
Linicrypt: A Model for Practical Cryptography

Brent Carmer Mike Rosulek

Charles River Crypto Day
December 9, 2016



A Model for “Practical” Cryptography

Block cipher modes

CBC.Enck(m1, . . . ,mn):

c0 ← {0, 1}λ
for i = 1 to n:

ci := Ek(mi ⊕ ci−1)
return (c0, . . . , cn)

OCB.Enck(m1, . . . ,mn):

L := Ek(0λ)
R := Ek(N ⊕ L)
for i = 1 to n:
ci := Ek(mi ⊕ γiL⊕ R)⊕ γiL⊕ R
...

return (c0, . . . , cn)

I Sample a
random block

I XOR blocks

I Call block
cipher

I GF (2λ) linear
operation
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A Model for “Practical” Cryptography

Hash-based signatures

Lamport.KeyGen():

for i = 1 to n and b ∈ {0, 1}:
skbi ← {0, 1}λ
vkbi = H(skbi )

Lamport.Sign(sk ,m):

return (skm1
1 , . . . , skmn

n )

Winternitz.KeyGen():

sk ← {0, 1}λ
vk = H(H(· · ·H︸ ︷︷ ︸

n

(sk) · · · ))

Winternitz.Sign(sk,m):

return H(H(· · ·H︸ ︷︷ ︸
m

(sk) · · · ))

I Sample a random
block

I Call one-way function

Modern hash-based
signatures (e.g.,
SPHINCS) built from
these components.
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A Model for “Practical” Cryptography

Garbled circuits

GarbledANDGate(A,B,C ,∆):

output:
G1 = H(A ,B )⊕ C
G2 = H(A ,B ⊕∆)⊕ C
G3 = H(A⊕∆,B )⊕ C
G4 = H(A⊕∆,B ⊕∆)⊕ C ⊕∆

Eval(A∗,B∗):

return H(A∗,B∗)⊕ Gi

(significantly simplified)

I XOR blocks

I Call hash function
function
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High-level overview

Linicrypt = class of algorithms that can:

I uniformly sample finite field elements,

I query a random oracle (input/output = field elements),

I apply linear combinations to field elements.

Captures a broad range of practical cryptographic techniques.



Linicrypt Highlights

Efficient Decidability:
Can decide, in polynomial time, whether two Linicrypt programs
have indistinguishable outputs (in RO model).

P1 P2

?∼=

Synthesis:
Can express security of a Linicrypt program as a existential
formula ⇒ use SAT solver to discover programs that satsisfy a
security condition.

Fine-Grained:
Possibility of lower-bounds on concrete constants (e.g., possible
with 3 field elements, impossible with 2). Strong lower bounds in
RO model.
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Outline

1. Linicrypt model & technical tools
2. Synthesizing Linicrypt programs
3. Applications to Garbled Circuits
4. Future work, open problems



Model

Allowed Linicrypt operations:

v1 := input[1] // input a field element

v2 ← F // sample the field

v3 := H(v2) // query RO with field elem

v4 := v1 + 2 v3 // fixed linear combination

return v2, v4 // return any number of vars

Similar models:

I Minicrypt [Impagliazzo95]: no linearity restriction

I Generic Group Model [Shoup97]: only linear operations
“in the exponent”, but can use secret coefficients

I Arithmetic Model [ApplebaumAvronBrzuska15]: no random
oracle, constructions oblivious to choice of field
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Linicrypt technical tools

Theorem: can decide, in polynomial time, whether
two input-less Linicrypt programs have
indistinguishable output distributions.

Tools:

I Algebraic representation - output distribution of Linicrypt
programs as collection of matrices/vectors.

I Normal form - find a canonical representation.

I Basis changes - reorder the variables.
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Algebraic representation: base variables

P:
v1 ← F
v2 ← F
v3 := v1 + v2
v4 := H(v3)
v5 := v4 + v1
v6 := H(v5)
return (v4, v5)

Def: A base variable is the result of a sam-
pling step or call to H.

Every variable in P is a linear
function of the base variables.
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Algebraic representation: program as matrix

Since every var in P is a linear function of the
base variables, write them as a matrix.

P:
v1 ← F
v2 ← F
v3 := v1 + v2
v4 := H(v3)
v5 := v4 + v1
v6 := H(v5)
return (v4, v5)



v1
v2
v3
v4
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 =




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Algebraic representation: oracle constraints

An oracle constraint captures: “query H
at this linear combination of base variables,
receive that combination of base variables.”

P:
v1 ← F
v2 ← F
v3 := v1 + v2
v4 := H(v3)
v5 := v4 + v1
v6 := H(v5)
return (v4, v5)

M =

[
v1
0

v2
0

v4
1

v6
0

1 0 1 0

]

C =
{

[ ] 7→ [ ],

[ ] 7→ [ ]
}

Lemma: M & C completely characterize P!
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Linicrypt technical tools

Theorem: can decide, in polynomial time, whether
two input-less Linicrypt programs have
indistinguishable output distributions.

Tools:

I Algebraic representation - output distribution of Linicrypt
programs as matrices.

I Normal form - remove “extra” oracle queries to generate a
canonical representation.

I Basis changes - reorder the variables.



Normalize: unreachable oracle queries

What linear constraints of base variables does Adv know?
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return (v4, v5)

M =

[
v1
0

v2
0

v4
1

v6
0

1 0 1 0

][

C =
{
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v4
1

v6
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[
v1
1

v2
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1
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0] 7→ [
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0

v2
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v6
1]
}

I Every row of M is a known constraint on base vars

I If oracle constraint has LHS ∈ span(known),

then add RHS

In this example, first oracle constraint is unreachable.
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Normalize: useless oracle queries

Other kinds of oracle constraints can be removed, too!

P:
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v5 := v4 + v1
v6 := H(v5)
return (v4, v5)

M =

[
v1
0

v2
0

v4
1

v6
0

1 0 1 0

]

C =
{

[
v1
1

v2
0

v4
1

v6
0] 7→ [

v1
0

v2
0
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}

I v6 never even used in the program, clearly can be removed

I Definition: oracle constraint is useless if RHS is linearly
independent of everything else

I Useless oracle constraints can be removed, no effect on Adv
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Subtleties about useless constraints

P
v1 ← F
v2 ← F
v3 := H(v1)
v4 := H(v3)
v5 = v2 + v4
return v1, v5

M =

[
v1
1

v2
0

v3
0

v4
0

0 1 0 1

]

C =
{

[1 0 0 0] 7→ [0 0 1 0],

[0 0 1 0] 7→ [0 0 0 1]
}

Subtleties:

I v4 syntactically influences the output, but still useless

I Removing constraint #2 causes constraint #1 to be useless!
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Normalization

normalize(P):

iteratively delete unreachable and useless
oracle constraints from P

Lemma: normalize(P) ∼= P.
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Linicrypt technical tools

Theorem: can decide, in polynomial time, whether
two input-less Linicrypt programs have
indistinguishable output distributions.

Tools:

I Algebraic representation - output distribution of Linicrypt
programs as matrices.

I Normal form - remove “extra” oracle queries.

I Basis changes - reorder the variables.



Basis changes

I We defined reachable & useful in terms of linear
independence:

I Constraint is reachable if LHS is in span of reachable vectors.

I Constraint is useful if RHS is in span of reachable vectors.

I Definitions are invariant under a basis change to all the
vectors.

Proposition: Linicrypt program P is indistinguishable
from B×P, where B is invertible matrix.
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Bringing it all together

Main Theorem:
P1
∼= P2 if and only if

normalize(P1) and normalize(P2) differ by a basis change.

Basic outline:

I Choose basis change for normalize(P1) so that it coincides
with normalize(P2) “as much as possible”

I If they completely coincide, then P1
∼= P2

I Otherwise, there is an oracle constraint that is . . .

. . . present in P1 but not in P2 (by symmetry)

. . . reachable ⇒ distinguisher can query it

. . . useful ⇒ result involved in some linear relation

To distinguish, make this query, check that result satisfies the
linear relation.
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1. Linicrypt model & technical tools
2. Synthesizing Linicrypt programs
3. Applications to Garbled Circuits
4. Future work, open problems



Existential Formulas

Claim: Linicrypt properties can be expressed
in an existential formula.

1. Are two Linicrypt programs indistinguishable?

2. Does the composition of two Linicrypt programs have a
certain property
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Trick: basis change witness

Problem: process for identifying unreachable
oracle constraints is highly iterative.

Reachable space is the smallest subspace V s.t.:
I V contains all rows of M
I For all oracle constraints, if LHS in V then RHS in V

Idea: guess a basis change under which V = Fd × {0}n−d .

I Guess basis B and its inverse. Check that B × B−1 = I

I A vector is in V ⇔ rightmost n − d entries are all zero.

Now easy to verify that we’ve identified the reachable space:

I After basis change, all rows of M in V?

I After basis change, LHS of constraint in V ⇒ RHS is too?
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Trick: basis change for composition

Composition:
Use a basis change to “line up” base vars.
Composed output is second program’s output.

Enc(m):

r ← F
return (r ,m + H(r))

Dec(r , c):

return c − H(r)

→

[
m
0

r
1

H(r)

0
1 0 1

]{
[0 1 0] 7→ [0 0 1]

}

→
[
r
0

c
1

H(r)

−1

]{
[1 0 0] 7→ [0 0 1]

}

B =


m r H(r)

r 0 1 0
c 1 0 1

H(r) 0 0 1
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Garbled Circuits

Existing garbled-circuit constructions are Linicrypt∗:

cost per gate

Textbook GC [Yao80s] 4 field elements
[NaorPinkasSumner99] 3 field elements
[Pinkas+09] 2 field elements
[KolesnikovSchneider08] XOR gate = 0; AND gate = 3
[ZahurREvans15] XOR gate = 0; AND gate = 2

Can we use Linicrypt to discover new GC constructions?
prove lower bounds about GC constructions?

(focus on constructions to garble small gates)
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I Randomly assign ( , ) or ( , ) to
each pair of wire labels

I Include color in the wire label (e.g.,
as last bit)

I Order the 4 ciphertexts canonically,
by color of keys

I Evaluate by decrypting ciphertext
indexed by your colors

4 EA,B(C ) doesn’t need verifiable decryption

⇒ smaller garbled circuit, encryption/decryption “linear”

7 Evaluator’s choice of linear operation depends on color bit
in a non-linear way!
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Modeling Garbled Circuits in Linicrypt

I Garbler’s behavior is Linicrypt program, after fixing
association between T/F and / on both wires

I Evaluator’s behavior is Linicrypt program, after fixing color
bits of input wire labels

Our approach: Synthesize collection of Linicrypt programs:
{Garble ,Garble ,Garble ,Garble }
{Eval ,Eval ,Eval ,Eval }

. . . that comprise a point-permute-style GC construction

Details I won’t discuss:

I GC security ⇔ indistinguishability of input-less Linicrypt
program

I How to express correctness of GC scheme via composition

I We specialized to Free-XOR-compatible schemes
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Linisynth : github.com/osu-crypto/linisynth

Linisynth architecture

1. Get parameters as input: number of oracle queries allowed,
size (# field elts) of garbled gate, gate functionality, etc.

2. For each Garble, Eval program, create existential variables for
its matrix/constraint representation.

3. Generate formula expressing security & correctness.

4. Ask Z3 whether the formula is satisfiable.

Results

name τ size Hgb Hev time sat

free-xor ⊕ : 2→ 1 0 0 0 1s 1
half-gate ∧ : 2→ 1 2 4 2 5s 1
one-third-gate ∧ : 2→ 1 1 4 2 74s 0
half-gate-cheaper ∧ : 2→ 1 2 4 1 6.2h 0
1-out-of-2-mux mux : 3→ 1 2 4 2 29s 1
2-bit-eq = : 4→ 1 2 4 2 6m 1
2-bit-eq-small = : 4→ 1 1 4 2 6m 0
2-bit-leq ≤ : 4→ 1 1 2 1 77s 0
2-bit-lt < : 4→ 1 2 4 2 3.5h 0
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half-gate

∧ : {0, 1}2 → {0, 1}
size = 2

time = 5s

callsgb = 4

callsev = 2

GateGbH(σ,A,B,∆) :

h1 = H(A)
h2 = H(A + ∆)
h3 = H(A + B)
h4 = H(A + B + ∆)
G0 = [0, 2]∆ + h3 + h4
G1 = A + B + [0, 2]∆ + h1 + h2 + h3 + h4
C0 = B + [0]∆ + [0, 2]h1 + [1, 3]h2 + [1, 2]h3 + [0, 3]h4
return G0,G1,C0

GateEvH(χ,A∗,B∗,G0,G1) :

return [1, 3]A∗ + [0, 2]B∗+

[0, 1]G0 + [1, 3]G1+

H(A∗) + H(A∗ + B∗)



Lower Bounds

Existential formula is satisfiable if and only if
a Linicrypt construction exists with those parameters

SAT solver returns false ⇒ lower bound for garbled circuit
constructions in Linicrypt
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Outline

1. Linicrypt model & technical tools
2. Synthesizing Linicrypt programs
3. Applications to Garbled Circuits
4. Future work, open problems



Future Work

Theoretical questions about the model:

1. Security properties involving adversarial inputs (vs. input-less)

2. Support “fancier” random oracles (ideal cipher)

3. Which Linicrypt programs have security from standard
assumptions (vs. random oracle)?

4. Better understanding of concrete (vs. asymptotic) bounds.
E.g., “beyond birthday” security

Application areas (synthesis & lower bounds):

1. Block cipher modes, tweakable block ciphers

2. Authenticated encryption modes, MACs

3. Hash-based signatures

4. More garbled circuits

5. Memory-hard functions??

Thanks!
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