The State Of The Art In Program Obfuscation

Mike Rosulek rosulek@cs.uiuc.edu

September 14, 2006 UIUC CS Theory Seminar

Outline

Introduction

Motivation
Defining Obfuscation

Negative Results

On the (Im)possibility of Obfuscating Programs (B+01)

Positive Results

Positive Results & Techniques in Obfuscation (LPS04) On Obfuscating Point Functions (W05)

Additional Topics

Obfuscatability-Preserving Reductions
Obfuscations In Context

Alice is a new CS professor.

Alice is a new CS professor.

▶ Discovers $O(n \log n)$ algorithm for integer factorization.

Alice is a new CS professor.

- ▶ Discovers $O(n \log n)$ algorithm for integer factorization.
- ► Sends factor.exe to faculty mailing list, demands immediate tenure.

Alice is a new CS professor.

- ▶ Discovers $O(n \log n)$ algorithm for integer factorization.
- Sends factor.exe to faculty mailing list, demands immediate tenure.
- Can dishonest faculty now steal her algorithm?

Alice is a new CS professor.

- ▶ Discovers $O(n \log n)$ algorithm for integer factorization.
- Sends factor.exe to faculty mailing list, demands immediate tenure.
- Can dishonest faculty now steal her algorithm?

Ideally: Only reveal input-output functionality (oracle access).

Reality: Must send an actual implementation of the algorithm.

When is a security definition the "right" one?

When is a security definition the "right" one?

Cryptographic world ←⇒ Ideal world

When is a security definition the "right" one?

Anything an adversary can do here ...

Cryptographic world ←⇒ Ideal world

When is a security definition the "right" one?

Anything an adversary can do here ...

... could have been done here, too!

Cryptographic world

Ideal world

When is a security definition the "right" one?

Anything an adversary can do here ...

... could have been done here, too!

Cryptographic world

ldeal world

Encryption scheme

Secure channel

When is a security definition the "right" one?

Anything an adversary ... could have been can do here ... done here, too!

 Cryptographic world
 ←⇒
 Ideal world

 Encryption scheme
 ←⇒
 Secure channel

 Zero-knowledge proof
 ←⇒
 Trustworthy NP oracle

When is a security definition the "right" one?

Anything an adversary ... could have been can do here ... done here, too!

Notation

$$\epsilon$$
-close: For $f, g, \epsilon : \mathbb{N} \to [0, 1]$, define

$$f(n) \approx_{\epsilon} g(n) \iff |f(n) - g(n)| \leq \epsilon(n)$$

Notation

 $\epsilon\text{-close:}$ For $f,g,\epsilon:\mathbb{N} \to [0,1]$, define

$$f(n) \approx_{\epsilon} g(n) \iff |f(n) - g(n)| \leq \epsilon(n)$$

Negligibly close: Write $f(n) \approx g(n)$ when $\epsilon(n) = n^{-\omega(1)}$.

Definition: \mathcal{O} is an *obfuscator* for class \mathcal{F} if:

Definition: \mathcal{O} is an *obfuscator* for class \mathcal{F} if:

▶ Functionality: $\forall F \in \mathcal{F}$, $\mathcal{O}(F)$ and F compute the same function, with probability ≈ 1 over randomness of \mathcal{O} .

Definition: \mathcal{O} is an *obfuscator* for class \mathcal{F} if:

- ▶ Functionality: $\forall F \in \mathcal{F}$, $\mathcal{O}(F)$ and F compute the same function, with probability ≈ 1 over randomness of \mathcal{O} .
- ▶ **Efficiency**: $\mathcal{O}(F)$ can be computed in poly(|F|) time.

Definition: \mathcal{O} is an *obfuscator* for class \mathcal{F} if:

- ▶ Functionality: $\forall F \in \mathcal{F}$, $\mathcal{O}(F)$ and F compute the same function, with probability ≈ 1 over randomness of \mathcal{O} .
- ▶ **Efficiency**: $\mathcal{O}(F)$ can be computed in poly(|F|) time.
- ▶ Virtual Black-Box: $\forall A \exists S \ \forall F \in \mathcal{F}$,

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

Definition: \mathcal{O} is an *obfuscator* for class \mathcal{F} if:

- ▶ Functionality: $\forall F \in \mathcal{F}$, $\mathcal{O}(F)$ and F compute the same function, with probability ≈ 1 over randomness of \mathcal{O} .
- ▶ **Efficiency**: $\mathcal{O}(F)$ can be computed in poly(|F|) time.
- ▶ Virtual Black-Box: $\forall A \exists S \ \forall F \in \mathcal{F}$,

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

▶ **Polynomial Slowdown**: Running times of $\mathcal{O}(F)$ and F within poly factor (if encoded as TMs).

Learnable Functions

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

What if \mathcal{F} is learnable via oracle queries?

Learnable Functions

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

What if \mathcal{F} is learnable via oracle queries?

Simulator S:

- Query oracle to learn circuit for F.
- ▶ Run obfuscator to get $\mathcal{O}(F)$.
- ▶ Run $A(\mathcal{O}(F))$; perfect simulation.

Learnable Functions

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

What if \mathcal{F} is learnable via oracle queries?

Simulator S:

- ▶ Query oracle to learn circuit for *F*.
- ▶ Run obfuscator to get $\mathcal{O}(F)$.
- ▶ Run $A(\mathcal{O}(F))$; perfect simulation.

Call \mathcal{F} trivially obfuscatable.

On the (Im)possibility of Obfuscating Programs [B+01]

Main Result: Universal obfuscation impossible!

On the (Im)possibility of Obfuscating Programs [B+01]

Main Result: Universal obfuscation impossible!

Construct class \mathcal{F} and predicate $P: \mathcal{F} \to \{0,1\}$ such that:

On the (Im)possibility of Obfuscating Programs [B+01]

Main Result: Universal obfuscation impossible!

Construct class \mathcal{F} and predicate $P: \mathcal{F} \to \{0,1\}$ such that:

- ▶ Given any TM implementing $F \in \mathcal{F}$, easy to compute P(F).
- ▶ Given oracle access to random $F \in \mathcal{F}$, hard to compute P(F).

For $\alpha, \beta \in \{0, 1\}^n$ and $b \in \{0, 1\}$, define:

$$A_{\alpha,\beta}(x) = \begin{cases} \beta & \text{if } x = \alpha \\ 0^n & \text{else} \end{cases}$$

For $\alpha, \beta \in \{0, 1\}^n$ and $b \in \{0, 1\}$, define:

$$A_{\alpha,\beta}(x) = egin{cases} eta & ext{if } x = lpha \ 0^n & ext{else} \ \ B_{lpha,eta,b}(M) = egin{cases} b & ext{if } M(lpha) = eta & ext{(interpret } M ext{ as TM)} \ 0 & ext{else} \end{cases}$$

For $\alpha, \beta \in \{0, 1\}^n$ and $b \in \{0, 1\}$, define:

$$egin{aligned} A_{lpha,eta}(x) &= egin{cases} eta & ext{if } x = lpha \ 0^n & ext{else} \ \ B_{lpha,eta,b}(M) &= egin{cases} b & ext{if } M(lpha) = eta & ext{(interpret } M ext{ as TM)} \ 0 & ext{else} \ \ F_{lpha,eta,b}(i,x) &= egin{cases} A_{lpha,eta}(x) & ext{if } i = 1 \ B_{lpha,eta,b}(x) & ext{if } i = 2 \ \end{cases} \end{aligned}$$

For $\alpha, \beta \in \{0, 1\}^n$ and $b \in \{0, 1\}$, define:

$$A_{lpha,eta}(x) = egin{cases} eta & ext{if } x = lpha \ 0^n & ext{else} \end{cases}$$
 $B_{lpha,eta,b}(M) = egin{cases} b & ext{if } M(lpha) = eta & ext{(interpret } M ext{ as TM)} \ 0 & ext{else} \end{cases}$ $F_{lpha,eta,b}(i,x) = egin{cases} A_{lpha,eta}(x) & ext{if } i = 1 \ B_{lpha,eta,b}(x) & ext{if } i = 2 \end{cases}$

Use $\mathcal{F} = \{F_{\alpha,\beta,b}\}_{\alpha,\beta,b}$, and predicate $P(F_{\alpha,\beta,b}) = b$.

To compute $P(F_{\alpha,\beta,b}) = b$ given M that computes $F_{\alpha,\beta,b}$:

1. From M, construct $M_1(\cdot) \equiv M(1, \cdot) \equiv A_{\alpha,\beta}(\cdot)$.

To compute $P(F_{\alpha,\beta,b}) = b$ given M that computes $F_{\alpha,\beta,b}$:

- 1. From M, construct $M_1(\cdot) \equiv M(1, \cdot) \equiv A_{\alpha,\beta}(\cdot)$.
- 2. From M, construct $M_2(\cdot) \equiv M(2, \cdot) \equiv B_{\alpha,\beta,b}(\cdot)$.

To compute $P(F_{\alpha,\beta,b}) = b$ given M that computes $F_{\alpha,\beta,b}$:

- 1. From M, construct $M_1(\cdot) \equiv M(1, \cdot) \equiv A_{\alpha,\beta}(\cdot)$.
- 2. From M, construct $M_2(\cdot) \equiv M(2, \cdot) \equiv B_{\alpha,\beta,b}(\cdot)$.
- 3. Run $M_2(M_1) = b$.

To compute $P(F_{\alpha,\beta,b}) = b$ given M that computes $F_{\alpha,\beta,b}$:

- 1. From M, construct $M_1(\cdot) \equiv M(1, \cdot) \equiv A_{\alpha,\beta}(\cdot)$.
- 2. From M, construct $M_2(\cdot) \equiv M(2, \cdot) \equiv B_{\alpha,\beta,b}(\cdot)$.
- 3. Run $M_2(M_1) = b$.

Can show that for all polytime S,

$$\Pr_{\alpha,\beta,b}[S^{F_{\alpha,\beta,b}}()=b]\approx 1/2$$

To compute $P(F_{\alpha,\beta,b}) = b$ given M that computes $F_{\alpha,\beta,b}$:

- 1. From M, construct $M_1(\cdot) \equiv M(1, \cdot) \equiv A_{\alpha,\beta}(\cdot)$.
- 2. From M, construct $M_2(\cdot) \equiv M(2, \cdot) \equiv B_{\alpha,\beta,b}(\cdot)$.
- 3. Run $M_2(M_1) = b$.

Can show that for all polytime S,

$$\Pr_{\alpha,\beta,b}[S^{F_{\alpha,\beta,b}}()=b]\approx 1/2$$

Conclusion: \mathcal{F} unobfuscatable.

Nontrivial Positive Results

Known only for point functions:

$$\delta_x(w) = \begin{cases} 1 & \text{if } w = x \\ 0 & \text{otherwise} \end{cases}$$

Nontrivial Positive Results

Known only for point functions:

$$\delta_x(w) = \begin{cases} 1 & \text{if } w = x \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta = \{\delta_x\}_{x \in \{0,1\}^*}$$

Obfuscator for Δ (in random oracle model):

Construction: Given random oracle $R: \{0,1\}^n \to \{0,1\}^{3n}$, $x \in \{0,1\}^n$, obfuscate δ_x by:

Obfuscator for Δ (in random oracle model):

Construction: Given random oracle $R: \{0,1\}^n \to \{0,1\}^{3n}$, $x \in \{0,1\}^n$, obfuscate δ_x by:

▶ On input w, if R(w) = R(x), output 1, else output 0.

Obfuscator for Δ (in random oracle model):

Construction: Given random oracle $R: \{0,1\}^n \to \{0,1\}^{3n}$, $x \in \{0,1\}^n$, obfuscate δ_x by:

▶ On input w, if R(w) = R(x), output 1, else output 0.

Blue values "hardwired" into this program.

Obfuscator for Δ (in random oracle model):

Construction: Given random oracle $R: \{0,1\}^n \to \{0,1\}^{3n}$, $x \in \{0,1\}^n$, obfuscate δ_x by:

▶ On input w, if R(w) = R(x), output 1, else output 0.

Blue values "hardwired" into this program.

Obfuscator $\mathcal{O}: \delta_x \mapsto R(x)$

Obfuscator for Δ (in random oracle model):

Construction: Given random oracle $R: \{0,1\}^{2n} \to \{0,1\}^{3n}$, $x \in \{0,1\}^n$, obfuscate δ_x by:

▶ On input w, if R(ws) = R(xs), output 1, else output 0.

Blue values "hardwired" into this program.

Obfuscator $\mathcal{O}: \delta_x \mapsto (s, R(xs))$ for random $s \in \{0, 1\}^n$.

Obfuscator for Δ (in random oracle model):

Construction: Given random oracle $R: \{0,1\}^{2n} \to \{0,1\}^{3n}$, $x \in \{0,1\}^n$, obfuscate δ_x by:

▶ On input w, if R(ws) = R(xs), output 1, else output 0.

Blue values "hardwired" into this program.

Obfuscator $\mathcal{O}: \delta_x \mapsto (s, R(xs))$ for random $s \in \{0, 1\}^n$.

Functionality, polynomial slowdown, efficiency: straight-forward

Virtual black-box property

$$\forall A \exists S \ \forall F \in \mathcal{F}, \ \Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

Virtual black-box property for random oracle model:

$$\forall A \; \exists S \; \forall F \in \mathcal{F}, \; \Pr_{R}[A^{R}(\mathcal{O}^{R}(F)) = 1] \approx \Pr[S^{F}() = 1]$$

Virtual black-box property for random oracle model:

$$\forall A \exists S \ \forall F \in \mathcal{F}, \ \Pr_{R}[A^{R}(\mathcal{O}^{R}(F)) = 1] \approx \Pr[S^{F}() = 1]$$

S could run A with any (contrived) oracle.

Virtual black-box property for random oracle model:

$$\forall A \exists S \ \forall F \in \mathcal{F}, \ \Pr_{R}[A^{R}(\mathcal{O}^{R}(F)) = 1] \approx \Pr[S^{F}() = 1]$$

S could run A with any (contrived) oracle.

Called programmable random oracle model. Not very realistic!

On Obfuscating Point Functions [W05]

Can replace random oracle with hash function, if we use:

- ▶ Slightly nonstandard crypto assumption.
- Slightly weaker virtual black-box property.
- Nonuniform simulator.

On Obfuscating Point Functions [W05]

Can replace random oracle with hash function, if we use:

- Slightly nonstandard crypto assumption. (necessary)
- Slightly weaker virtual black-box property. (necessary)
- Nonuniform simulator. (necessary)

Cryptographic Assumption

Definition:

 π is a one-way permutation if: $\forall A$ of size s = poly(n),

$$\Pr_{x \in \{0,1\}^n} [A(\pi(x)) = x] \approx 0 \quad (\leq n^{-\omega(1)})$$

Cryptographic Assumption

Definition:

 π is a strong one-way permutation if: $\exists c \ \forall A \ \text{of size } s = \text{poly}(n)$,

$$\Pr_{x \in \{0,1\}^n} [A(\pi(x)) = x] \le \frac{s^c}{2^n}$$

Strongest hardness conceivable (within poly factors).

Weakening the Virtual Black-Box Property

Virtual Black-Box: $\forall A \exists S \ \forall F \in \mathcal{F}$,

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

Weakening the Virtual Black-Box Property

Weak Virtual Black-Box: $\forall A, \epsilon(\cdot) = 1/\text{poly}(\cdot) \exists S \ \forall F \in \mathcal{F}$,

$$\Pr[A(\mathcal{O}(F)) = 1] \approx_{\epsilon} \Pr[S^F() = 1]$$

Simulator depends on ϵ !

Hash Construction

Replace random oracle with hash of $x \in \{0,1\}^n$:

$$h(x; r_1, \ldots, r_{3n}) = \left(\langle \pi(x), r_1 \rangle, \langle \pi^2(x), r_2 \rangle, \cdots, \langle \pi^{3n}(x), r_{3n} \rangle\right)$$

Hash Construction

Replace random oracle with hash of $x \in \{0,1\}^n$:

$$h(x; r_1, \ldots, r_{3n}) = \left(\langle \pi(x), r_1 \rangle, \langle \pi^2(x), r_2 \rangle, \cdots, \langle \pi^{3n}(x), r_{3n} \rangle\right)$$

Obfuscate δ_x by:

▶ On input w, if $h(w; \vec{r}) = h(x; \vec{r})$, output 1, else output 0.

Obfuscator $\mathcal{O}: \delta_{\mathsf{x}} \mapsto (\vec{r}, h(\mathsf{x}; \vec{r}))$ for random \vec{r}

Hash Construction

Replace random oracle with hash of $x \in \{0,1\}^n$:

$$h(x; r_1, \ldots, r_{3n}) = \left(\langle \pi(x), r_1 \rangle, \langle \pi^2(x), r_2 \rangle, \cdots, \langle \pi^{3n}(x), r_{3n} \rangle\right)$$

Obfuscate δ_x by:

▶ On input w, if $h(w; \vec{r}) = h(x; \vec{r})$, output 1, else output 0.

Obfuscator $\mathcal{O}: \delta_{\mathsf{x}} \mapsto (\vec{r}, h(\mathsf{x}; \vec{r}))$ for random \vec{r}

Functionality, Efficiency, Polynomial-slowdown: straight-forward.

Given adversary A and $\epsilon=1/\mathrm{poly}$, construct simulator S to get $\epsilon\text{-close}$.

Given adversary A and $\epsilon=1/\mathrm{poly}$, construct simulator S to get $\epsilon\text{-close}$.

Idea: Simulate $\mathcal{O}(\delta_x) = (\vec{r}, h(x; \vec{r}))$ by random bits (\mathcal{U}) .

Given adversary A and $\epsilon=1/\mathrm{poly}$, construct simulator S to get $\epsilon\text{-close}$.

Idea: Simulate $\mathcal{O}(\delta_x) = (\vec{r}, h(x; \vec{r}))$ by random bits (\mathcal{U}) .

Main Lemma: $\forall A, \epsilon$, define:

$$L_{A,\epsilon} = \left\{ x \in \{0,1\}^n \,\middle|\, \, \mathsf{Pr}[A(\mathcal{O}(\delta_x)) = 1] \not\approx_{\epsilon} \mathsf{Pr}[A(\mathcal{U}) = 1] \right\}$$

Given adversary A and $\epsilon=1/\mathrm{poly}$, construct simulator S to get $\epsilon\text{-close}$.

Idea: Simulate $\mathcal{O}(\delta_x) = (\vec{r}, h(x; \vec{r}))$ by random bits (\mathcal{U}) .

Main Lemma: $\forall A, \epsilon$, define:

$$L_{A,\epsilon} = \left\{ x \in \{0,1\}^n \, \middle| \, \operatorname{Pr}[A(\mathcal{O}(\delta_x)) = 1] \not\approx_{\epsilon} \operatorname{Pr}[A(\mathcal{U}) = 1] \right\}$$

Then $|L_{A,\epsilon}| \leq \operatorname{poly}(n,1/\epsilon)$.

Proof: Reduce to strong one-wayness of π .

Weak Virtual Black-Box Property (simulator)

Given A and ϵ , simulate $A(\mathcal{O}(\delta_x))$ using oracle access to δ_x :

- 1. For each $y \in L_{A,\epsilon}$: (hardwired; only poly many)
- 2. Query oracle: If $\delta_x(y) = 1$, then run $A(\mathcal{O}(\delta_y))$.
- 3. Otherwise, run $A(\mathcal{U})$.

Weak Virtual Black-Box Property (simulator)

Given A and ϵ , simulate $A(\mathcal{O}(\delta_x))$ using oracle access to δ_x :

- 1. For each $y \in L_{A,\epsilon}$: (hardwired; only poly many)
- 2. Query oracle: If $\delta_x(y) = 1$, then run $A(\mathcal{O}(\delta_y))$.
- 3. Otherwise, run $A(\mathcal{U})$.

Analysis:

Discover x? Can give perfect simulation $A(\mathcal{O}(\delta_x))$.

Weak Virtual Black-Box Property (simulator)

Given A and ϵ , simulate $A(\mathcal{O}(\delta_x))$ using oracle access to δ_x :

- 1. For each $y \in L_{A,\epsilon}$: (hardwired; only poly many)
- 2. Query oracle: If $\delta_x(y) = 1$, then run $A(\mathcal{O}(\delta_y))$.
- 3. Otherwise, run $A(\mathcal{U})$.

Analysis:

Discover x? Can give perfect simulation $A(\mathcal{O}(\delta_x))$.

Otherwise $x \notin L_{A,\epsilon}$, so $A(\mathcal{U})$ gives ϵ -close simulation.

Extensions of Positive Results:

Both positive results extend to point functions with output:

$$\delta_{x,y}(w) = \begin{cases} y & \text{if } w = x \\ \bot & \text{otherwise} \end{cases}$$

Obfuscatability-Preserving Reductions

[LPS04] define a reduction \preceq such that if $\mathcal{F} \preceq \mathcal{G}$ and $\mathcal{G} \preceq \mathcal{F}$, then

 \mathcal{F} obfuscatable $\iff \mathcal{G}$ obfuscatable

Obfuscatability-Preserving Reductions

[LPS04] define a reduction \preceq such that if $\mathcal{F} \preceq \mathcal{G}$ and $\mathcal{G} \preceq \mathcal{F}$, then

 ${\mathcal F}$ obfuscatable $\iff {\mathcal G}$ obfuscatable

Open Problem: Sharper obfu-preserving reductions.

On the Impossibility of Obfuscation w/ Aux. Input [GK05]

Definition concerns obfuscated programs *in isolation*. Does security hold when adversary has other information?

$$\forall A \; \exists S \; \forall F \in \mathcal{F}$$
,

$$\Pr[A(\mathcal{O}(F)) = 1] \approx \Pr[S^F() = 1]$$

On the Impossibility of Obfuscation w/ Aux. Input [GK05]

Definition concerns obfuscated programs *in isolation*. Does security hold when adversary has other information?

$$\forall A \exists S \ \forall F \in \mathcal{F}, z \in \{0,1\}^{\text{poly}},$$

$$\Pr[A(\mathcal{O}(F), \mathbf{z}) = 1] \approx \Pr[S^F(\mathbf{z}) = 1]$$

[GK05] gives (conditional) impossibility results for several classes of functions.

On the Impossibility of Obfuscation w/ Aux. Input [GK05]

Definition concerns obfuscated programs *in isolation*. Does security hold when adversary has other information?

$$\forall A \exists S \ \forall F \in \mathcal{F}, z \in \{0,1\}^{\text{poly}},$$

$$\Pr[A(\mathcal{O}(F), \mathbf{z}) = 1] \approx \Pr[S^F(\mathbf{z}) = 1]$$

[GK05] gives (conditional) impossibility results for several classes of functions.

Open Problem: Any nontrivial obfuscations under this definition?

Does security hold in presence of other obfuscated programs?

Does security hold in presence of other obfuscated programs?

▶ Obfuscations of [LPS04] have self-composable security:

$$\text{Pr}[\textit{A}(\mathcal{O}(\delta_{\textit{x}_1}),\dots,\mathcal{O}(\delta_{\textit{x}_m})) = 1] \approx \text{Pr}[\textit{S}^{\delta_{\textit{x}_1},\dots,\delta_{\textit{x}_m}}() = 1]$$

Does security hold in presence of other obfuscated programs?

▶ Obfuscations of [LPS04] have *self-composable security*:

$$\Pr[\textit{A}(\mathcal{O}(\delta_{\textit{x}_1}),\ldots,\mathcal{O}(\delta_{\textit{x}_m})) = 1] \approx \Pr[\textit{S}^{\delta_{\textit{x}_1},\ldots,\delta_{\textit{x}_m}}() = 1]$$

Obfuscations of [W05] not known to self-compose.

Does security hold in presence of other obfuscated programs?

▶ Obfuscations of [LPS04] have self-composable security:

$$\Pr[\textit{A}(\mathcal{O}(\delta_{\textit{x}_1}),\dots,\mathcal{O}(\delta_{\textit{x}_m})) = 1] \approx \Pr[\textit{S}^{\delta_{\textit{x}_1},\dots,\delta_{\textit{x}_m}}() = 1]$$

- Obfuscations of [W05] not known to self-compose.
- All known impossibility results involve composing several obfuscations.

Does security hold in presence of other obfuscated programs?

▶ Obfuscations of [LPS04] have self-composable security:

$$\Pr[\textit{A}(\mathcal{O}(\delta_{\textit{x}_1}),\dots,\mathcal{O}(\delta_{\textit{x}_m})) = 1] \approx \Pr[\textit{S}^{\delta_{\textit{x}_1},\dots,\delta_{\textit{x}_m}}() = 1]$$

- ▶ Obfuscations of [W05] not known to self-compose.
- ► All known *impossibility* results involve composing several obfuscations.

Open Problem: Find nontrivial obfuscations with self-composable security.

Any questions?

Thank you!