from circuits to RAM programs

1in malicious-2PC

Abstract: Secure 2-party computation (2PC) is becoming practical in
some domains. However, most approaches are limited by the fact
that the desired functionality must be represented as a boolean
circuit. In response, the random-access machine (RAM) model has
recently been investigated as a promising alternative to circuits.

In this talk, | will discuss some pitfalls of basing malicious-secure 2PC
on the RAM model rather than circuits. | will then describe two new
protocols for malicious-secure 2PC of RAM programs, whose
performance relative to the semi-honest model matches the state of
the art for circuit-based 2PC techniques. For malicious security with
statistical security parameter 2 ~°, our protocol without
preprocessing has overhead s compared to the semi-honest model;
our protocol with preprocessing has overhead ~ 25/ log T, where
Tis the running time of the RAM program.

B UNIVERSITY OF
CA

> Arash Afshar @ LGARY
> Zhangxiang Hu @ 0*99£!§Ea!‘?[]su
B UNIVERSITY OF

> Payman Mohassel @ &% CALGARY
| 2 Mike Rosulek @ 0'999:1,§S§‘;9[]8U

secure 2pcC

secure 2pcC

&

N A\\
<

secure 2pcC

secure 2pcC

“to securely evaluate f,
first express f as a boolean circuit,
then...”

“to securely evaluate f,
first express f as a boolean circuit,
then...”

“to securely evaluate f,
first express f as a boolean circuit,
then...”

“to securely evaluate f,
first express f as a boolean circuit,
then...”

stable marriage X

why we like (boolean) circuits

Garbled circuit technique [Yao86,BellareHoangRogaway12]

— —

why we like (boolean) circuits

Garbled circuit technique [Yao86,BellareHoangRogaway12]

why we like (boolean) circuits

Garbled circuit technique [Yao86,BellareHoangRogaway12]

Ap: true
Aj: false

e) 2
Bo: false Co: false
By: true C1: true

why we like (boolean) circuits

Garbled circuit technique [Yao086,BellareHoangRogaway12]

Ao: true false false |false

_ R false true |false

A1: false 7| true false|False
—_
true true | true
_
Cp: false

Bo: false

By: true C1: true

give “encrypted truth table” for each gate

why we like (boolean) circuits

Garbled circuit technique [Yao086,BellareHoangRogaway12]

Ap: true A1 Bo|Co
sE = A1 B1 |Gy
Aq: false - -1 40 Bo|Go
—
A B1|C1
—_—
Bo: false Co: false
By: true C1: true

give “encrypted truth table” for each gate

why we like (boolean) circuits

Garbled circuit technique [Yao086,BellareHoangRogaway12]

Ap: true Enca, 8y Ecog
- Encay 5, (Co
Aj: false S (CO)
—
T Encag, 5, (C1)
Bo: false Cp: false L= 7|
By : true Cy: true

give “encrypted truth table” for each gate

why we like (boolean) circuits

Garbled circuit technique [Yao086,BellareHoangRogaway12]

o o] Encay s, (Co)
—) 2
Co
B1

Informal security proof:
» Wire label leaks no information about logical value

» Receiver only learns one label for each wire (induction)

RAM programs

cpu

small internal state

RAM programs

read, addry

datay

cpu

small internal state

RAM programs

read, addry

datay

4

AN

read, addra
cpu

datag

2

AN

small internal state

RAM programs

cpu

small internal state

read, addrq
>
datag
ya
N
read, addrp
AN
4
datag
¢
write, addrs, datas
LN
4

ok

A

RAM programs

~

read, addry -
datag

read, addrp

AN

cpu

+

datag

write, addrs, datas

A 4

ok

A

Oblivious RAM (ORAM) = memory access pattern leaks nothing about
inputs/outputs/state [GoldreichOstrosvky96]

» Can make any RAM program oblivious, polylog overhead in runtime &
memory [ShiChanStefanovLi11,]

» Must still “touch” all of memory, in initialization phase

» Our results only need “metadata-obliviousness” (R vs W, address)

Semi_honest RAM—ZPC [GKKKMRV12]

Alice Bob

Semi-honest RAM—ZPC [GKKKMRV12]

Alice sty stg Bob

datain

<
«P
N
2
A}

cpu

semi-honest RAM-2PC wxvrviz

Alice st stg Bob

datain

sty / sty

memory access

W

ORAM = safe to let Bob handle all memory access

Semi-honest RAM—ZPC [GKKKMRV12]

Alice Bob

«D

cpu

Semi-honest RAM—ZPC [GKKKMRV12]

Alice sty stg Bob

memory[addr]

<
«P
N
2
A}

cpu

Semi-honest RAM—ZPC [GKKKMRV12]

Alice Bob

«D

cpu

Semi-honeSt RAM‘ZPC [GKKKMRV12]

Alice Bob

cpu

*st’
sty / sty

write, addr, data

W

memory[addr] := data

example: CPU wants to write

Semi-honest RAM—ZPC [GKKKMRV12]

Alice sty stg Bob

not used

<
«P
N
2
A}

cpu

malicious-security pitfalls

malicious-security pitfalls

St stg
read data
4
cpu

malicious 2pc

malicious-security pitfalls

junk stg
read data
4
cpu

malicious 2pc

malicious-security pitfalls

St stg
junk
4
cpu

malicious 2pc

use a MAC?

use a MAC?

SL'A StB

read data

This will work, but ...

i
[Ver?| [ver?| |ver?]

use a MAC?

SL'A StB

read data

This will work, but ...

i
[Ver?| [ver?| |ver?]

4

cpu

data"l 4

|Mac| |Mac| |Mac|

use a MAC"?

Sta stg

read data

| This will work, but ...
‘Ver?‘ ‘Ver?‘ ‘Ver?‘ !

» Crypto circuitry
@ inside garbled
8 2 circuit

cpu » Many inputs
(MAC tags &

data’ j st keys) to garbled
circuit

\Mac\ \Mac\ \Mac\

£ 4 £ 4 ~

a better idea. ..

State & memory information should be:
1. Kept private

2. Protected from tampering

cpu

a better idea. ..

State & memory information should be:

1. Kept private

2. Protected from tampering

cpu/2pc

a better idea. ..

State & memory information should be:
1. Kept private v

2. Protected from tampering v

cpu/2pc

a better idea. ..

State & memory information should be:
1. Kept private \/
2. Protected from tampering v

cpu/2pc

garbled state/memory

Key Idea

Directly reuse garbled values for state & memory!

overview

overview

Goals:
» malicious security

» no extra overhead inside garbled circuits

» efficiency matching state-of-the-art for circuit-based 2PC

overview

Goals:
» malicious security
> no extra overhead inside garbled circuits

» efficiency matching state-of-the-art for circuit-based 2PC

Results:
style cost technique
streaming s X semi-honest blind cut-and-choose,

forge-and-lose
online/offline ~ 2s/log T x semi-honest batched cut-and-choose,
LEGO

for security 2—°

T= ORAM running time

overview

Goals:
» malicious security
> no extra overhead inside garbled circuits

» efficiency matching state-of-the-art for circuit-based 2PC

Results:
style cost technique
streaming s X semi-honest blind cut-and-choose,

forge-and-lose
online/offline ~ 2s/log T x semi-honest batched cut-and-choose,
LEGO

for security 2—°
T= ORAM running time
Theme:

» Re-use wire labels between evaluations of garbled CPU circuit

reusing wire labels: overview

garbled CPU

reusing wire labels: overview

t—1 garbled CPU

state outl

state inl

ldata out

—) mem access

,l,data in

t garbled CPU

state out,

state inl

,l,data out

_) mem access

ldata in

t+1 garbled CPU

reusing wire labels: overview

t—1 garbled CPU

state

v

ldata out

—) mem access

ldata in

t garbled CPU

state out,

state inl

,l,data out

_) mem access

ldata in

t+1 garbled CPU

reusing wire labels: overview

t—1

t+1

garbled CPU
ldata out
- ————3 mem access
Jd ldata in
garbled CPU
ldata out
S ————— mem access
J ldata in
garbled CPU

reusing wire labels: overview

t—1 garbled CPU

ldata out
3 (write, addr)

state

ldata in

v

t garbled CPU

ldata out
—————3 (read, addr)

state

ldata in

h\ 4

t+1 garbled CPU

reusing wire labels: overview

t—1 garbled CPU

(write, addr)

state

v

,l,data i

t garbled CPU

data

,l,data oMt

(read, addr)

t+1 garbled CPU

reusing wire labels: overview

t—1

t+1

garbled CPU

state

ldata i

garbled CPU

v

,l,data oMt

state

garbled CPU

(write, addr)

data

(read, addr)

Quiz: isn’t this the same as
making a monolothic garbled
circuit for unrolled RAM
computation?

reusing wire labels: overview

t—1

t+1

garbled CPU

state

v

ldata i

garbled CPU

,l,data oMt

state

garbled CPU

(write, addr)

data

(read, addr)

Quiz: isn’t this the same as
making a monolothic garbled
circuit for unrolled RAM
computation?

> connections between
“data in/out”
determined at runtime!

> later inputs can depend
on prior outputs

reusing wire labels: overview

t—1
t
t+1

garbled CPU

state

,l,data i

garbled CPU

v

,l,data oMt

state

garbled CPU

(write, addr)

data

(read, addr)

Quiz: isn’t this the same as
making a monolothic garbled
circuit for unrolled RAM
computation?

> connections between
“data in/out”
determined at runtime!

> later inputs can depend
on prior outputs

Note: CPU need not encrypt
data!

how to do cut-and-choose?

generate many garbled circuits

lac| |ac| |ac| |ac| |oc| |ac] [ac| |ac| |ac] |ac]

how to do cut-and-choose?

open & check some fraction of them; abort if any are bad

v v v v
< @ [[« [@ EE©E [

how to do cut-and-choose?

evaluate remaining circuits; take majority output

how to do cut-and-choose?

what about in the RAM setting?

how to do cut-and-choose?

how to do cut-and-choose?

check circuit cannot share wire labels! (secrets revealed)

how to do cut-and-choose?

eval circuit must share wire labels!

SNEAN cc Al call oc | ool o RE3R o< RE3

how to do cut-and-choose?

can't predict check/eval when generating garbled circuits!

- i
t—l\ | [oc] [oc] B9 B E9 [oc] E [c]

DD RERRR @

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

#1 #H2 #3 #H4 #5 #6 #H7 #8 #9 #10
(eval) (check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

receiver secretly sets each thread to “check” or “eval”

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

#1 #H2 #3 #H4 #5 #6 #H7 #8 #9 #10
(eval) (check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

¢ [od) [d) [ed] [sq) [oq] [oe] [aq] [ac]

sender generates garbled circuits, reusing wire labels within each thread

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

(eval) (check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

t+1 GC GC

lac| |ac| |ac| |ac] |ac] |ac] [ac] [ac]

sender generates garbled circuits, reusing wire labels within each thread

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

(eval) (check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

t lac] [oc| |ac] |oc] [ac] |ac] [ac o]
Sy
t+2 ac| |ac] [ac] |ac] |ac] |ac] [ac

t

sender generates garbled circuits, reusing wire labels within each thread

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

#1 #H2 #3 #H4 #H7 #8 #9 #10
(eval) check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

%%\ H H \% “
o Lo o %

+2 o) Moc\ s [\ ! “

t

check-threads: receiver gets only enough to check

our approach

Blind cut-and-choose [KamaraMohasselRiva12,KreuterShelatShen12,Mood+14]

#1 #H2 #3 #H4 #H7 #8 #9 #10
(eval) check) (eval) (eval) (check) (check) (check) (eval) (check) (eval)

%%\ H H \% “
EiIEEEY

2 o] [Mcc\ < [\ ! “

t

eval-threads: receiver gets only enough to eval on sender’s input

overview of protocol #1

Cost of protocol = (# of threads) X (cost of semi-honest)
» with traditional cut-and-choose: ~ 3sthreads for security 2—°
» with [Lindell13] cheating-recovery trick: only s threads

» we show how to perform [Lindell13] trick only once at the end;
communication independent of RAM running time!

overview of protocol #1

Cost of protocol = (# of threads) X (cost of semi-honest)
» with traditional cut-and-choose: ~ 3sthreads for security 2—°
» with [Lindell13] cheating-recovery trick: only s threads

» we show how to perform [Lindell13] trick only once at the end;
communication independent of RAM running time!

Preprocessing, streaming?
» need to remember wire labels of previous circuits!

» can't pre-process garbled circuits (wire labels have runtime
dependence)

greprocessing:
atched cut-and-choose

Want to do 2PC of same circuit N times?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

Ereprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

generate a lot of garbled circuits

Ereprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

oMooooOdoodooO o0&
oo ¥ 000 ®OO0O0OOO0
FooFMOoONEOoOOOONEOEOO®OO

open and check some fraction of them

Ereprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

pick a random “bucket” of available circuits and evaluate them

Ereprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

pick a random “bucket” of available circuits and evaluate them

Ereprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

) e 0

pick a random “bucket” of available circuits and evaluate them

b

reprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

ooodd goood obodgdo

pick a random “bucket” of available circuits and evaluate them

Ereprocessing:
atched cut-and-choose

Want to do 2PC of same circuit Ntimes?

[HuangKatzKolesnikovKumaresanMalozemoff14,LindellRiva14]

oo oOMOoOoOEOoOO 00 &
oMo ¥ 00000000
FooFMOEOOODOEEOEOO® OO0

ooooo goood oogoo . goodd

——
<s

buckets of size O(s/ log N) give security 2~°

preprocessing for RAM-2PC?

Pros:
» RAM CPU circuit evaluated over and over!

» Batched cut-and-choose would reduce number of garbled circuits
needed (in online phase)

» Pre-processing already inherent for ORAM

preprocessing for RAM-2PC?

Pros:
» RAM CPU circuit evaluated over and over!

» Batched cut-and-choose would reduce number of garbled circuits
needed (in online phase)

» Pre-processing already inherent for ORAM

Cons:
» Wire-label dependence determined at runtime!

» Cannot re-use wire labels if all circuits garbled beforehand

preprocessing for RAM-2PC?

Pros:
» RAM CPU circuit evaluated over and over!

» Batched cut-and-choose would reduce number of garbled circuits
needed (in online phase)

> Pre-processing already inherent for ORAM

Cons:
» Wire-label dependence determined at runtime!

» Cannot re-use wire labels if all circuits garbled beforehand

If only we had a way to “connect wires on the fly” in
existing garbled circuits!

the LEGO approach!

eVERYTHING /¢

AWffgngi

(2
(AR

Garble individual gates and connect them later
[NielsenOrlandi09,FrederiksenJakobsenNielsenNordholdOrlandi13]

> We extend the technique to circuits

» Some careful modifications are necessary

our “LEGO RAM” approach

({350)

xor-homomorphic commitment

xor-homomorphic commitment

xor-homomorphic commitment

xor-homomorphic commitment

xor-homomorphic commitment

‘Al iBL iC

Yopen B®d C

garbled circuit, wire labels

Each wire has a secret “parity bit”

- - encodes false
- - - encodes true

garbled circuit, wire labels

Each wire has a secret “parity bit”

_- encodes false
"~ encodes true

soldering

connect wires of garbled circuits “on the fly”

commit: A1
eael
10 :

¥

soldering

connect wires of garbled circuits “on the fly”

commit: A1
eael
10 :

L 2

soldering

connect wires of garbled circuits “on the fly”

C o open:

xor = 1: must Flip select bits

soldering

connect wires of garbled circuits “on the fly”

open:

xor = 1: must Flip select bits

Ag = Ay D By

v

soldering

connect wires of garbled circuits “on the fly”

open:

v

xor = 1: must Flip select bits

Ag = Ay D By

A1 =A@ By

soldering

connect wires of garbled circuits “on the fly”

1AL xor =1: must flip select bits

Ag = A D B1

L 2

soldering

connect wires of garbled circuits “on the fly”

1AL xor =1: must flip select bits

Ag = A D B1

L 2

soldering

connect wires of garbled circuits “on the fly”

1AL xor =1: must flip select bits

Ag = A D B1

L 2

putting it all together

putting it all together

putting it all together

oo
OO

oo oo

O OOOO0O0

putting it all together

putting it all together

solder input/output wires together by opening commitments

putting it all together

(evaluate by taking majority wire labels of each computation path)

putting it all together

solder input wires from previous garbled circuits

overview of protocol #2

Two phase protocol:

» offline phase = circuit generation & batch cut-and-choose

» online phase = soldering & evaluation

overview of protocol #2

Two phase protocol:
» offline phase = circuit generation & batch cut-and-choose

» online phase = soldering & evaluation

Online cost of protocol = (bucket size) X (cost of semi-honest)
> bucket size = O(s/ log T) where T = RAM running time

» concretely, for s = 40:

» T = 5,000 = bucket size =7
» T= 500,000 = bucket size = 5

overview of protocol #2

Two phase protocol:
» offline phase = circuit generation & batch cut-and-choose

» online phase = soldering & evaluation

Online cost of protocol = (bucket size) X (cost of semi-honest)
> bucket size = O(s/ log T) where T = RAM running time

» concretely, for s = 40:

» T = 5,000 = bucket size =7
» T= 500,000 = bucket size = 5

Other cool features:
» oblivious RAM = (original RAM) + (ORAM construction steps)

> pre-process different circuits separately: smaller bucket size for
(common) ORAM steps

lies and omissions

Lots of other standard tools from circuit-2PC:
> Input consistency checks
» Output authenticity checks
> Preventing selective aborts

» Cheating recovery techniques

RAM stuff | didn’t mention:

v

Elephant in the room: ORAM initialization!
Getting inputs into the RAM

v

ORAM needs randomness

v

v

Safe to run many RAM invocations with same memory

summary

Goals:
» malicious security
> no extra overhead inside garbled circuits

» efficiency matching state-of-the-art for circuit-based 2PC

Results:
style cost technique
streaming s X semi-honest blind cut-and-choose,

forge-and-lose
online/offline ~ 2s/log T x semi-honest batched cut-and-choose,
LEGO

for security 2—°
T=ORAM running time
Theme:

> Leverage existing security properties of wire labels in garbled circuits!

Mike Rosulek: rosulekm@eecs.oregonstate.edu

From Circuits to RAM Programs in Malicious-2PC
Arash Afshar, Zhangxiang Hu, Payman Mohassel, Mike Rosulek
appearing on eprint soon

