Linicrypt: A Model for Practical Cryptography

Brent Carmer Mike Rosulek

Charles River Crypto Day December 9, 2016

Block cipher modes

$$\frac{\operatorname{CBC.Enc}_{k}(m_{1}, \dots, m_{n}):}{c_{0} \leftarrow \{0, 1\}^{\lambda}}$$

for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus c_{i-1})$
return (c_{0}, \dots, c_{n})
$$\frac{\operatorname{OCB.Enc}_{k}(m_{1}, \dots, m_{n}):}{L := E_{k}(0^{\lambda})}$$

 $R := E_{k}(N \oplus L)$
for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus \gamma_{i}L \oplus R) \oplus \gamma_{i}L \oplus R$
 \vdots
return (c_{0}, \dots, c_{n})

Block cipher modes

$$\frac{\text{CBC.Enc}_{k}(m_{1},...,m_{n}):}{c_{0} \leftarrow \{0,1\}^{\lambda}}$$

for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus c_{i-1})$
return $(c_{0},...,c_{n})$
$$\frac{\text{OCB.Enc}_{k}(m_{1},...,m_{n}):}{L := E_{k}(0^{\lambda})}$$

 $R := E_{k}(N \oplus L)$
for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus \gamma_{i}L \oplus R) \oplus \gamma_{i}L \oplus R$
 \vdots
return $(c_{0},...,c_{n})$

 Sample a random block

Block cipher modes

$$\frac{\operatorname{CBC.Enc}_{k}(m_{1}, \dots, m_{n}):}{c_{0} \leftarrow \{0, 1\}^{\lambda}}$$
for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus c_{i-1})$
return (c_{0}, \dots, c_{n})

$$\frac{\operatorname{OCB.Enc}_{k}(m_{1}, \dots, m_{n}):}{L := E_{k}(0^{\lambda})}$$
 $R := E_{k}(N \oplus L)$
for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus \gamma_{i}L \oplus R) \oplus \gamma_{i}L \oplus F$
 \vdots
return (c_{0}, \dots, c_{n})

 Sample a random block

XOR blocks

Block cipher modes

$$\frac{\operatorname{CBC.Enc}_{k}(m_{1},\ldots,m_{n}):}{c_{0} \leftarrow \{0,1\}^{\lambda}}$$

for $i = 1$ to n :
 $c_{i} := \underline{E_{k}}(m_{i} \oplus c_{i-1})$
return (c_{0},\ldots,c_{n})
$$\frac{\operatorname{OCB.Enc}_{k}(m_{1},\ldots,m_{n}):}{L := \underline{E_{k}}(0^{\lambda})}$$

 $R := \underline{E_{k}}(N \oplus L)$
for $i = 1$ to n :
 $c_{i} := \underline{E_{k}}(m_{i} \oplus \gamma_{i}L \oplus R) \oplus \gamma_{i}L \oplus R$
 \vdots
return (c_{0},\ldots,c_{n})

- Sample a random block
- XOR blocks
- Call block cipher

Block cipher modes

$$\frac{\operatorname{CBC.Enc}_{k}(m_{1},\ldots,m_{n}):}{c_{0} \leftarrow \{0,1\}^{\lambda}}$$

for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus c_{i-1})$
return (c_{0},\ldots,c_{n})
$$\frac{\operatorname{OCB.Enc}_{k}(m_{1},\ldots,m_{n}):}{L := E_{k}(0^{\lambda})}$$

 $R := E_{k}(N \oplus L)$
for $i = 1$ to n :
 $c_{i} := E_{k}(m_{i} \oplus \gamma_{i}L \oplus R) \oplus \gamma_{i}L \oplus R$
 \vdots
return (c_{0},\ldots,c_{n})

- Sample a random block
- XOR blocks
- Call block cipher
- ► GF(2^λ) linear operation

Hash-based signatures

$$\frac{\text{Lamport.KeyGen}():}{\text{for } i = 1 \text{ to } n \text{ and } b \in \{0,1\}:}{sk_i^b \leftarrow \{0,1\}^\lambda} \\ vk_i^b = H(sk_i^b)$$

$$\frac{\text{Lamport.Sign}(sk,m):}{\text{return } (sk_1^{m_1}, \dots, sk_n^{m_n})}$$

$$\frac{\text{Winternitz.KeyGen}():}{sk \leftarrow \{0,1\}^\lambda} \\ vk = H(H(\cdots H(sk)\cdots)) \\ \frac{\text{Winternitz.Sign}(sk,m):}{\text{return } H(H(\cdots H(sk)\cdots))} \\ \frac{Winternitz.Sign}{m}$$

Hash-based signatures

Lamport.KeyGen():
for $i = 1$ to n and $b \in \{0, 1\}$:
$sk_i^b \leftarrow \{0,1\}^{\lambda}$
$vk_i^b = H(sk_i^b)$
Lamport.Sign(<i>sk</i> , <i>m</i>):
$return (sk_1^{m_1}, \ldots, sk_n^{m_n})$
Winternitz.KeyGen():
$sk \leftarrow \{0,1\}^{\lambda}$
$vk = H(H(\cdots H(sk)\cdots))$
n
Winternitz.Sign(<i>sk</i> , <i>m</i>):
return $H(H(\cdots H(sk)\cdots))$
m

 Sample a random block

Hash-based signatures

$$\frac{\text{Lamport.KeyGen}():}{\text{for } i = 1 \text{ to } n \text{ and } b \in \{0,1\}:}{sk_i^b \leftarrow \{0,1\}^\lambda}{vk_i^b = H(sk_i^b)}$$

$$\frac{\text{Lamport.Sign}(sk,m):}{\text{return } (sk_1^{m_1},\ldots,sk_n^{m_n})}$$

$$\frac{\text{Winternitz.KeyGen}():}{sk \leftarrow \{0,1\}^\lambda}{vk = H(H(\cdots H(sk)\cdots))}$$

$$\frac{\text{Winternitz.Sign}(sk,m):}{\text{return } H(H(\cdots H(sk)\cdots))}$$

- Sample a random block
- Call one-way function

Hash-based signatures

$$\frac{\text{Lamport.KeyGen}():}{\text{for } i = 1 \text{ to } n \text{ and } b \in \{0,1\}:}{sk_i^b \leftarrow \{0,1\}^\lambda} \\ vk_i^b = H(sk_i^b)$$

$$\frac{\text{Lamport.Sign}(sk,m):}{\text{return } (sk_1^{m_1}, \dots, sk_n^{m_n})}$$

$$\frac{\text{Winternitz.KeyGen}():}{sk \leftarrow \{0,1\}^\lambda} \\ vk = \underbrace{H(H(\cdots H(sk) \cdots))}_n \\ \underbrace{\text{Winternitz.Sign}(sk,m):}_{return } \underbrace{H(H(\cdots H(sk) \cdots))}_m$$

- Sample a random block
- Call one-way function

Modern hash-based signatures (e.g., SPHINCS) built from these components.

Garbled circuits

 $\begin{array}{l} \hline & \text{GarbledANDGate}(A, B, C, \Delta): \\ \hline & \text{output:} \\ G_1 = H(A \quad , B \quad) \oplus C \\ G_2 = H(A \quad , B \oplus \Delta) \oplus C \\ G_3 = H(A \oplus \Delta, B \quad) \oplus C \\ G_4 = H(A \oplus \Delta, B \oplus \Delta) \oplus C \oplus \Delta \\ \hline & \text{Eval}(A^*, B^*): \\ \hline & \text{return } H(A^*, B^*) \oplus G_i \end{array}$

(significantly simplified)

Garbled circuits

$$\begin{array}{l} \hline \text{GarbledANDGate}(A, B, C, \Delta):\\ \hline \text{output:}\\ G_1 = H(A \quad ,B \quad)\oplus C\\ G_2 = H(A \quad ,B\oplus \Delta)\oplus C\\ G_3 = H(A\oplus \Delta, B \quad)\oplus C\\ G_4 = H(A\oplus \Delta, B\oplus \Delta)\oplus C\oplus \Delta\\ \hline \hline \text{Eval}(A^*, B^*):\\ \hline \text{return } H(A^*, B^*)\oplus G_i \end{array}$$

(significantly simplified)

- XOR blocks
- Call hash function function

High-level overview

Linicrypt = class of algorithms that can:

- uniformly sample finite field elements,
- query a random oracle (input/output = field elements),
- apply linear combinations to field elements.

Captures a broad range of practical cryptographic techniques.

Linicrypt Highlights

Efficient Decidability:

Can decide, in polynomial time, whether two Linicrypt programs have indistinguishable outputs (in RO model).

$$P_1 \stackrel{?}{\cong} P_2$$

Linicrypt Highlights

Efficient Decidability:

Can decide, in polynomial time, whether two Linicrypt programs have indistinguishable outputs (in RO model).

$$P_1 \stackrel{?}{\cong} P_2$$

Synthesis:

Can express security of a Linicrypt program as a **existential** formula \Rightarrow use SAT solver to discover programs that satsisfy a security condition.

Linicrypt Highlights

Efficient Decidability:

Can decide, in polynomial time, whether two Linicrypt programs have indistinguishable outputs (in RO model).

$$P_1 \stackrel{?}{\cong} P_2$$

Synthesis:

Can express security of a Linicrypt program as a **existential** formula \Rightarrow use SAT solver to discover programs that satsisfy a security condition.

Fine-Grained:

Possibility of lower-bounds on **concrete constants** (e.g., possible with 3 field elements, impossible with 2). Strong lower bounds in RO model.

Outline

1. Linicrypt model & technical tools

- 2. Synthesizing Linicrypt programs
- 3. Applications to Garbled Circuits
- 4. Future work, open problems

Model

Allowed Linicrypt operations:

Model

Allowed Linicrypt operations:

Similar models:

- Minicrypt [Impagliazzo95]: no linearity restriction
- Generic Group Model [Shoup97]: only linear operations "in the exponent", but can use secret coefficients
- Arithmetic Model [ApplebaumAvronBrzuska15]: no random oracle, constructions oblivious to choice of field

Linicrypt technical tools

<u>Theorem</u>: can decide, in polynomial time, whether two *input-less* Linicrypt programs have **indistinguishable output** distributions.

Linicrypt technical tools

<u>Theorem</u>: can decide, in polynomial time, whether two *input-less* Linicrypt programs have **indistinguishable output** distributions.

<u>Tools</u>:

- Algebraic representation output distribution of Linicrypt programs as collection of matrices/vectors.
- Normal form find a canonical representation.
- **Basis changes** reorder the variables.

Linicrypt technical tools

<u>Theorem</u>: can decide, in polynomial time, whether two *input-less* Linicrypt programs have **indistinguishable output** distributions.

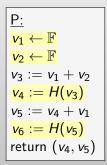
<u>Tools</u>:

- Algebraic representation output distribution of Linicrypt programs as collection of matrices/vectors.
- Normal form find a canonical representation.
- **Basis changes** reorder the variables.

Algebraic representation: base variables

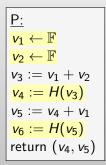
$$\begin{array}{l} \underline{P:}\\ \overline{v_1} \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

Algebraic representation: base variables



Def: A **base** variable is the result of a *sampling* step or *call to H*.

Algebraic representation: base variables



Def: A **base** variable is the result of a *sampling* step or *call to H*.

Every variable in **P** is a **linear function** of the base variables.

$$\begin{array}{l} \underline{P:}\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$

Since every var in \mathbf{P} is a linear function of the base variables, write them as a **matrix**.

V1
 V2
 V4

$$\begin{array}{c}
\underline{P:}\\
v_{1} \leftarrow \mathbb{F}\\
v_{2} \leftarrow \mathbb{F}\\
v_{3} := v_{1} + v_{2}\\
v_{4} := H(v_{3})\\
v_{5} := v_{4} + v_{1}\\
v_{6} := H(v_{5})\\
return (v_{4}, v_{5})
\end{array}$$

$$\begin{bmatrix}
v_{1}\\
v_{2}\\
v_{3}\\
v_{4}\\
v_{5}\\
v_{6}\end{bmatrix} = \begin{bmatrix}
v_{1}\\
v_{6}\\
v_{7}\\
v_{7}$$

$$\begin{array}{l} \underline{\mathsf{P:}}\\ \overline{v_1} \leftarrow \mathbb{F}\\ \overline{v_2} \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ \overline{v_4} := H(v_3)\\ v_5 := v_4 + v_1\\ \overline{v_6} := H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$

$$\begin{array}{l} \underline{\mathsf{P:}}\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 \coloneqq v_1 + v_2\\ v_4 \coloneqq H(v_3)\\ v_5 \coloneqq v_4 + v_1\\ v_6 \coloneqq H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$

$$\begin{array}{l} \underline{\mathsf{P:}}\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 \coloneqq v_1 + v_2\\ v_4 \coloneqq H(v_3)\\ v_5 \coloneqq v_4 + v_1\\ v_6 \coloneqq H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$

$$\begin{array}{l} \underline{P:}\\ \overline{v_1} \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$

Since **the output of P** is a linear function of the base variables, write it as a matrix.

$$\begin{array}{l} \underline{\mathsf{P:}}\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \hline \text{return } (v_4, v_5) \end{array}$$

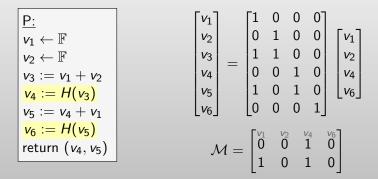
$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$

Since **the output of P** is a linear function of the base variables, write it as a matrix.

 $\begin{array}{l} \underline{\mathsf{P:}}\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \hline \texttt{return} (v_4, v_5) \end{array}$

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_4 \\ v_6 \end{bmatrix}$$
$$\mathcal{M} = \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Since **the output of P** is a linear function of the base variables, write it as a matrix.



 \mathcal{M} does not account for the way variables can be correlated via H.

Algebraic representation: oracle constraints

An **oracle constraint** captures: "query H at <u>this</u> linear combination of base variables, receive <u>that</u> combination of base variables."

Algebraic representation: oracle constraints

An **oracle constraint** captures: "query H at <u>this</u> linear combination of base variables, receive <u>that</u> combination of base variables."

An **oracle constraint** captures: "query H at <u>this</u> linear combination of base variables, receive <u>that</u> combination of base variables."

An **oracle constraint** captures: "query H at <u>this</u> linear combination of base variables, receive <u>that</u> combination of base variables."

An **oracle constraint** captures: "query H at <u>this</u> linear combination of base variables, receive <u>that</u> combination of base variables."

An **oracle constraint** captures: "query H at <u>this</u> linear combination of base variables, receive <u>that</u> combination of base variables."

Lemma: $\mathcal{M} \& \mathcal{C}$ completely characterize P!

Linicrypt technical tools

<u>Theorem</u>: can decide, in polynomial time, whether two *input-less* Linicrypt programs have **indistinguishable output** distributions.

Tools:

- Algebraic representation output distribution of Linicrypt programs as matrices.
- Normal form remove "extra" oracle queries to generate a canonical representation.
- **Basis changes** reorder the variables.

What linear constraints of base variables does Adv know?

$$\begin{array}{l} \underline{P:}\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \text{return } (v_4, v_5) \end{array}$$

$$\mathcal{M} = \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
$$\mathcal{C} = \left\{ \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 1 & 1 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 1 & 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\}$$

What linear constraints of base variables does Adv know?

Every row of *M* is a known constraint on base vars

What linear constraints of base variables does Adv know?

• Every row of $\mathcal M$ is a known constraint on base vars

► If oracle constraint has LHS ∈ span(known),

What linear constraints of base variables does Adv know?

Every row of *M* is a known constraint on base vars

▶ If oracle constraint has LHS ∈ span(known), then add RHS

What linear constraints of base variables does Adv know?

Every row of *M* is a known constraint on base vars
If oracle constraint has LHS ∈ span(known), then add RHS
In this example, first oracle constraint is unreachable.

Claim: Pr[Adv calls H on unreachable query] = negl.

$$\begin{vmatrix} \underline{P}:\\ v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ v_4 := H(v_3)\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ \text{return } (v_4, v_5) \end{vmatrix} \qquad \mathcal{C} = \Big\{ \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \Big\}$$

$$\mathcal{M} = \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
$$\left\{ \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 1 & 1 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 1 & 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}, \\ \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 1 & 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\}$$

Claim: Pr[Adv calls H on unreachable query] = negl.

Query 1 is unreachable

Claim: Pr[Adv calls H on unreachable query] = negl.

$$\begin{array}{c} \underline{P:}\\ \hline v_1 \leftarrow \mathbb{F}\\ v_2 \leftarrow \mathbb{F}\\ v_3 := v_1 + v_2\\ \hline v_4 \leftarrow \mathbb{F}\\ v_5 := v_4 + v_1\\ v_6 := H(v_5)\\ return (v_4, v_5) \end{array} \mathcal{C} = \begin{cases} \boxed{\begin{bmatrix} v_1 & v_2 & v_4 & v_6\\ 0 & 0 & 1 & 0\\ 1 & 0 & 1 & 0 \end{bmatrix}}\\ \hline \mathcal{C} = \begin{cases} \boxed{\begin{bmatrix} v_1 & v_2 & v_4 & v_6\\ 1 & 0 & 1 & 0 \end{bmatrix}} \\ \hline \begin{bmatrix} v_1 & v_2 & v_4 & v_6\\ 0 & 0 & 1 & 0 \end{bmatrix}}, \\ \hline \mathcal{C} = \begin{cases} \boxed{\begin{bmatrix} v_1 & v_2 & v_4 & v_6\\ 0 & 0 & 1 & 0 \end{bmatrix}} \\ \hline \begin{bmatrix} v_1 & v_2 & v_4 & v_6\\ 0 & 0 & 0 & 1 \end{bmatrix}}, \end{cases}$$

- Query 1 is unreachable
- ▶ Remove that oracle constraint ⇒ negligible effect on distinguisher

Other kinds of oracle constraints can be removed, too!

С

$$\begin{array}{l} \underline{\mathsf{P}} \\ \underline{\mathsf{v}}_1 \leftarrow \mathbb{F} \\ v_2 \leftarrow \mathbb{F} \\ v_3 := v_1 + v_2 \\ v_4 \leftarrow \mathbb{F} \\ v_5 := v_4 + v_1 \\ v_6 := H(v_5) \\ \text{return } (v_4, v_5) \end{array}$$

$$\mathcal{M} = \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
$$= \left\{ \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 1 & 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} v_1 & v_2 & v_4 & v_6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\}$$

Other kinds of oracle constraints can be removed, too!

 \triangleright v₆ never even used in the program, clearly can be removed

Other kinds of oracle constraints can be removed, too!

- \triangleright v₆ never even used in the program, clearly can be removed
- Definition: oracle constraint is useless if RHS is linearly independent of everything else

Other kinds of oracle constraints can be removed, too!

$$\begin{array}{c} \underline{P:}\\ \hline v_1 \leftarrow \mathbb{F} \\ v_2 \leftarrow \mathbb{F} \\ v_3 := v_1 + v_2 \\ v_4 \leftarrow \mathbb{F} \\ v_5 := v_4 + v_1 \\ \hline v_6 \leftarrow \mathbb{F} \\ return (v_4, v_5) \end{array} \mathcal{C} = \left\{ \begin{array}{cccc} \underbrace{v_1 & v_2 & v_4 & v_6} \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right\}$$

- \triangleright v₆ never even used in the program, clearly can be removed
- Definition: oracle constraint is useless if RHS is linearly independent of everything else
- Useless oracle constraints can be removed, no effect on Adv

Subtleties:

Subtleties:

v₄ syntactically influences the output, but still useless

Subtleties:

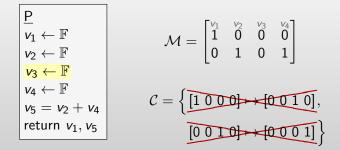
v₄ syntactically influences the output, but still useless

Subtleties:

v₄ syntactically influences the output, but still useless

Subtleties:

- v₄ syntactically influences the output, but still useless
- ▶ Removing constraint #2 causes constraint #1 to be useless!



Subtleties:

- v₄ syntactically influences the output, but still useless
- ▶ Removing constraint #2 causes constraint #1 to be useless!

Normalization

normalize(*P*):

iteratively delete **unreachable** and **useless** oracle constraints from P

Normalization

normalize(*P*):

iteratively delete **unreachable** and **useless** oracle constraints from P

Lemma: normalize(P) \cong P.

Linicrypt technical tools

<u>Theorem</u>: can decide, in polynomial time, whether two *input-less* Linicrypt programs have **indistinguishable output** distributions.

Tools:

- Algebraic representation output distribution of Linicrypt programs as matrices.
- Normal form remove "extra" oracle queries.
- **Basis changes** reorder the variables.

Basis changes

- We defined <u>reachable</u> & <u>useful</u> in terms of **linear** independence:
 - Constraint is <u>reachable</u> if LHS is in span of reachable vectors.
 - Constraint is <u>useful</u> if RHS is in span of reachable vectors.

Basis changes

- We defined <u>reachable</u> & <u>useful</u> in terms of **linear** independence:
 - Constraint is <u>reachable</u> if LHS is in span of reachable vectors.
 - Constraint is <u>useful</u> if RHS is in span of reachable vectors.
- Definitions are invariant under a basis change to all the vectors.

Basis changes

- We defined <u>reachable</u> & <u>useful</u> in terms of **linear** independence:
 - Constraint is <u>reachable</u> if LHS is in span of reachable vectors.
 - Constraint is <u>useful</u> if RHS is in span of reachable vectors.
- Definitions are invariant under a basis change to all the vectors.

Proposition: Linicrypt program P is **indistinguishable** from $B \times P$, where B is invertible matrix.

Linicrypt technical tools

<u>Theorem</u>: can decide, in polynomial time, whether two *input-less* Linicrypt programs have **indistinguishable output** distributions.

Tools:

- Algebraic representation output distribution of Linicrypt programs as matrices.
- Normal form remove "extra" oracle queries.
- **Basis changes** reorder the variables.

Bringing it all together

Main Theorem: $P_1 \cong P_2$ if and only if **normalize**(P_1) and **normalize**(P_2) differ by a basis change. Bringing it all together

```
Main Theorem:

P_1 \cong P_2 if and only if

normalize(P_1) and normalize(P_2) differ by a basis change.
```

Basic outline:

- Choose basis change for normalize(P₁) so that it coincides with normalize(P₂) "as much as possible"
- If they completely coincide, then $P_1 \cong P_2$

Bringing it all together

Main Theorem: $P_1 \cong P_2$ if and only if **normalize**(P_1) and **normalize**(P_2) differ by a basis change.

Basic outline:

Choose basis change for normalize(P₁) so that it coincides with normalize(P₂) "as much as possible"

• If they completely coincide, then $P_1 \cong P_2$

- Otherwise, there is an oracle constraint that is ...
 - ... present in P_1 but not in P_2 (by symmetry)
 - \dots reachable \Rightarrow distinguisher can query it
 - $\ldots \textbf{ useful} \Rightarrow \text{result involved in some linear relation}$

To distinguish, make this query, check that result satisfies the linear relation.

Outline

1. Linicrypt model & technical tools

2. Synthesizing Linicrypt programs

- 3. Applications to Garbled Circuits
- 4. Future work, open problems

Existential Formulas

Claim: Linicrypt properties can be expressed in an **existential formula**.

Claim: Linicrypt properties can be expressed in an **existential formula**.

- 1. Are two Linicrypt programs indistinguishable?
- 2. Does the **composition** of two Linicrypt programs have a certain property

Problem: process for identifying **unreachable** oracle constraints is **highly iterative**.

Problem: process for identifying **unreachable** oracle constraints is **highly iterative**.

Reachable space is the smallest subspace \mathcal{V} s.t.:

- \mathcal{V} contains all rows of \mathcal{M}
- \blacktriangleright For all oracle constraints, if LHS in ${\cal V}$ then RHS in ${\cal V}$

Problem: process for identifying **unreachable** oracle constraints is **highly iterative**.

Reachable space is the smallest subspace \mathcal{V} s.t.:

- \mathcal{V} contains all rows of \mathcal{M}
- \blacktriangleright For all oracle constraints, if LHS in ${\cal V}$ then RHS in ${\cal V}$

Idea: guess a basis change under which $\mathcal{V} = \mathbb{F}^d \times \{0\}^{n-d}$.

- Guess basis B and its inverse. Check that $B \times B^{-1} = I$
- A vector is in $\mathcal{V} \Leftrightarrow$ rightmost n d entries are all zero.

Problem: process for identifying **unreachable** oracle constraints is **highly iterative**.

Reachable space is the smallest subspace \mathcal{V} s.t.:

- \mathcal{V} contains all rows of \mathcal{M}
- \blacktriangleright For all oracle constraints, if LHS in ${\cal V}$ then RHS in ${\cal V}$

Idea: guess a basis change under which $\mathcal{V} = \mathbb{F}^d \times \{0\}^{n-d}$.

- Guess basis B and its inverse. Check that $B \times B^{-1} = I$
- A vector is in $\mathcal{V} \Leftrightarrow$ rightmost n d entries are all zero.

Now easy to verify that we've identified the reachable space:

- After basis change, all rows of M in V?
- After basis change, LHS of constraint in $\mathcal{V} \Rightarrow$ RHS is too?

Composition:

Use a **basis change** to "line up" base vars.

Composed output is second program's output.

Composition:

Use a **basis change** to "line up" base vars. Composed output is second program's output.

$$\frac{\mathsf{Enc}(m):}{r \leftarrow \mathbb{F}}$$

return $(r, m + H(r))$

$$\rightarrow \begin{bmatrix} m & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Big\{ \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \Big\}$$

$$\boxed{\frac{\text{Dec}(r,c):}{\text{return } c - H(r)}}$$

$$\rightarrow \begin{bmatrix} r & c & H(r) \\ \mathbf{0} & \mathbf{1} & -\mathbf{1} \end{bmatrix} \Big\{ \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \Big\}$$

Composition:

return c - H(r)

Use a **basis change** to "line up" base vars. Composed output is second program's output.

$$\rightarrow \begin{bmatrix} r & c & H(r) \\ 0 & 1 & -1 \end{bmatrix} \Big\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \Big\}$$

Composition:

Use a **basis change** to "line up" base vars. Composed output is second program's output.

$$\rightarrow \begin{bmatrix} m & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Big\{ \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \Big\}$$

$$\frac{\text{Dec}(r,c)}{\text{return } c-H(r)}$$

$$\rightarrow \begin{bmatrix} r & c & H(r) \\ 0 & 1 & -1 \end{bmatrix} \left\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \right\}$$

$$B = \begin{bmatrix} r & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ H(r) \end{bmatrix}$$

Composition:

Use a **basis change** to "line up" base vars. Composed output is second program's output.

 $\frac{\operatorname{Enc}(m):}{r \leftarrow \mathbb{F}} \rightarrow \begin{bmatrix} m & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \left\{ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ return (r, m + H(r))

 $\frac{\operatorname{Dec}(r,m+H(r)):}{\operatorname{return}(m+H(r))} - H(r) \rightarrow \begin{bmatrix} m & r & H(r) \\ 1 & 0 & 0 \end{bmatrix} \left\{ \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \right\}$

$$B = \begin{bmatrix} r & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ H(r) & 0 & 0 & 1 \end{bmatrix}$$

Composition:

Use a **basis change** to "line up" base vars. Composed output is second program's output.

 $\frac{\mathsf{Enc}(m):}{r \leftarrow \mathbb{F}}$ return (r, m + H(r))

$$\rightarrow \begin{bmatrix} m & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Big\{ \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \Big\}$$

 $\frac{\text{Dec}(r, m + H(r))}{\text{return } m}$

$$\rightarrow \ \begin{bmatrix} m & r & H(r) \\ 1 & 0 & 0 \end{bmatrix} \Big\{ \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \Big\}$$

$$B = \begin{bmatrix} r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ H(r) \end{bmatrix}$$

Composition:

Use a **basis change** to "line up" base vars. Composed output is second program's output.

$$\boxed{\frac{\mathsf{Dec}\circ\mathsf{Enc}(m):}{\mathsf{return}\ m}} \rightarrow \begin{bmatrix} m & r & H(r) \\ 1 & 0 & 0 \end{bmatrix} \left\{ \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \right\}$$

$$B = \begin{bmatrix} r & & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ H(r) & 0 & 0 & 1 \end{bmatrix}$$

Composition:

Use a **basis change** to "line up" base vars. Composed output is second program's output.

$$\frac{\mathsf{Dec} \circ \mathsf{Enc}(m)}{\mathsf{return} \ m} \rightarrow \begin{bmatrix} m & r & H(r) \\ 1 & 0 & 0 \end{bmatrix} \left\{ \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \right\}$$

Bonus: B is a witness to the correctness of this scheme!

$$B = \begin{bmatrix} r & r & H(r) \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ H(r) \end{bmatrix}$$

Outline

1. Linicrypt model & technical tools

2. Synthesizing Linicrypt programs

3. Applications to Garbled Circuits

4. Future work, open problems

Garbled Circuits

Existing garbled-circuit constructions are Linicrypt*:

	cost per gate			
Textbook GC [Yao80s]	4 field elements			
[NaorPinkasSumner99]	3 field elements			
[Pinkas+09]	2 field elements			
[KolesnikovSchneider08]	XOR gate = 0; AND gate = 3			
[ZahurREvans15]	XOR gate = 0; AND gate = 2			

Garbled Circuits

Existing garbled-circuit constructions are Linicrypt*:

	cost per gate			
Textbook GC [Yao80s]	4 field elements			
[NaorPinkasSumner99]	3 field elements			
[Pinkas+09]	2 field elements			
[KolesnikovSchneider08]	XOR gate = 0; AND gate = 3			
[ZahurREvans15]	XOR gate = 0; AND gate = 2			

Can we use Linicrypt to **discover new** GC constructions? prove **lower bounds** about GC constructions?

Garbled Circuits

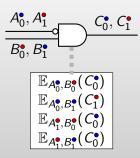
Existing garbled-circuit constructions are Linicrypt*:

	cost per gate			
Textbook GC [Yao80s]	4 field elements			
[NaorPinkasSumner99]	3 field elements			
[Pinkas+09]	2 field elements			
[KolesnikovSchneider08]	XOR gate = 0; AND gate = 3			
[ZahurREvans15]	XOR gate = 0; AND gate = 2			

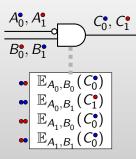
Can we use Linicrypt to **discover new** GC constructions? prove **lower bounds** about GC constructions?

(focus on constructions to garble small gates)

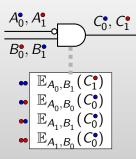
$$\begin{array}{c}
\underline{A_{0}, A_{1}} \\
\underline{B_{0}, B_{1}} \\
\hline
\underline{C_{0}, C_{1}} \\
\underline{$$



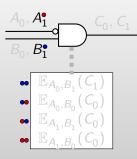
- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)



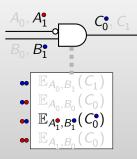
- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys



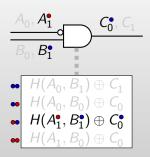
- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

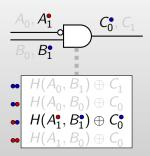


- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

✓ E_{A,B}(C) doesn't need verifiable decryption
 ⇒ smaller garbled circuit, encryption/decryption "linear"



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

✓ E_{A,B}(C) doesn't need verifiable decryption
 ⇒ smaller garbled circuit, encryption/decryption "linear"

X Evaluator's choice of linear operation depends on color bit in a non-linear way!

Modeling Garbled Circuits in Linicrypt

- Garbler's behavior is Linicrypt program, after fixing association between T/F and •/• on both wires
- Evaluator's behavior is Linicrypt program, after fixing color bits of input wire labels

Modeling Garbled Circuits in Linicrypt

- Garbler's behavior is Linicrypt program, after fixing association between T/F and •/• on both wires
- Evaluator's behavior is Linicrypt program, after fixing color bits of input wire labels

```
Our approach: Synthesize <u>collection</u> of Linicrypt programs:
{Garble<sup>•</sup>, Garble<sup>•</sup>, Garble<sup>•</sup>, Garble<sup>•</sup>}
{Eval<sup>•</sup>, Eval<sup>•</sup>, Eval<sup>•</sup>, Eval<sup>•</sup>}
... that comprise a <u>point-permute-style</u> GC construction
```

Modeling Garbled Circuits in Linicrypt

- Garbler's behavior is Linicrypt program, after fixing association between T/F and •/• on both wires
- Evaluator's behavior is Linicrypt program, after fixing color bits of input wire labels

```
Our approach: Synthesize <u>collection</u> of Linicrypt programs:
{Garble<sup>••</sup>, Garble<sup>••</sup>, Garble<sup>••</sup>, Garble<sup>••</sup>}
{Eval<sup>••</sup>, Eval<sup>••</sup>, Eval<sup>••</sup>, Eval<sup>••</sup>}
... that comprise a <u>point-permute-style</u> GC construction
```

Details I won't discuss:

- ► GC security ⇔ indistinguishability of input-less Linicrypt program
- How to express correctness of GC scheme via composition
- We specialized to Free-XOR-compatible schemes

Linisynth architecture

1. Get **parameters** as input: number of oracle queries allowed, size (# field elts) of garbled gate, gate functionality, etc.

- 1. Get **parameters** as input: number of oracle queries allowed, size (# field elts) of garbled gate, gate functionality, etc.
- 2. For each **Garble**, **Eval** program, create existential variables for its matrix/constraint representation.

- 1. Get **parameters** as input: number of oracle queries allowed, size (# field elts) of garbled gate, gate functionality, etc.
- 2. For each **Garble**, **Eval** program, create existential variables for its matrix/constraint representation.
- 3. Generate formula expressing security & correctness.

- 1. Get **parameters** as input: number of oracle queries allowed, size (# field elts) of garbled gate, gate functionality, etc.
- 2. For each **Garble**, **Eval** program, create existential variables for its matrix/constraint representation.
- 3. Generate formula expressing security & correctness.
- 4. Ask **Z3** whether the formula is satisfiable.

Linisynth architecture

- 1. Get **parameters** as input: number of oracle queries allowed, size (# field elts) of garbled gate, gate functionality, etc.
- 2. For each **Garble**, **Eval** program, create existential variables for its matrix/constraint representation.
- 3. Generate formula expressing security & correctness.
- 4. Ask **Z3** whether the formula is satisfiable.

<u>Results</u>

name	τ	size	H _{gb}	H_{ev}	time	sat
free-xor	$\oplus: 2 \rightarrow 1$	0	0	0	1s	1
half-gate	$\wedge: 2 \rightarrow 1$	2	4	2	5s	1
one-third-gate	$\wedge: 2 \rightarrow 1$	1	4	2	74s	0
half-gate-cheaper	$\wedge: 2 \rightarrow 1$	2	4	1	6.2h	0
1-out-of-2-mux	MUX : $3 \rightarrow 1$	2	4	2	29s	1
2-bit-eq	=:4 ightarrow 1	2	4	2	бm	1
2-bit-eq-small	=:4 ightarrow 1	1	4	2	бm	0
2-bit-leq	\leq : 4 \rightarrow 1	1	2	1	77s	0
2-bit-lt	<:4 ightarrow 1	2	4	2	3.5h	0

$$\begin{array}{ll} \mbox{half-gate} & \mbox{size} = 2 & \mbox{calls}_{gb} = 4 \\ \land : \{0,1\}^2 \rightarrow \{0,1\} & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{ll} \label{eq:GateGb} \hline G_{0}(\sigma,A,B,\Delta): & \mbox{time} = 5s & \mbox{time} = 5s & \mbox{calls}_{ev} = 2 \end{array}$$

$$\begin{array}{l} \displaystyle \frac{\mathsf{GateEv}^{H}(\chi,A^{*},B^{*},\mathit{G}_{0},\mathit{G}_{1}):}{\mathsf{return}} \\ \hline \\ \displaystyle \mathbf{1},\mathbf{3}]A^{*}+[0,2]B^{*}+\\ \displaystyle [0,1]\mathcal{G}_{0}+[1,3]\mathcal{G}_{1}+\\ \displaystyle \\ \displaystyle H(A^{*})+H(A^{*}+B^{*}) \end{array}$$

Lower Bounds

Existential formula is satisfiable **if and only if** a Linicrypt construction exists with those parameters Existential formula is satisfiable **if and only if** a Linicrypt construction exists with those parameters

SAT solver returns ${\rm FALSE} \Rightarrow$ lower bound for garbled circuit constructions in Linicrypt

Outline

1. Linicrypt model & technical tools

- 2. Synthesizing Linicrypt programs
- 3. Applications to Garbled Circuits
- 4. Future work, open problems

Future Work

Theoretical questions about the model:

- 1. Security properties involving adversarial inputs (vs. input-less)
- 2. Support "fancier" random oracles (ideal cipher)
- 3. Which Linicrypt programs have security from standard assumptions (vs. random oracle)?
- 4. Better understanding of concrete (vs. asymptotic) bounds. E.g., "beyond birthday" security

Future Work

Theoretical questions about the model:

- 1. Security properties involving adversarial inputs (vs. input-less)
- 2. Support "fancier" random oracles (ideal cipher)
- 3. Which Linicrypt programs have security from standard assumptions (vs. random oracle)?
- 4. Better understanding of concrete (vs. asymptotic) bounds. E.g., "beyond birthday" security

Application areas (synthesis & lower bounds):

- 1. Block cipher modes, tweakable block ciphers
- 2. Authenticated encryption modes, MACs
- 3. Hash-based signatures
- 4. More garbled circuits
- 5. Memory-hard functions??

Future Work

Theoretical questions about the model:

- 1. Security properties involving adversarial inputs (vs. input-less)
- 2. Support "fancier" random oracles (ideal cipher)
- 3. Which Linicrypt programs have security from standard assumptions (vs. random oracle)?
- 4. Better understanding of concrete (vs. asymptotic) bounds. E.g., "beyond birthday" security

Application areas (synthesis & lower bounds):

- 1. Block cipher modes, tweakable block ciphers
- 2. Authenticated encryption modes, MACs
- 3. Hash-based signatures
- 4. More garbled circuits
- 5. Memory-hard functions??

Thanks!