence of hybrid interactions, we see that the behavior of the
real world interaction versus this simulation interaction is preserved when appropriately replacing Enc/Dec with
RigEnc/RigExtract.

Note that the adversary’s view is independent of rk+1, . . . , rn. If DecSK(C ′i) 6= ⊥, then the corresponding r′i value
computed by the simulator is also independent of rk+1, . . . , rn. Thus the only way

∏
i ri =

∏
i r
′
i can be satisfied

with non-negligible probability is if for each honest party Pj , exactly one i satisfies RigExtractSK(C ′i, Sj) 6= ⊥. In this
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case, there will be exactly as many xi’s as corrupt players, and the simulator can legitimately send these to FPOLL as
instructed (with the appropriate permutation).

Case 4. If A corrupts Pserver, Pclient, and input parties P1, . . . , Pk, then S can legitimately obtain each honest input
party’s input, so simulation is relatively straight-forward. More formally, S does the following:

• Send (SETUP, Pclient, Pserver, P1, . . . , Pn) to FPOLL on behalf of Pclient.

• Send (INPUT, x0) to FPOLL on behalf of each corrupt input party Pi, where x0 is an arbitrary fixed message.

• After receiving (INPUTFROM, Pi) for all honest input parties Pi, send OK to FPOLL on behalf of Pserver, and give
the identity permutation as σ.

• After receiving (x1, . . . , xn) as output, we know that party Pi was invoked with input xi, so we can perfectly
simulate the honest parties to A.

Boolean OR on encrypted data. Using a similar technique, we can obtain a UC-secure protocol for a boolean-OR

functionality. This functionality is identical to FPOLL except that Pserver also gets to provide an input (i.e., we identify
Pserver with P0), and instead of giving (xσ(0), . . . , xσ(n)), it gives

∨
i xi as the output to Pclient.

We can achieve this new functionality with a similar protocol — this time, using an encryption scheme that is
unlinkable HCCA-secure with respect to all group operations in G2. Pclient sends shares ri to the input parties as
before. The input parties send EncPK(xi, ri) to Pserver, where xi = 1 if Pi’s input is 0, and xi is randomly chosen
in G otherwise. Then, Pserver rerandomizes the ri shares as before, and also randomizes the xi’s in the following
way: Pserver multiplies each xi by si such that

∏
i si = 1 if Pserver’s input is 0, and

∏
i si is random otherwise (Pserver

can randomize both sets of shares simultaneously using the homomorphic operation). Pclient receives the processed
ciphertexts and ensures that

∏
i r
′
i = 1. Then if

∏
i x
′
i = 1, it outputs 0, else it outputs 1.

We note that this approach to evaluating a boolean OR (where the induced distribution is a fixed element if the
result is 0, and is random if the result is 1) has previously appeared elsewhere, e.g., [12, 13].

6.7 Beyond Unary Transformations

Many interesting applications of homomorphic encryptions involve (at least) binary operations — those which accept
encryptions of plaintexts m0 and m1 and output a ciphertext encoding T (m0,m1). A common example is ElGamal
encryption, where T is the group operation of the underlying cyclic group. In this section, we examine the possibility
of extending our results to schemes with binary transformations.

Before presenting our results, we must first define appropriate extensions of our definitions to the case of binary
homomorphic operations. Developing appropriate (and succinct) indistinguishability-style definitions appears to be
a difficult task. Thus, the results in this section use security formulations as ideal functionalities in the UC model, as
in Section 6.3.3.

6.7.1 Negative Result for Binary Group Operations

For an impossibility result, we make the security requirements on the ideal functionality as weak as possible.
Throughout this subsection, we consider an ideal functionality F similar to FTHMP, with the following properties:

• Any party may post a new handle by either providing a plaintext message, or by providing two existing handles
and a (binary) transformation T ∈ T . In the latter case, the message for the new handle is calculated as
T (m1,m2), where m1,m2 are the messages corresponding to the given handles.

• Only the “owner” of the functionality can obtain the message corresponding to each handle. All other parties
simply receive notification that the handle was generated.

• Handles are generated by the adversary, without knowledge of the corresponding plaintext message, or which
of the two ways the handle was produced.

For simplicity, we have not considered the functionality’s behavior on handles originally posted by the adversary
(so-called “dummy” handles in the case of FTHMP). However, our impossibility results do not depend on these details,
and one may consider the weakest possible ideal functionality, which reveals everything to the adversary when honest
parties try to use dummy handles.

We can now formalize our impossibility result:
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Theorem 6.16. There is no secure realization of F via a homomorphic encryption scheme, when T contains a group
operation on the message space, and the size of the message space is superpolynomial.

The main observation is that each handle (ciphertext) must have a bounded length independent of its “history”
(i.e., whether it was generated via the homomorphic reposting operation and if so, which operations applied to which
existing handles), and thus can only encode a bounded amount of information about its history. We show that any
simulator for F must be able to extract a reasonable history from any handle output by the adversary.

However, when a group operation is an allowed transformation, there can be far more possible histories than can
be encoded in a single handle. We use this fact to construct an environment and adversary which can distinguish
between the real world and the ideal world with any simulator, contradicting the security definition.

Proof. We will construct an environment that will distinguish between the ideal interaction with F and the real-world
protocol interaction involving any homomorphic encryption scheme. Let ⊗ be the group operation over message
spaceM.

The environment invokes an interaction with two honest parties Alice and Bob, and a dummy adversary Carol.
The environment instructs Bob to SETUP an instance of the, then chooses d random messages m1, . . . ,md ← M,
where d is a parameter to be fixed later, and instructs Alice to POST each of them. Then, the environment chooses a
random S ⊆ {1, . . . , d} and then, given the handles for the posted messages, internally runs the encryption scheme
algorithm to obtain a ciphertext h∗ encoding

⊗
i∈Smi. The environment can do this locally because this protocol

implements the REPOST operation via a non-interactive procedure CTrans. Finally, the environment instructs the
adversary to broadcast the resulting handle/ciphertext h∗, then instructs Bob to open it. The environment outputs 1
if Bob outputs

⊗
i∈Smi.

Clearly in the real-world interaction, the environment outputs 1 with overwhelming probability, by the correctness
of the encryption scheme’s homomorphic operation. We will show that no simulator can achieve the same effect in
the ideal interaction.

Any simulator for this adversary must post the handle h∗ to F according to one of the “legal” reposting
features. In order to induce the correct output, the simulator must specify a legal transformation T ′ such that
T ′(m1, . . . ,md) =

⊗
i∈Smi with overwhelming probability. From the definition of F , the simulator’s view is

independent of the choice of m1, . . . ,md (the handles are generated without knowledge of the plaintext messages).
Thus the simulator must in fact specify a legal function T ′ such that T ′(m1, . . . ,md) =

⊗
i∈Smi, with overwhelming

probability over the choice of m1, . . . ,md.
Let `(k) be a polynomial bound on the length of handles in the given encryption scheme (when the security

parameter is k); say, the running time of simulator when answering HANDLE-REQ requests. Let us choose
d = `(k) + 1. Then our environment remains polynomial-time in k. However, then the simulator’s view (namely, the
ciphertext/handle h∗) contains at least 1 bit of uncertainty about the environment’s choice of S.

However, we observe that if S 6= S′ ⊆ {1, . . . , d}, then the probability (taken over choice of m1, . . . ,md) that⊗
i∈Smi =

⊗
i∈S′ mi is negligible. Suppose a transformation T ′ agrees with some

⊗
i∈S′ on an overwhelming

fraction of inputs. Then the set S′ is unique, since all other products in the group disagree with it in most inputs.
Therefore, any simulator must output a transformation T ′ that with overwhelming probability uniquely identifies

the random subset S chosen by the environment. However, the simulator’s view has one bit of uncertainty about the
environment’s choice of S, so this required task is impossible.

6.7.2 Positive Result for a Relaxation of Unlinkability

The impossibility result of the previous section leaves open the possibility of achieving a relaxation of the unlinkability
requirement. We consider a relaxation similar to Sander, Young, and Yung [92]; namely, we allow the ciphertext to
leak the number of operations applied to it (i.e., the depth of the circuit applied), but no additional information. To
make this this requirement more formal, we associate a length parameter with each ciphertext. If a length-` and a
length-`′ ciphertext are combined, then the result is a length ` + `′ ciphertext. Our security definition insists that
ciphertexts reveal (at most) their associated length parameter.

The main idea in our construction is to encode a group element m into a length-` ciphertext as a vector(
Enc(m1), . . . ,Enc(m`)

)
, where the mi’s are a random multiplicative sharing of m in the group. and Enc is HCCA-

secure, with respect to the group operation. To “multiply” two such encrypted encodings, we can simply concatenate
the two vectors of ciphertexts together, and rerandomize the new set of shares (multiply the ith component by si,
where

∏
i si = 1) to bind the sets together.

The above outline captures the main intuition, but our actual construction uses a slightly different approach to
ensure UC security. In the scheme described above, anyone can split the vector

(
Enc(m1), . . . ,Enc(m`)

)
into two

smaller vectors that encode two (random) elements whose product is m. We interpret this as a violation of our
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desired properties, since it is a way to derive two encodings whose values are related to a longer encoding. To avoid
the problem of “breaking apart” ciphertexts, we instead encode m as

(
Enc(α1, β1), . . . ,Enc(α`, β`)

)
, where the αi’s

and βi’s form two independently random multiplicative sharings of m. Rerandomizing these encodings is possible
when we use a scheme that is homomorphic with respect to the group operation in G2 (i.e., by setting the parameter
H = G2 in our construction). Intuitively, these encodings cannot be split up in such a way that the first components
and second components are shares of the same value. Note that it is crucial that the (αi, βi) pairs cannot themselves
be “broken apart.”

Security definition. The functionality, called FG, is given in full detail in Figure 6.11. Below we explain and
motivate the details of the definition.

The functionality keeps track of a database of records of the form (handle, `,m). Let GetHandle(args) be a
subroutine which sends (HANDLE-REQ, args) to the adversary and expects in return a string handle. If handle
is previously recorded in the database, abort; otherwise, return handle.

Setup: On receiving a command SETUP from a party P : If a previous SETUP command has been processed, abort.
Else, send (ID-REQ, P ) to the adversary, and expect in response a string id. Broadcast (ID-ANNOUNCE, P, id) to all
other parties.

Dummy handles: On receiving a command (DUMMY, `, handle) from a corrupt party only, internally record
(handle, `,⊥) and broadcast (HANDLE-ANNOUNCE, handle) to all parties.

Posting messages: On receiving a command (POST, `,m0, handle1, . . . , handlek) from a party sender: If any handlei
is not recorded internally, or m0 6∈ G, ignore the request. Otherwise, suppose (handlei, `i,msgi) is recorded for
each i. If ` <

∑
i `i, ignore the request. Let D = {i | mi = ⊥} ⊆ [k], the indices of the dummy handles. Set

m∗ = m0 ∗
∏
i 6∈Dmi, the product of known plaintexts involved.

• If D = ∅ (no dummy handles involved): If P is corrupt, set handle∗ ← GetHandle(sender, `,m∗);
otherwise let handle∗ ← GetHandle(sender, `). Internally record (handle∗, `,m∗) and broadcast
(HANDLE-ANNOUNCE, handle∗) to all parties.

• If ` >
∑
i∈D `i (not entirely derived from dummy handles): If P is corrupt, set handle′ ←

GetHandle(sender, `′,m∗), else set handle′ ← GetHandle(sender, `′). Internally record (handle′, `′,m∗).

Set handle∗ ← GetHandle(sender, `, {handle′} ∪ {handlei | i ∈ D}). Internally record (handle∗, `,⊥) and send
(HANDLE-ANNOUNCE, handle∗) to all parties.

• Otherwise (dummy handles only), Set handle∗ ← GetHandle(sender, `,m0, {handlei | i ∈ D}). Internally
record (handle∗, `,⊥) and send [HANDLE-ANNOUNCE, handle∗] to all parties.

Message reading: On receiving a command (GET, handle) from party P (who gave the first SETUP command): If
(handle, `,msg) is recorded internally, send msg to P ; else send ⊥.

Figure 6.11: UC ideal functionality FG, parameterized by a cyclic group G.

Following our desired intuition, users can only generate new messages in two ways (for uniformity, all handled in
the same part of the functionality’s code). A user can simply post a message by supplying a group element m (this is
the case where k = 0 in the user’s POST command). Alternatively, a user can provide a list of existing handles along
with a group element m. If all these handles correspond to honestly-generated posts, then this has the same effect as
if the user posted the product of all the corresponding messages (though note that the user does not have to know
what these messages are to do this). We model the fact that handles reveal nothing about the message by letting
the adversary choose the actual handle string, without knowledge of the message. The designated recipient can
obtain the message by providing a handle to the functionality. Note that there is no way (even for corrupt parties) to
generate a handle derived from existing handles in a non-approved way.

As in FTHMP, adversaries can also post dummy handles, which contain no message. When a user posts a derived
message using such a handle, the resulting handle also contains no message. When the handle is used in a derived
POST command, the adversary is informed. The adversary also gets access to an “intermediate” handle corresponding
to all the non-DUMMY handles that were combined in the POST request. Still, the adversary learns nothing about the
messages corresponding to these handles.
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The construction. Let E = (KeyGen,Enc,Dec,CTrans) be an unlinkable HCCA-secure scheme, whose message space
is G2 for a cyclic group G, and whose allowed (unary) transformations are all group operations in G2. We suppose the
CTrans operation accepts arguments as CTrans(C, (r, s)), where r, s ∈ G specify the transformation (α, β) 7→ (rα, sβ).
We abbreviate the CTrans(C, (r, s)) operation as “(r, s) ∗ C”. Thus (r, s) ∗ EncPK(α, β) is indistinguishable from
EncPK(rα, sβ), in the sense of the unlinkability definition.

The new scheme E∗ is given by the following algorithms:

Key generation (KeyGen∗): Same as KeyGen.

Encryption (Enc∗): To encrypt an element m ∈ G in a length-` ciphertext, output

C =
(
EncPK(α1, β1), . . . ,EncPK(α`, β`)

)

where αi, βi are randomly chosen in G subject to the constraint
∏
i αi =

∏
i βi = m.

Decryption (Dec∗): To decrypt a ciphertext C = (C1, . . . , C`), decrypt each Ci to get (αi, βi). If any decryption
returns ⊥, or if

∏
i αi 6=

∏
i βi, output ⊥. Else output

∏
i αi.

Transformation operation (CTrans∗): To “multiply” two given ciphertexts C = (C1, . . . , C`) and C ′ = (C ′1, . . . , C
′
`′),

output a random permutation of:
(

(r1, s1) ∗ C1, . . . , (r`, s`) ∗ C`, (r`+1, s`+1) ∗ C ′1, . . . , (r`+`′ , s`+`′) ∗ C ′`′
)

where ri, si are randomly chosen in G subject to
∏
i ri =

∏
i si = 1

To “multiply” a single given ciphertext C = (C1, . . . , C`) by a given known group element R ∈ G (without
increasing the ciphertext length), output a random permutation of:

(
(r1, s1) ∗ C1, . . . , (r`, s`) ∗ C`

)

where ri, si are randomly chosen in G subject to
∏
i ri =

∏
i si = R.

We note that the syntax of CTrans∗ can be naturally extended to support multiplying several ciphertexts and/or a
known group element at once, simply by composing the operations described above.

Theorem 6.17. If E is unlinkable and HCCA-secure with respect to G2, where |G| is superpolynomial in the security
parameter, then E∗ (as described above) is a secure realization of FG, with respect to static corruptions.

Proof. Let E = (KeyGen,Enc,Dec,CTrans) be the unlinkable HCCA-secure scheme used as the main component in
our construction, and let RigEnc and RigExtract be the procedures guaranteed by HCCA security.

We proceed by constructing an ideal-world simulator for any arbitrary real-world adversary A. The simulator S
is constructed by considering a sequence of hybrid functionalities that culminate in FG. These hybrids differ from FG
only in how much they reveal in their HANDLE-REQ requests to the adversary.

Correctness. Note that FG only makes two kinds of HANDLE-REQ requests: those containing a lone message, and those
containing a list of handles.

Let F1 be the functionality that behaves exactly as FG, except that every time it sends a HANDLE-REQ to the
simulator, it also includes the entire party’s input that triggered the HANDLE-REQ. Define S1 to be the simulator that
internally runs the adversary A, and does the following:

• When F1 gives (ID-REQ, P ) to S1, it generates a key pair (PK,SK) ← KeyGen and responds with PK. It
simulates to A that party P broadcast PK.

• When F1 gives a HANDLE-REQ to S1, it generates the handle appropriately — with either Enc∗PK or CTrans∗

on an existing handle, depending on the party’s original command which is included in the HANDLE-REQ. It
simulates to A that the appropriate party output the handle.

• When A broadcasts a length-` ciphertext C, S1 tries to decrypt it with Dec∗SK . If it decrypts (say, to m), then
S1 sends a (POST, `,m) command to F1 and later gives C as the handle; else it sends (DUMMY, `, C).
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S1 exactly simulates the honest parties’ behavior in the real world interaction. By the correctness properties of E∗,
the outputs of the honest ideal-world parties match that of the real world, except with negligible probability; thus,
EXEC[Z,A, E∗,FBCAST] ≈ EXEC[Z,S1, πdummy,F1] for all environments Z.

Unlinkability. Let F2 be exactly like F1, except for the following change: For requests of the form
(HANDLE-REQ, sender, `,m), F2 does not send the handles that caused this request. That is, whereas F1 would
tell the simulator that the handle is being requested for a POST command combining some non-dummy handles,
F2 would instead act like sender had sent (POST, `,m) (that this is closer to what FG does; internally behaving
identically for such requests). Let S2 = S1, since F1 is only sending one fewer type of HANDLE-REQ to the simulator.

By a standard hybrid argument, we can see that EXEC[Z,S1, πdummy,F1] ≈ EXEC[Z,S2, πdummy,F2] for all
environments Z. The hybrids are over the number of POST requests affected by this change. Consecutive hybrids
differ by whether a single handle was generated by Enc∗ or by CTrans∗. The only handles that are affected here
are non-DUMMY handles, and thus ciphertexts which decrypt successfully under SK. Thus distinguishing between
consecutive hybrids can be reduced to succeeding in the unlinkability experiment (by further hybridizing over the
individual Enc ciphertext components).

HCCA. If the owner P of the functionality is corrupt, then S2 is already a suitable simulator for FG, and we can stop
at this point.

Otherwise, the difference between FG and F2 is that FG does not reveal the message in certain HANDLE-REQ

requests. Namely, those in which the simulator receives (HANDLE-REQ, sender, `).
Let S3 be exactly like S2, except for the following changes: Each time S2 would generate a ciphertext component

via EncPK(α, β), S3 instead generates it with RigEncPK . It keeps track of the auxiliary information S and records
(S, α, β) internally. Also, whenever S2 would decrypt a ciphertext component using DecSK , S3 instead decrypts it
via:

D(C) =

{
(rα, sβ) if (S, α, β) is recorded s.t. (r, s)← RigExtractSK(C, S)

DecSK(C) otherwise

By a straight-forward hybrid argument (in which distinguishing between adjacent hybrids reduces to success in
a single instance of the HCCA experiment), we have that EXEC[Z,S2, πdummy,F2] ≈ EXEC[Z,S3, πdummy,F2] for all
environments Z.

We now examine when a ciphertext given by the adversary is successfully decrypted by the simulator (and thus
given to the functionality as a POST instead of as a DUMMY handle).

Given a ciphertext (sequence of HCCA ciphertexts) C = (C1, . . . , C`), S3 first decrypts each Ci to obtain
(α′i, β

′
i) = D(Ci). The overall decryption succeeds if

∏
i(α
′
i/β
′
i) = 1.

Suppose the internal records (S, α, β) are labeled as (Sj , αj , βj) for j ≥ 1. Then for some constants r, s ∈ G and
exponent p ∈ {0, 1}, we have that α′i/β

′
i = (r/s)(αj/βj)

p. Now, let γ′i = α′i/β
′
i. We denote γ′i as a linear function in

a single formal variable of the form γj = αj/βj . The adversary’s view is independent of the choice of γj ’s, except for
the fact that

∏
j∈J γj = 1 for some disjoint sets J .

Recall that the overall decryption of C is successful if
∏
i γ
′
i = 1. However, note that if is only with negligible

probability that
∏
i γ
′
i = 1 when evaluated on the simulator’s choice of γj ’s, but

∏
j γ
′
i 6= 1 as a polynomial. Thus

consider a simulator S4 that sends (DUMMY, C) to the functionality whenever
∏
i γ
′
i 6= 1, as a polynomial (accounting

for the constraints on γj ’s). This simulator’s behavior differs from S3 with only negligible probability.
Suppose

∏
i γ
′
i = 1 as a polynomial, and let J be such that that we have a constraint of the form

∏
j γj = 1. Then

for all j ∈ J , there exists nJ such that ⊥ 6= RigExtractSK(Ci, Sj) for exactly nJ values of i. In other words, for each
j ∈ J , the variable γj appears in the expansion of

∏
i γ
′
i with the same multiplicity. Then S 4 can do the following

when A outputs a ciphertext C = (C1, . . . , C`):

• If for some Ci, we have D(Ci) = ⊥, the ciphertext is invalid; send (DUMMY, C) to the functionality.

• Otherwise, compute (α′i, β
′
i) = D(Ci). If

∏
i α
′
i/β
′
i 6= 1, when viewed as a polynomial in variables αj/βj , then

send (DUMMY, C) to the functionality.

• Otherwise, let I be the set of indices such that ⊥ 6= (α′i, β
′
i) ← DecSK(Ci). Let (ri, si) ← RigExtractSK(Ci, Sj)

for each i 6∈ I. We have that
∏
i∈I(α

′
i/β
′
i) = 1 and

∏
i 6∈I(ri/si) = 1 by the above argument. Then send

(POST, `,m0,H) to the functionality, where m0 =
∏
i∈I αi

∏
i 6∈I ri and H contains with multiplicity nJ the

handle that resulted when {(αj , βj) | j ∈ J} were generated.

Except with negligible probability, S4 interacts identically with the functionality as S3. However, note that S4 does
not actually use the αj , βj values that are recorded for each call to RigEnc. Thus S4 can be successfully implemented
even if the functionality does not reveal m in messages of the form (HANDLE-REQ, sender, `,m). Therefore S4 is a
suitable simulator for FG itself, and EXEC[Z,S3, πdummy,F2] ≈ EXEC[Z,S4, πdummy,FG] for all environments Z.
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6.8 Conclusion & Open Problems

Improved constructions. A natural next step is to address encryption schemes whose homomorphic operations
are more expressive. Currently, all of our constructions support homomorphic transformations related to a group
operation. Homomorphic operations involving other algebraic structures (ring, field, or vector space operations)
may also prove useful in protocol applications.

Our construction of a transformation-hiding HCCA-secure scheme is quite efficient, having only a small additive
overhead over a comparable CCA-secure scheme. However, our unlinkable scheme is much more impractical than
the state of the art for CCA security. It may be that unlinkability can be achieved using more generic hardness
assumptions than DDH, possibly resulting in a significant improvement in efficiency.

Anonymity. In some applications, it is useful for an encryption scheme to have the additional property of receiver-
anonymity (also known as key-privacy), as introduced by Bellare et al. [7]. Receiver-anonymity means, essentially,
that in addition to hiding the underlying plaintext message, a ciphertext does not reveal the public key under which
it was encrypted. Encryption schemes with this property are important tools in the design of many systems [37]. The
special case of rerandomizable, anonymous, RCCA-secure encryption has interesting applications in mix-nets [43]
and anonymous P2P routing [83].

The way we have defined the syntax of the CTrans feature of a homomorphic encryption scheme (i.e, so that it
does not require the “correct” public key in addition to the ciphertext), it remains a meaningful feature even in an
environment where receiver-anonymity is utilized.

To model the property of receiver-anonymity for HCCA schemes, we consider an anonymous, multi-user variant
of the FTHMP UC functionality. This variant allows multiple users to register IDs, and senders to post messages destined
for a particular ID. The functionality does not reveal the handle’s recipient in its HANDLE-ANNOUNCE broadcasts (or
in its HANDLE-REQ requests to the adversary).

Our indistinguishability-based security definitions can also be extended in a simple way to account for receiver-
anonymity. We call a homomorphic encryption scheme HCCA-anonymous if it is HCCA secure and if the RigEnc and
RigExtract procedures from the HCCA security definition can be implemented without the public or private keys (i.e,
RigEnc takes no arguments and RigExtract takes only a ciphertext and a saved state).

We also consider an additional correctness requirement on schemes, which is natural in the context of multiple
users: With overwhelming probability over (PK,SK) ← KeyGen and (PK ′, SK ′) ← KeyGen, we require that
DecSK′(EncPK(msg)) = ⊥ for every msg ∈ M, with probability 1 over the randomness of Enc. In other words,
ciphertexts honestly encrypted for one user do not successfully decrypt for another user.

Via a similar argument to the proof of Theorem 6.9, it can be seen that any HCCA-anonymous, unlinkable scheme
which satisfies the additional correctness property is a secure realization of the anonymous variant of FTHMP.

Note that this notion of anonymity is a chosen-ciphertext and not a chosen-plaintext (simple ciphertext indistin-
guishability) one. Our construction does not achieve HCCA-anonymity, since it is possible to combine a ciphertext
with a public key and obtain a valid ciphertext if and only if the original ciphertext was encrypted under that public
key. We consider it an interesting and important open problem to construct an anonymous, unlinkably homomorphic
HCCA encryption scheme, for any T .

Alternative UC security definition. For simplicity, we have defined our ideal UC functionality FTHMP in such a way
that the adversary is notified on-line every time a handle is generated. As pointed out in [81], this paradigm does
not allow the most flexibility. A more general-purpose functionality would be one in which parties privately (i.e.,
without the adversary being notified) generate new handles, and can have arbitrary control over how the handles
are sent to other parties. If a handle never reaches the adversary, the adversary should not know that it was ever
generated. To model this, the functionality can be modified so that the adversary is not notified each time a new
handle is generated; instead, following [81], the adversary supplies a handle-generating algorithm during the set-up
phase so that handles can be generated without the adversary’s intervention/notification.

To securely realize such a functionality via a homomorphic encryption scheme, we must ensure that the scheme
satisfies an additional security property; namely, that ciphertexts reveal (even to the receiver) at most the cumulative
effect of all the transformations that have been applied — in particular, the ciphertext does not reveal which particular
sequence of transformations has been applied. This property can be specified more formally as a security experiment,
where an adversary supplies a ciphertext ζ and two transformations T1 and T2. The challenger flips a fair coin and
returns either either CTrans(ζ, T2 ◦ T1) or CTrans(CTrans(ζ, T1), T2), correspondingly. We insist that the adversary
cannot correctly guess the coin with nonnegligible advantage.
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With this additional security requirement, an analog of Theorem 6.9 holds for this non-broadcasting definition of
FTHMP. Our construction does indeed satisfy this additional property, since the two distributions CTrans(ζ, T2 ◦T1) and
CTrans(CTrans(ζ, T1), T2) are identical.

Repost-test. In FTHMP, when an honest party Alice receives a post from Bob and then another from Carl, Alice has
no way of knowing if Carl’s message was derived from Bob’s (via FTHMP ’s REPOST feature), or via an independent
POST command. In fact, the only time FTHMP informs a recipient that a REPOST occurred is for the adversary’s dummy
handles.

We can easily modify our schemes and FTHMP to provide such a feature for honest parties. We call this feature
repost-test. In this variant of FTHMP, the recipient may issue an additional command (TEST, handle1, handle2). The
functionality returns a boolean indicating whether the two handles were the result of reposting a common handle (it
keeps extra book-keeping to track the ancestor of each REPOST-generated handle).

To realize this modified functionality, we start with a realization of FTHMP on message spaceMn+1, whereM has
superpolynomial size. Suppose every T ∈ T always preserves the (n + 1)th component of the message. Then let T ′
be the restrictions of T ∈ T to the first n components.

We may then use FTHMP to obtain a secure realization of FT ′HMP with repost-test feature in the following way: To
post a message (m1, . . . ,mn) ∈ Mn, choose a random mn+1 ←M and post (m1, . . . ,mn+1) to FTHMP. When reading
a message, ignore the last component. To perform the repost-test on two handles, simply check whether the last
components of their corresponding messages are equal.

Non-malleability beyond encryption. Our results demonstrate that it is possible to envision non-malleability as a
precisely defined tradeoff, rather than an all-or-nothing prospect. Cryptographic objects that are non-malleable in
this way combine the best aspects of flexible computation and integrity against malicious behavior. It is likely that
this approach to non-malleability will be useful for primitives other than encryption schemes.

For example, one may envision a non-interactive zero-knowledge (NIZK) proof scheme in which the proof objects
may be mauled into proofs of related statements, but only in certain ways. Indeed, NIZK proofs are an important
component in anonymous credential schemes [6], and combining such malleability with an unlinkability feature
would permit an anonymous delegation feature for the credentials.
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Additional Proofs

A.1 Security Proof for Homomorphic Encryption Scheme

In this section, we give the full proof of Theorem 6.14, that our construction (Section 6.5.2) satisfies the correctness
properties for a homomorphic encryption scheme, is unlinkably homomorphic and is HCCA-secure, under the DDH
assumption in G and Ĝ.

The full details of the proof are carried out in the following sections. We use the notational conventions of
Section 6.5.2.

A.1.1 Rigged Encryption & Extraction

To show HCCA security, we must demonstrate RigEnc and RigExtract procedures. First, we factor out some
subroutines that are common to the “rigged” and non-rigged encryption procedures:

Ciphertext generation. GenCiphPK((m1, . . . ,mn), µ): Pick random x ∈ Zp, y ∈ Z∗p and random u ∈ Ĝ, and output

g
(x+z1)u
1 , . . . , g

(x+z4)u
4 , m1C

x
1 , . . . , mnC

x
n, (DEµ)x;

gyu1 , . . . , gyu4 , Cy1 , . . . , Cyn, (DEµ)y;
MEnc

P̂K
(u)

Deriving purported plaintext. PurpMsgSK(ζ, u): Strip off u and ~z from the exponents as follows: For j = 1, . . . , 4:
set Xj = X

1/u
j g

−zj
j and Y j = Y

1/u
j . Output (m1, . . . ,mn), where mi = CX,i/

∏4
j=1X

ci,j
j .

Checking ciphertext integrity. IntegritySK(ζ, u, µ): Strip off u and ~z from the exponents as follows: For j = 1, . . . , 4:
set Xj = X

1/u
j g

−zj
j and Y j = Y

1/u
j . If Y 1 = · · · = Y 4 = 1 (the identity element in G), output 0. Otherwise,

check the following constraints:

PX
?
=
∏4
j=1X

dj+µej
j ; CY,i

?
=
∏4
j=1 Y

ci,j
j (for each i ∈ [n]);

PY
?
=
∏4
j=1 Y

dj+µej
j

If any fail, output 0, otherwise output 1.

We can view the scheme’s Enc and Dec routines as using these subroutines:

EncPK(m1, . . . ,mn): Output GenCiphPK((m1, . . . ,mn),H(f(m1, . . . ,mn))).

DecSK(ζ): Compute u ← MDec
ŜK

(U). If u = ⊥, output ⊥. Otherwise, set (m1, . . . ,mn) = PurpMsgSK(ζ, u). If
IntegritySK(ζ, u,H(f(m1, . . . ,mn))) = 1, output (m1, . . . ,mn); otherwise output ⊥.

Now, we define the RigEnc and RigExtract procedures for use in our security proof:

RigEncPK(): Pick random µ← Zp. Generate ζ ← GenCiphPK((1, . . . , 1), µ), and output (ζ, S = µ).

RigExtractSK(ζ, S): Compute u ← MDec
ŜK

(U). If u = ⊥, output ⊥. Otherwise, set (m1, . . . ,mn) =
PurpMsgSK(ζ, u). If IntegritySK(ζ, u, S) = 1 and (m1, . . . ,mn) ∈ H (i.e., T(m1,...,mn) is an allowed transfor-
mation), then output T(m1,...,mn); otherwise output ⊥.

A.1.2 Encryption & Decryption as Linear Algebra

In this section we characterize our construction using linear algebra, which will be useful in the security proof.
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Public key constraints. First we examine what information is revealed to the adversary about the private key by
the public key.

The following constraints relate the private keys to public keys (the first equation is in the field of order q, and
the second is in the field of order p):

[
~1 0

0 ~1

] [
Ĝ 0

0 Ĝ

] [
~a>

~b>

]
=

[
logA
logB

]
, where Ĝ =

[
log ĝ1 0

0 log ĝ2

]



~1

. . .
~1






G

. . .
G







~c>1
...
~c>n
~d>

~e>




=




logC1

...
logCn
logD
logE



, where G =




log g1 · · · 0
...

. . .
...

0 · · · log g4


 (A.1)

We call these constraints the public-key constraints.

Definition A.1. Let U = (~V ,AV , BV , ~W,AW , BW ) be a DSME ciphertext. The two DSME strands of U with respect to
a public key (ĝ1, ĝ2, A,B) are:

~v = (v1, v2), where vj = logĝj Vj

~w = (w1, w2), where wj = logĝj Wj

Observe that applying MCTrans(U, Tσ) gives a ciphertext whose two strands are ~v + r ~w and s~w, for random
r ∈ Zq, s ∈ Z∗q . In ciphertexts generated by MEnc, both strands are scalar multiples of the all-ones vector.

For ciphertexts in the main scheme, we define a similar notion of strands. However, in such a ciphertext, the first
strand is “masked” by u and zi’s, and the second strand is masked by u.

Definition A.2. Let ζ = ( ~X, ~CX , PX ; ~Y , ~CY , PY ;U) be a ciphertext in the main scheme. The strands of ζ with respect
to a public key (g1, . . . , g4, . . .) and a value u ∈ Ĝ are:

~x = (x1, . . . , x4), where xi = (loggi Xi)/u− zi
~y = (y1, . . . , y4), where yi = (loggi Yi)/u

As above, applying CTrans(ζ, T~τ ) gives a ciphertext whose two strands are ~x+ r~y and s~y, for random r ∈ Zp, s ∈
Z∗p. In ciphertexts generated by Enc, both strands are scalar multiples of the all-ones vector.

Decryption constraints. Let ŜK = (~a,~b) be a DSME private key, let U = (~V ,AV , BV , ~W,AW , BW ) be a DSME
ciphertext, and let ~v, ~w be its two strands with respect to the corresponding public key. Then MDec

ŜK
(U) = u 6= ⊥

if and only if ~w is a nonzero vector and the following constraints hold in the field of order q:



~v 0
~w 0
0 ~v
0 ~w



[
Ĝ 0

0 Ĝ

] [
~a>

~b>

]
=




log(AV /u)
logAW
logBV
logBW


 (A.2)

The logarithms are with respect to any fixed generator of Ĝ.
Similarly, let SK = (ŜK,~c1, . . . ,~cn, ~d,~e) be a private key and ζ = ( ~X, ~CX , PX ; ~Y , ~CY , PY ;U) be a ciphertext in

the main scheme, such that MDec
ŜK

(U) = u 6= ⊥. Let ~x and ~y denote the strands of ζ∗ with respect to the public
key and u.

Then PurpMsgSK(ζ, u) = (m1, . . . ,mn) and IntegritySK(ζ, u, µ) = 1 if and only if ~y is a nonzero vector and the
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following constraints hold in the field of order p:



~x
. . . 0 0

~x
~y

. . . 0 0
~y

0 ~x µ~x
0 ~y µ~y






G

. . .
G







~c>1
...
~c>n
~d>

~e>




=




log(CX,1/m1)
...

log(CX,n/mn)
logCY,1

...
logCY,n
logPX
logPY




(A.3)

The logarithms are with respect to any fixed generator of G.
We call each constraint in these systems of equations the decryption constraints, and refer to them by the name of

the ciphertext component that is involved (AV , AW , PX , etc.).

The adversary receives ciphertexts throughout the HCCA experiment from GRigEnc oracles and as the challenge ζ∗.
These ciphertexts gives the adversary’s view additional constraints on the private key.

Observation: Ciphertexts that are generated by GenCiph induce constraints that are linearly dependent on the
constraints given by the public key, because their strands are scalar multiples of the appropriate all-ones vectors.

Lemma A.3. For all key pairs (P̂K, ŜK), all (purported) ciphertexts U , and all U ′ in the support of MCTrans(U, Tσ),
we have MDec

ŜK
(U ′) = Tσ(MDec

ŜK
(U)).

Proof. If ~v and ~w are the two strands of U , then the two strands of U ′ are ~v + r ~w and s~w for some r ∈ Zq, s ∈ Z∗q .
The two strands of U ′ are linear combinations of the strands of U , and the three values checked by a decryption
constraint (BV ,AW ,BW ) are the corresponding combinations of the values from U . Thus, a particular decryption
constraint fails on U ′ if and only if it fails for U . Furthermore, s 6= 0, so ~w is a nonzero vector if and only if s~w is
a nonzero vector. Finally, it is straight-forward to check that the purported plaintext of U ′ is σ times the purported
plaintext of U .

Lemma A.4. For all key pairs (PK,SK), all (purported) ciphertexts ζ, and all ζ ′ in the support of CTrans(ζ, T~τ ), we
have DecSK(ζ ′) = T~τ (DecSK(ζ)).

Proof. First, by the above lemma, the DSME component of ζ will fail to decrypt if and only if the DSME component
of ζ ′ fails to decrypt.

Otherwise, the two strands of ζ ′ (with respect to the decryption of its DSME component) are linear combinations
of the strands of ζ (with respect to the decryption of its DSME component). A similar argument to above shows that
a decryption check fails on ζ ′ if and only if the same check fails on ζ; and the ratios of the purported plaintexts are
~τ .

A.1.3 Decisional Diffie-Hellman Assumption

We now describe a more intricate indistinguishability assumption, which is implied by the standard DDH assumption
in G and Ĝ.

First, consider the following two distributions:

• DDH(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick a random v ← Zp, where |G| = p.
Output (g1, . . . , gj , g

v
1 , . . . , g

v
j ).

• Rand(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick random v1, . . . , vj ← Zp, where
|G| = p. Output (g1, . . . , gj , g

v1
1 , . . . , g

vj
j ).

We will require distributions of this form with j = 2 and j = 4, in different groups. Note that for fixed n, the standard
DDH assumption in G (which is the special case of j = 2) implies that the above distributions are indistinguishable.
To see this, consider a hybrid distribution in which the first k exponents are randomly chosen, and the remaining
exponents are all equal. The standard DDH assumption is easily seen to imply that the kth hybrid distribution is
indistinguishable from the (k + 1)st.

Now consider the following two “double-strand” distributions:
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• DS-DDH(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick random v, w ← Zp, where |G| = p.
Output (g1, . . . , gj , g

v
1 , . . . , g

v
j , g

w
1 , . . . , g

w
j ).

• DS-Rand(G, j) distribution. Pick random elements g1, . . . , gj ← G, and pick random v1, . . . , vj , w1, . . . , wj ←
Zp, where |G| = p. Output (g1, . . . , gj , g

v1
1 , . . . , g

vj
j , g

w1
1 , . . . , g

wj
j ).

Again, a simple hybrid argument shows that if the DDH(G, j) and Rand(G, j) distributions are indistinguishable, then
so are DS-DDH(G, j) and DS-Rand(G, j). We call elements in the support of these distributions double-strand tuples
of length j.

Finally, our security proofs rely on the indistinguishability of the following two distributions:

• Pick K0 ← DS-DDH(G, 4), and pick K1 ← DDH(Ĝ, 2). Output (K0,K1).

• Pick K0 ← DS-Rand(G, 4), and pick K1 ← Rand(Ĝ, 2). Output (K0,K1).

A final hybrid argument shows that if DS-DDH(G, 4) and DS-Rand(G, 4) are indistinguishable, and DDH(Ĝ, 2) and
Rand(Ĝ, 2) are also indistinguishable, then the above two distributions are indistinguishable.

A.1.4 The Alternate Encryption Procedure

We now describe the alternate method of generating ciphertexts AltGenCiph. As a component, it uses AltMEnc, an
alternate encryption procedure for the DSME scheme. Both of these procedures use the secret keys instead of the
public keys to generate ciphertexts.

DSME alternate encryption: AltMEnc
ŜK

(u).

• Pick random v1, v2 ∈ Zq and w ∈ Z∗q . For j = 1, 2 let Vj = ĝ
vj
j and Wj = ĝwj (alternatively, in the analysis

below we also consider V1, V2 as inputs instead).

• Output (~V ,AV , BV , ~W,AW , BW ), where

~V = (V1, V2) AV = u ·∏2
j=1 V

aj
j BV =

∏2
j=1 V

bj
j

~W = (W1,W2) AW =
∏2
j=1W

aj
j BW =

∏2
j=1W

bj
j

Alternate ciphertexts: AltGenCiphSK((m1, . . . ,mn), µ).

• Pick random x1, . . . , x4, y1, . . . , y4 ∈ Zp. For j = 1, . . . , 4, set Xj = g
xj
j and Y j = g

yj
j , (alternatively, in the

analysis below we also consider Xj , Y j as inputs instead).

• Pick random u ∈ Ĝ, set U ← AltMEnc
ŜK

(u), Compute:

Xj = (Xjg
zj
j )u; CX,i = mi

∏4
j=1X

ci,j
j ; PX =

∏4
j=1X

dj+µej
j ;

Yj = Y
u

j ; CY,i =
∏4
j=1 Y

ci,j
j ; PY =

∏4
j=1 Y

dj+µej
j ;

• Finally, output ζ = ( ~X, ~CX , PX ; ~Y , ~CY , PY ;U)

These alternate encryption procedures differ from the normal encryption procedures in that they generate
ciphertexts whose decryption constraints are not linearly dependent on the public key constraints. The DSME
alternate encryption generates a ciphertext whose first strand is random, and the alternate encryption generates
a ciphertext whose two strands are both random. The remainder of the ciphertexts are constructed using the private
keys to ensure that the decryption constraints are satisfied.

A hybrid HCCA experiment. Consider a variant of the HCCA experiment, where the challenge ciphertext is
generated using AltGenCiph. That is, in the challenge phase of the experiment, the implicit call to GenCiphPK is
replaced with an identical call to AltGenCiphSK .

Lemma A.5. In the hybrid HCCA experiment (where ζ∗ is generated using AltGenCiph), conditioned on a negligible-
probability event not occurring, ζ∗ is distributed independently of the randomness u, and the bit b in the experiment, even
given the public key. When b = 1, ζ∗ is also distributed independently of the random choice of µ used in RigEnc.
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Proof. Given a DSME ciphertext from AltMEnc with first strand ~v∗, the set {~v∗,~1} forms a basis for the space of all
DSME strands, with overwhelming probability. The adversary’s view of the DSME private key (~a,~b) is constrained
by the public key constraints in Equation A.1 and the decryption constraints given by ζ∗ in Equation A.3. The
constraints involving the second strand are linearly dependent on the public key constraints, as ~w is a scalar multiple
of the all-ones vector. Combining these constraints and removing the redundant ones, we have:




~1 0

0 ~1
~v 0
0 ~v



[
Ĝ 0

0 Ĝ

] [
~a>

~b>

]
=




logA
logB

log(AV /u)
logBV


 ,

The matrix on the left-hand side of this equation is nonsingular.
Similarly, in a ciphertext from AltGenCiph, with overwhelming probability we have that for every u ∈ Ĝ, {~x, ~y,~1, ~z}

form a basis for the space of all strands, where ~x and ~y are the strands of the challenge ciphertext with respect to u.
Then the adversary’s view of the private key is constrained as follows:




~1
. . .

~1
~x

. . .
~x

~y
. . .

~y
~x µ~x
~y µ~y






G

. . .
G







~c>1
...
~c>n
~d>

~e>




=




logC1

...
logCn
logD
logE

log(CX,1/m1)
...

log(CX,n/mn)
logCY,1

...
logCY,n
logPX
logPY




Here (m1, . . . ,mn) and µ denote the inputs to AltGenCiph.
Note that when {~1, ~x, ~y} are linearly independent, the matrix on the left-hand side of this equation is nonsingular,

for every µ ∈ Zp.
Now fix a public key and challenge ciphertext (one that avoids the event that {~1, ~x, ~y} is not linearly independent).

When b = 0 in the experiment, substitute the appropriate mi and µ values in the previous system of equations. Then
for every choice of u ∈ Ĝ, there are an equal number of solutions for the private keys in this system of equations, as
the matrix is nonsingular.

When b = 1 in the experiment, substitute (m1, . . . ,mn) = (1, . . . , 1). Then for every choice of u ∈ Ĝ and µ ∈ Zp,
there are an equal number of solutions for the private keys, as the matrix is nonsingular.

Since the underlying randomness in the HCCA experiment is the choice of these private keys, the choices of u, µ,
and b are independent of each other and of the adversary’s view in the experiment.

Lemma A.6. For every PPT adversary, its advantage in the HCCA experiment is negligibly close to its advantage in the
hybrid HCCA experiment (when the challenge ciphertext is generated using AltGenCiph), if the DDH assumption holds in
G and Ĝ.

Proof. If the DDH assumption holds for Ĝ and G, then two the distributions described in Section A.1.3 are
computationally indistinguishable.

Now consider a simulation of the HCCA experiment, where the input is from one of the above distributions.
Let (ĝ1, ĝ2, V1, V2) be the sample from either DDH(Ĝ, 2) or Rand(Ĝ, 2). Set (ĝ1, ĝ2) as the corresponding part of the
DSME public key, and generate the remainder of the keypair (~a,~b) honestly. To simulate the encryption of u∗ from
the challenge ciphertext with this keypair, use AltMEnc with the input values V1, V2.

Similarly, let (g1, . . . , g4, X1, . . . , X4, Y 1, . . . , Y 4) be the sample from either DS-DDH(G, 4) or DS-Rand(G, 4). Set
(g1, . . . , g4) as the corresponding part of the public key and generate the remainder of the keypairs (~ci, ~d, ~e) honestly.
To simulate the encryption of the challenge ciphertext, use AltGenCiph and AltMEnc with the private keys and input
values X1, . . . , X4, Y 1, . . . , Y 4.
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It is straight-forward to check that when the input is sampled from the first distribution (i.e, the 2 tuples come
from the appropriate DDH distributions), the ciphertext is distributed statistically close to a “normal” encryption
from GenCiph and MEnc (the distribution is identical when conditioned to avoid the negligible-probability event
that Y 1 = · · · = Y 4 = 1). If the input is sampled from the second distribution (i.e, the 2 tuples comes from the
appropriate random distributions), then the ciphertext is distributed identically as an encryption from AltGenCiph.

The rest of this simulation of the HCCA experiment can be implemented in polynomial time. Thus, the outcomes
of the two simulations must not differ by more than a negligible amount.

A.1.5 Decryption Queries

In this section, we argue that with overwhelming probability, the only ciphertexts accepted by the decryption oracles
in the HCCA experiment are ciphertexts of the “expected” form (from the supports of Enc or CTrans).

In this section, we let ζ∗ denote the challenge ciphertext in the hybrid HCCA experiment, which was generated
via AltGenCiph.

Our arguments in this section generally follow the same structure. Fix a set of constraints induced by a public key
and challenge ciphertext ζ∗ in the hybrid HCCA experiment. Call a query to the Dec, GRigExtract, or RigDec oracle
bad if that oracle rejects (outputs ⊥) for an overwhelming fraction of private keys which are consistent with those
constraints.

We show that any ciphertext ζ not of the “expected” form is such a bad ciphertext, while on the other hand,
ciphertexts which are of the expected form are actually rejected by none of the consistent private keys (and all
private keys yield the same response from the oracle).

The following lemma establishes the significance of classifying ciphertexts in this way.

Lemma A.7. With overwhelming probability, all bad queries are rejected in the HCCA experiment.

Proof. By definition, the response from the oracle for a non-bad query does not introduce any new constraints on the
private keys, as they all yield the same oracle response.

Consider the first bad ciphertext submitted to an oracle. At that time, from the adversary’s view, the private key
is distributed uniformly among all keys consistent with the constraints induced by ζ∗ and the public key. Thus it is
only with negligible probability that the oracle will return something other than ⊥. Conditioned on it returning ⊥,
the adversary learns that a negligible fraction of private keys are ruled out. Let ν be a negligible upper bound for
this fraction. The correct private key remains distributed among the (1 − ν) fraction of remaining keys, from the
adversary’s view.

By a union bound, if the adversary makes N bad queries to this decryption oracle, at least one of them is accepted
with probability at most Nν. Since the adversary makes a polynomial (in the security parameter) number of queries,
this probability is negligible.

The simplest way a ciphertext can be bad is if it one of its decryption integrity constraints (Equation A.2 and
Equation A.3) is linearly independent of the constraints given by the public key and challenge ciphertext.

DSME Decryption

Lemma A.8. Fix a DSME public key and challenge ciphertext U∗ in the hybrid HCCA experiment. Let U be an additional
DSME ciphertext. Suppose u∗ and u are the purported plaintexts of U∗ and U , respectively, as computed by MDec

ŜK
.

Then there exist fixed (with respect to the adversary’s view) values π = π(U) and σ = σ(U) such that u = σ(u∗)π.

Note that even though in the hybrid HCCA experiment, the value of u∗ is independent of the adversary’s view, the
values π and σ are fixed.

Proof. Let ~v∗ be the first strand of U∗, and let ~v be the first strand of U . We may unambiguously express ~v = π~v∗+ ε~1
for some π, ε. Then π and σ = AV /(A

∗
V )πAε are the values desired in the statement of the lemma.

The purported ciphertext of U is:

u =
AV∏2
j=1 V

aj
j

=
AV[∏2

j=1(V ∗j )aj
]π [∏2

j=1(ĝ∗j )aj
]ε =

AV
[A∗V /u

∗]π Aε
= σ(u∗)π

Lemma A.9. If the second strand of U is not a (nonzero) scalar multiple of (1, 1), then MDecSK(U) = ⊥ for all but a
negligible fraction of private keys consistent with the adversary’s view.

109



APPENDIX A: ADDITIONAL PROOFS

Proof. Let ~w be the second strand of U , and ~v∗ the first strand of U∗. If ~w is not in the span of ~1, then ~w = α~v∗ + β~1
for some α 6= 0. The following constraint is checked while decrypting U :

1
?
=

AW∏2
j=1W

aj
j

=
AW[∏2

j=1(V ∗j )aj
]α [∏2

j=1 ĝ
aj
j

]β =
AW

[A∗V /u
∗]αAβ

The value of u∗ is independent of the adversary’s view and distributed uniformly in Ĝ, and thus so is (u∗)α. Thus
equality holds only with negligible probability. Also, if ~w is the zero vector, then U is explicitly rejected by MDec.

Lemma A.10. Let U be a DSME ciphertext, with π, σ as above, and suppose MDec(U) 6= ⊥ for a nonnegligible fraction
of private keys consistent with the adversary’s view. Then

π = 0 =⇒ U is in the support of MEnc
P̂K

(σ)

π = 1 =⇒ U is in the support of MCTrans(U∗, Tσ)

Proof. By the previous lemma, the second strand of U must be a nonzero multiple of ~1.
If π = 0, then the first strand of U is also a multiple of ~1. Say, ~v = v~1 and ~w = w~1, where w 6= 0. It is trivial to

check that U decrypts to σ with nonnegligible probability only if U = MEnc
P̂K

(σ; v, w).
If π = 1, then say ~v = ~v∗ + β~1 = ~v∗ + s(~w∗) and ~w = γ~1 = t(~w∗), for some s ∈ Zq, t ∈ Z∗q , since ~w∗ (the

second strand of U∗) is a nonzero scalar multiple of ~1. Then it is trivial to check that U decrypts to σu∗ only if
U = MCTrans(U∗, Tσ; s, t).

Decryption

Lemma A.11. Let (ζ, µ) be an input to IntegritySK . Then it is a bad query unless there exists σ ∈ Ĝ such that one of the
following cases holds:

• U is in the support of MEnc
P̂K

(σ); and there exists x ∈ Zp, y ∈ Z∗p such that Xj = g
(x+zj)σ
j and Yj = gyσj , for

j = 1, . . . , 4.

• U is in the support of MCTrans(U∗, Tσ); and there exists s ∈ Zp, t ∈ Z∗p such that Xj = (X∗j (Y ∗j )s)σ and
Yj = (Y ∗j )tσ, for j = 1, . . . , 4; and µ = µ∗.

We emphasize the similarity between these forms of ciphertexts and those produced by Enc and CTrans.

Proof. As parts of the challenge ciphertext ζ∗, the adversary is given the values: X∗j = g
(x∗j+zj)u

∗

j and Y ∗j = g
y∗j u
∗

j , for

some u∗ corresponding to the decryption of U∗ under ŜK. These values ~X and ~Y are fixed, even though the value
of u∗ is distributed independently of the adversary’s view.

Similarly, when submitting a ciphertext ζ to an oracle, the adversary supplies the values: Xj = g
(xj+zj)u
j and

Yj = g
yju
j for some u, where ~x and ~y are the strands of the ciphertext with respect to u, and u is related to u∗ via

u = σ(u∗)π.
With overwhelming probability in the HCCA experiment, these fixed vectors {(~x∗+~z)u∗, ~y∗u∗, ~z,~1} span the space

of all strands. Thus we can write the following unique linear combination:

(~x+ ~z)u = α
(

(~x∗ + ~z)u∗
)

+ β(~y∗u∗) + γ~1 + δ~z (A.4)

~yu = α′
(

(~x∗ + ~z)u∗
)

+ β′(~y∗u∗) + γ′~1 + δ′~z (A.5)

Note that the coefficients of this linear combination are fixed, independent of the randomness in u∗. Our analysis
proceeds by showing that if these coefficients are not fixed in a particular way, then the ciphertext would be rejected
by Dec with overwhelming probability over the remaining randomness in u∗ and the private key.

Let ~X be as above, and consider the decryption constraint involving the PX component of the ciphertext. Suppose
the constraint holds for a nonnegligible fraction of consistent private keys. The constraint that is checked by Integrity
is of the following form:

[
~x µ~x

] [G
G

] [
~d>

~e>

]
?
=
[
logPX

]
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The public key and challenge ciphertext constrain ~d and ~e as follows:



~1
~1

~x∗ µ∗~x∗

~y∗ µ∗~y∗



[
G

G

] [
~d>

~e>

]
=




logD
logE

logP ∗X
logP ∗Y




We must have that [~x µ~x] is a linear combination of the above set of constraints with nonnegligible probability
(over u∗). Furthermore, the coefficients of that linear combination must be fixed with nonnegligible probability over
u∗, otherwise the “correct” value of the constraint will be distributed randomly in a superpolynomial-size domain as
u∗ varies.

Solving for ~x in the first equation and substituting, we have:

[~x µ~x] =
γ

u
[~1 µ~1] +

u∗

u

(
α[~x∗ µ~x∗] + β[~y∗ µ~y∗]

)
+

(
α
u∗

u
+
δ

u
− 1

)
[~z µ~z]

Let π = π(U) and σ = σ(U). We consider the following cases:

• If π = 0: Then u = σ (independent of u∗) while u∗/u is distributed uniformly over Ĝ. We must have α = β = 0,
otherwise the coefficients of [~x∗ µ~x∗] and [~y∗ µ~y∗] are distributed randomly with u∗/u. Furthermore, observe
that [~z µ~z] is linearly independent of the constraints on the adversary’s view for any µ, since ~z is linearly
independent of {~1, ~x∗, ~y∗}. Thus, its coefficient must be zero with nonnegligible probability. This happens only
when δ = σ.

Combining everything, we must have Xj = g
(x+zi)σ
j for some x ∈ Zp.

• If π = 1: Then u∗/u = 1/σ while u (when appearing alone) is distributed uniformly over Ĝ. We must have
γ = 0, otherwise the coefficient of [~1 µ~1] is distributed randomly with u∗. Again, we must have the coefficient
of [~z µ~z] equal to zero with nonnegligible probability. Substituting, we get that δ = 0 and α = σ. Finally, we
must have µ = µ∗, or else [~x∗ µ~x∗] is linearly independent of [~x∗ µ∗~x∗].

Combining everything, we must have Xj = (X∗j (Y ∗j )s)σ for some s ∈ Zp, and that µ = µ∗.

• If π 6∈ {0, 1}. Below (when discussing the second strand), we show that the ciphertext would fail its integrity
checks with overwhelming probability.

Similarly, we consider the second strand’s ~Y as a linear combination (Equation A.4). We then consider the
integrity check on the PY 1 component:

[
~y µ~y

]
G

[
~d>

~e>

]
?
= [logPY ]

The public key and challenge ciphertext constrain ~d and ~e in the following way:



~1
~1

~x∗ µ∗~x∗

~y∗ µ∗~y∗



[
G

G

] [
~d>

~e>

]
=




logD
logE

logP ∗X
logP ∗Y




We rewrite [~y µ~y], substituting according to Equation A.4 to obtain:

[~y µ~y] =
γ′

u
[~1 µ~1] +

u∗

u

(
α′[~x∗ µ~x∗] + β′[~y∗ µ~y∗]

)
+

(
α′
u∗

u
+
δ′

u

)
[~z µ~z]

Similar to the case of the first strand, we see that the coefficient (α′u∗ + δ′)/u must be zero with nonnegligible
probability over the randomness in u∗. This is only possible with α′ = δ′ = 0. We further consider 3 cases of π:

• If π = 0, then u = σ and u∗/u is uniform in Ĝ. We see that the coefficient of [~y∗ µ~y∗] is β′u∗/u, so we must have
β′ = 0. Then γ′ 6= 0, since otherwise ~y is the all-zeroes vector, and the ciphertext would be unconditionally
rejected by Integrity.

This implies that Yj = gyσj for some y ∈ Z∗p.
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• If π = 1, then u∗/u = 1/σ, while u is uniform in Ĝ when appearing alone. We see that the coefficient of [~1 µ~1]
is γ′/u, so we must have γ′ = 0. Then β′ 6= 0, since otherwise ~y is the all-zeroes vector and the ciphertext
would be rejected by Integrity.

This implies that Yj = (Y ∗j )tσ for some t ∈ Z∗p.

• π 6∈ {0, 1}: First, observe that if µ 6= µ∗, then [~y∗ µ~y∗] is independent of the view constraints, and we must have
β′ = 0. Then α′ = β′ = δ′ = 0, and [~y µ~y] = γ′/u[~1 µ~1]. Since u is uniformly distributed in Ĝ, we must have
γ′ = 0. But then ~y is the all-zeroes vector and the ciphertext is unconditionally rejected by Integrity.

Therefore we may assume µ = µ∗ if the ciphertext is to pass its integrity checks with nonnegligible probability.
We consider the following two constraints simultaneously (simplifying via α′ = δ′ = 0):

[
logCY,1
logPY

]
?
=

[
~y

~y µ~y

]

G

G
G





~c>1
~d>

~e>




=

[
γ′

u 0 β′u∗

u 0

0 γ′

u 0 β′u∗

u

]



~1
~1 µ∗~1

~y∗

~y∗ µ∗~y∗






G

G
G





~c>1
~d>

~e>




=

[
γ′

u 0 β′u∗

u 0

0 γ′

u 0 β′u∗

u

]



logC1

log(DEµ
∗
)

logC∗Y,1
logP ∗Y




If we multiply through both of these constraints and substitute according to u = σ(u∗)π, we get the following
two polynomials in u∗, which must be simultaneously zero with nonnegligible probability:

(σ logPY )(u∗)π − (β′σ logP ∗Y )u∗ − (γ′ log(DEµ
∗
)) = 0

(σ logCY,1)(u∗)π − (β′σ logC∗Y,1)u∗ − (γ′ logC1) = 0

Note that these are polynomials in u∗ of degree π, and no terms collect together, as π 6∈ {0, 1}. We now argue
that these two polynomials cannot be simultaneously zero with nonnegligible probability, unless the ciphertext
is degenerate and would be rejected on other grounds:

– If one of the polynomials is not identically zero but has some coefficient equal to zero, then this polynomial
is equivalent to (i.e, has the same roots as) an affine polynomial in a single variable; either u∗ or (u∗)π

or (u∗)π−1. Each of these variables is uniform in Ĝ, so the equation is satisfied with only negligible
probability.

– Otherwise, if the two polynomials have all nonzero coefficients and are identical up to scalar multipli-
cation, then the three pairs of matching coefficients have the same ratios. In particular, we have the
following equality (after cancellation):

log(DEµ
∗
)

logC1
=

logP ∗Y
logC∗Y,1

The challenge ciphertext (including the components P ∗Y and C∗Y,1) is generated after C1, D, E, and µ∗ are
fixed. It is only with negligible probability over the randomness of AltGenCiph that C∗Y,1 an P ∗Y satisfy this
condition. Thus it does not affect the outcome of our analysis to condition the entire HCCA experiment
on this event not happening.

– If the two polynomials have all nonzero coefficients and are not identical up to scalar multiplication, then
some linear combination of them is affine either in the variable u∗ or in (u∗)π. The two original polynomial
equations must have been simultaneously satisfied with noticeable probability. When both equations hold,
then so does any linear combination of the two. But we have demonstrated a linear combination of the
equations that is affine on a single variable which is distributed uniformly over Ĝ, and thus is satisfied
with only negligible probability.
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– Otherwise one polynomial is identically zero. It is only with negligible probability that AltGenCiph
generates a ciphertext with logC∗Y,1 = 0 or logPY 1∗ = 0. Thus our analysis may be conditioned on these
events not happening. We must have β′ = 0 to make the u∗ coefficient zero (since σ 6= 0 unconditionally).
This makes a coefficient in the other polynomial zero as well. This case overlaps with the first case unless
both polynomials are in fact identically zero. If both are identically zero, then by similar reasoning,
we must have γ′ = 0 (logC1 = 0 only with negligible probability over the key generation). But when
β′ = γ′ = 0, ~y is the all-zeroes vector and the ciphertext is rejected by Integrity.

We now characterize precisely which queries are accepted by the decryption oracles in the HCCA experiment, to
show that their outputs are independent of b.

• RigDec when b = 0. Then RigDec is the normal Dec oracle. The challenge ciphertext ζ∗ is an encryption of
(m1, . . . ,mn) given by the adversary, and µ∗ = H(f(m1, . . . ,mn)).

– In the π = 0 case, it is straight-forward to see that the ciphertext passes its integrity check with µ computed
from the purported plaintext only if ζ is in the support of EncPK(·).

– In the π = 1 case, let (m′1, . . . ,m
′
n) = PurpMsgSK(ζ, u). Then we must have H(f(m1, . . . ,mn)) =

H(f(m′1, . . . ,m
′
1)). By the collision-resistance of H, this only happens when the two plaintexts are in the

same H-coset. Thus (m1, . . . ,mn)∗(m′1, . . . ,m′n)−1 ∈ H, and so (m′1, . . . ,m
′
n) is an allowed transformation

of (m1, . . . ,mn). It is straight-forward to see that the remaining components’ integrity checks succeed only
if ζ is in the support of CTrans(ζ∗, ·).

• RigDec when b = 1. Then RigDec first calls RigExtract using µ∗, which are distributed independently of the
adversary’s view.

– In the π = 0 case, ciphertexts of this form have a unique fixed (with respect to the adversary’s view) value
µ such that IntegritySK(ζ, µ) succeeds. Since µ∗ is distributed independently of the adversary’s view, this
happens with negligible probability.

– In the π = 1 case, RigExtract accepts only if the purported plaintext of ζ is changed from ζ∗ via an allowed
transformation, and that the integrity constraints pass with the same µ∗ value. It is straight-forward to
see that these conditions hold only if ζ is in the support of CTrans(ζ∗, ·).

Then RigDec calls the normal Dec procedure:

– The π = 0 case is analogous to the b = 0 case above, it is not affected by the difference in generation of
ζ∗. It accepts only if ζ is in the support of EncPK(·).

– If π = 1, then the ciphertext’s integrity is checked using µ values derived from the purported plaintext.
The purported plaintext is information-theoretically fixed from the adversary’s view. Only with negligible
probability will µ equal the µ∗ value used to generate ζ∗, which is necessary for Dec to accept with
nonnegligible probability.

Thus, RigDec may be replaced by an (unbounded) oracle which does the following on input ζ.

• If ζ is in the support of EncPK(m1, . . . ,mn) then output m1, . . . ,mn.

• Otherwise, if ζ is in the support of CTrans(ζ∗, T ) for some T ∈ T , then output T (m∗1, . . . ,m
∗
n), wherem∗1, . . . ,m

∗
n

is the challenge plaintext given by the adversary in the challenge phase.

By the above argument, the output of this oracle matches that of RigDec on all queries with overwhelming probability,
in both the b = 0 and b = 1 branches of the HCCA experiment. Similarly, the argument for RigDec when b = 0 implies
that we may also replace the Dec oracle given to the adversary in Phase I with an oracle which simply checks that its
input is in the support of EncPK(·).

We show a similar situation for inputs to the GRigExtract(i, ·) oracle:

• In the π = 0 case of an input ciphertext, the given ciphertext ζ is accepted only if its purported plaintext is an
allowed transformation, and its integrity checks pass with respect to the same values as ζi (the ith output of
GRigEnc). It is straight-forward to see that this is only possible for ζ from the support of CTrans(ζi, ·).
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• In the π = 1 case of inputs, we must have µ∗ equal to the µ value used to generate ζi. Note that the µ value
used to generate ζi is information-theoretically fixed given ζi and the public key (it was created using GenCiph
instead of AltGenCiph).

When b = 1, the two sets of µ values are only equal with negligible probability, as µ∗ is chosen independently
of µ.

When b = 0, the µ∗ value is computed via H(f(m∗1, . . . ,m
∗
n)), where m∗1, . . . ,m

∗
n is the challenge plaintext given

by the adversary. For the adversary to be given ζi and subsequently be able to compute (m∗1, . . . ,m
∗
n) which

yield the correct µ value, the adversary must be able to compute discrete logs in G.

To see the reduction, suppose we are given a random pair g, gµ as input. Then we perform 4 randomized
reductions to obtain gj , g

µ
j pairs, and generate a keypair honestly using these gj values. We can compute a

public key component E as well as the value Eµ needed to generate ζi. For the output of GRigEnc, use this
value when generating the output of RigEnc. The distribution of this ciphertext is correct, as µ is random.
When the adversary gives the challenge plaintext, compute µ′ = H(f(m∗1, . . . ,m

∗
n)). If gµ

′
= gµ, then we have

successfully computed the discrete log. In a group where the DDH assumption holds, this can only happen with
negligible probability.

Similar to above, we may replace the GRigExtract(i, ·) oracle with an unbounded oracle that checks whether its
input is in the support of CTrans(ζi, ·), and if so outputs the transformation. Such an oracle is clearly independent of
b, and by the above discussion, all of its responses match that of GRigExtract(i, ·), with overwhelming probability.

Lemma A.12. Our construction is HCCA secure, if the DDH assumption holds in G and Ĝ.

Proof. First, by Lemma A.6, any adversary’s advantage in the HCCA experiment changes negligibly when GenCiph is
replaced by AltGenCiph to generate the challenge ciphertext. By Lemma A.5, this challenge ciphertext is distributed
independently of b.

Next, we may replace all the oracles which use the private key with unbounded variants as described above.
The entire set of responses from these oracles coincides with the original oracles, with overwhelming probability, so
any adversary’s advantage is only negligibly affected by this modification to the experiment. However, when these
modified oracles are used, the adversary’s entire view (public key, challenge ciphertext, and oracle responses) is
independent of b. Thus the adversary has zero advantage in this modified HCCA experiment. It follows that the
adversary’s advantage in the original experiment is negligible.

Lemma A.13. Our construction is unlinkably homomorphic.

Proof. Above, we argued that in the HCCA experiment, with overwhelming probability, the only ciphertexts accepted
by the Dec in Phase I are those which are in the support of EncPK(·). The unlinkability experiment is a restricted
special case of Phase I of the HCCA experiment where there are no GRigEnc or GRigExtract oracles. So in the
unlinkability experiment also, with overwhelming probability, only ciphertexts in the support of EncPK(·) are
accepted by the Dec. Further, observe that the CTrans procedure, when applied to ciphertexts in the support of
EncPK(msg) and transformation T , outputs ciphertexts distributed identically to EncPK(T (msg)). Thus the adversary
has zero advantage in the unlinkability experiment, conditioned on the overwhelming-probability event that the
correctly-decrypting ciphertext it gives is in the support of EncPK(·). The adversary’s overall advantage in the
unlinkability experiment is therefore negligible.
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