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Motivating Example

Alice is a new CS professor.

I Discovers O(n log n) algorithm for integer factorization.

I Sends factor.exe to faculty mailing list, demands immediate
tenure.

I Can dishonest faculty now steal her algorithm?

Ideally: Only reveal input-output functionality (oracle access).
Reality: Must send an actual implementation of the algorithm.
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Simulation-based Definitions in Cryptography

When is a security definition the “right” one?

Anything an adversary ... could have been
can do here ... done here, too!

Cryptographic world ⇐⇒ Ideal world
Encryption scheme ⇐⇒ Secure channel

Zero-knowledge proof ⇐⇒ Trustworthy NP oracle
An obfuscation of f ⇐⇒ Oracle access to f
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Notation

ε-close: For f , g , ε : N → [0, 1], define

f (n) ≈ε g(n) ⇐⇒
∣∣f (n)− g(n)

∣∣ ≤ ε(n)

Negligibly close: Write f (n) ≈ g(n) when ε(n) = n−ω(1).
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Defining Obfuscation

Definition: O is an obfuscator for class F if:

I Functionality: ∀F ∈ F , O(F ) and F compute the same
function, with probability ≈ 1 over randomness of O.

I Efficiency: O(F ) can be computed in poly(|F |) time.

I Virtual Black-Box: ∀A ∃S ∀F ∈ F ,

Pr[A(O(F )) = 1] ≈ Pr[SF () = 1]

I Polynomial Slowdown: Running times of O(F ) and F within
poly factor (if encoded as TMs).
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Learnable Functions

Pr[A(O(F )) = 1] ≈ Pr[SF () = 1]

What if F is learnable via oracle queries?

Simulator S :

I Query oracle to learn circuit for F .

I Run obfuscator to get O(F ).

I Run A(O(F )); perfect simulation.

Call F trivially obfuscatable.
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On the (Im)possibility of Obfuscating Programs [B+01]

Main Result: Universal obfuscation impossible!

Construct class F and predicate P : F → {0, 1} such that:

I Given any TM implementing F ∈ F , easy to compute P(F ).

I Given oracle access to random F ∈ F , hard to compute P(F ).
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On the (Im)possibility of Obfuscating Programs (B+01)

Unobfuscatable Class

For α, β ∈ {0, 1}n and b ∈ {0, 1}, define:

Aα,β(x) =

{
β if x = α

0n else

Bα,β,b(M) =

{
b if M(α) = β (interpret M as TM)

0 else

Fα,β,b(i , x) =

{
Aα,β(x) if i = 1

Bα,β,b(x) if i = 2

Use F = {Fα,β,b}α,β,b, and predicate P(Fα,β,b) = b.
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On the (Im)possibility of Obfuscating Programs (B+01)

Unobfuscatable Class (continued)

To compute P(Fα,β,b) = b given M that computes Fα,β,b:

1. From M, construct M1(·) ≡ M(1, ·) ≡ Aα,β(·).

2. From M, construct M2(·) ≡ M(2, ·) ≡ Bα,β,b(·).
3. Run M2(M1) = b.

Can show that for all polytime S ,

Pr
α,β,b

[SFα,β,b() = b] ≈ 1/2

Conclusion: F unobfuscatable.
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Positive Results & Techniques in Obfuscation (LPS04)
On Obfuscating Point Functions (W05)

Nontrivial Positive Results

Known only for point functions:

δx(w) =

{
1 if w = x

0 otherwise

∆ = {δx}x∈{0,1}∗
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Positive Results & Techniques in Obfuscation [LPS04]

Obfuscator for ∆ (in random oracle model):

Construction: Given random oracle R : {0, 1}n → {0, 1}3n,
x ∈ {0, 1}n, obfuscate δx by:

I On input w , if R(w) = R(x), output 1, else output 0.

Blue values “hardwired” into this program.

Obfuscator

Functionality, polynomial slowdown, efficiency: straight-forward
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Positive Results & Techniques in Obfuscation (LPS04)
On Obfuscating Point Functions (W05)

Virtual Black-Box

Virtual black-box property

for random oracle model:

∀A ∃S ∀F ∈ F , Pr[A(O(F )) = 1] ≈ Pr[SF () = 1]

S could run A with any (contrived) oracle.

Called programmable random oracle model. Not very realistic!
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On Obfuscating Point Functions [W05]

Can replace random oracle with hash function, if we use:

I Slightly nonstandard crypto assumption.

(necessary)

I Slightly weaker virtual black-box property.

(necessary)

I Nonuniform simulator.

(necessary)
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Cryptographic Assumption

Definition:
π is a

strong

one-way permutation if:

∃c

∀A of size s = poly(n),

Pr
x∈{0,1}n

[A(π(x)) = x ] ≈ 0 (≤ n−ω(1))

Strongest hardness conceivable (within poly factors).
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Cryptographic Assumption

Definition:
π is a strong one-way permutation if: ∃c ∀A of size s = poly(n),

Pr
x∈{0,1}n

[A(π(x)) = x ] ≤ sc

2n

Strongest hardness conceivable (within poly factors).
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Weakening the Virtual Black-Box Property

Weak

Virtual Black-Box: ∀A ∃S ∀F ∈ F ,

Pr[A(O(F )) = 1] ≈

ε

Pr[SF () = 1]

Simulator depends on ε!
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Weakening the Virtual Black-Box Property

Weak Virtual Black-Box: ∀A, ε(·) = 1/poly(·) ∃S ∀F ∈ F ,

Pr[A(O(F )) = 1] ≈ε Pr[SF () = 1]

Simulator depends on ε!

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Positive Results & Techniques in Obfuscation (LPS04)
On Obfuscating Point Functions (W05)

Hash Construction

Replace random oracle with hash of x ∈ {0, 1}n:

h(x ; r1, . . . , r3n) =
(
〈π(x), r1〉, 〈π2(x), r2〉, · · · , 〈π3n(x), r3n〉

)

Obfuscate δx by:

I On input w , if h(w ;~r) = h(x ;~r), output 1, else output 0.

Obfuscator O : δx 7→ (~r , h(x ;~r)) for random ~r

Functionality, Efficiency, Polynomial-slowdown: straight-forward.

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Positive Results & Techniques in Obfuscation (LPS04)
On Obfuscating Point Functions (W05)

Hash Construction

Replace random oracle with hash of x ∈ {0, 1}n:

h(x ; r1, . . . , r3n) =
(
〈π(x), r1〉, 〈π2(x), r2〉, · · · , 〈π3n(x), r3n〉

)
Obfuscate δx by:

I On input w , if h(w ;~r) = h(x ;~r), output 1, else output 0.

Obfuscator O : δx 7→ (~r , h(x ;~r)) for random ~r

Functionality, Efficiency, Polynomial-slowdown: straight-forward.

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Positive Results & Techniques in Obfuscation (LPS04)
On Obfuscating Point Functions (W05)

Hash Construction

Replace random oracle with hash of x ∈ {0, 1}n:

h(x ; r1, . . . , r3n) =
(
〈π(x), r1〉, 〈π2(x), r2〉, · · · , 〈π3n(x), r3n〉

)
Obfuscate δx by:

I On input w , if h(w ;~r) = h(x ;~r), output 1, else output 0.

Obfuscator O : δx 7→ (~r , h(x ;~r)) for random ~r

Functionality, Efficiency, Polynomial-slowdown: straight-forward.

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Positive Results & Techniques in Obfuscation (LPS04)
On Obfuscating Point Functions (W05)

Weak Virtual Black-Box Property

Given adversary A and ε = 1/poly, construct simulator S to get
ε-close.

Idea: Simulate O(δx) = (~r , h(x ;~r)) by random bits (U).

Main Lemma: ∀A, ε, define:

LA,ε =
{

x ∈ {0, 1}n
∣∣∣ Pr[A(O(δx)) = 1] 6≈ε Pr[A(U) = 1]

}
Then |LA,ε| ≤ poly(n, 1/ε).

Proof: Reduce to strong one-wayness of π.
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Weak Virtual Black-Box Property (simulator)

Given A and ε, simulate A(O(δx)) using oracle access to δx :

1. For each y ∈ LA,ε: (hardwired; only poly many)

2. Query oracle: If δx(y) = 1, then run A(O(δy )).

3. Otherwise, run A(U).

Analysis:
Discover x? Can give perfect simulation A(O(δx)).

Otherwise x 6∈ LA,ε, so A(U) gives ε-close simulation.
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Extensions of Positive Results:

Both positive results extend to point functions with output:

δx ,y (w) =

{
y if w = x

⊥ otherwise
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Obfuscatability-Preserving Reductions

[LPS04] define a reduction � such that if F � G and G � F , then

F obfuscatable ⇐⇒ G obfuscatable

Open Problem: Sharper obfu-preserving reductions.
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On the Impossibility of Obfuscation w/ Aux. Input [GK05]

Definition concerns obfuscated programs in isolation. Does security
hold when adversary has other information?

∀A ∃S ∀F ∈ F ,

Pr[A(O(F )) = 1] ≈ Pr[SF () = 1]

[GK05] gives (conditional) impossibility results for several classes
of functions.

Open Problem: Any nontrivial obfuscations under this definition?

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Obfuscatability-Preserving Reductions
Obfuscations In Context

On the Impossibility of Obfuscation w/ Aux. Input [GK05]

Definition concerns obfuscated programs in isolation. Does security
hold when adversary has other information?

∀A ∃S ∀F ∈ F , z ∈ {0, 1}poly,

Pr[A(O(F ), z) = 1] ≈ Pr[SF (z) = 1]

[GK05] gives (conditional) impossibility results for several classes
of functions.

Open Problem: Any nontrivial obfuscations under this definition?

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Obfuscatability-Preserving Reductions
Obfuscations In Context

On the Impossibility of Obfuscation w/ Aux. Input [GK05]

Definition concerns obfuscated programs in isolation. Does security
hold when adversary has other information?

∀A ∃S ∀F ∈ F , z ∈ {0, 1}poly,

Pr[A(O(F ), z) = 1] ≈ Pr[SF (z) = 1]

[GK05] gives (conditional) impossibility results for several classes
of functions.

Open Problem: Any nontrivial obfuscations under this definition?

Mike Rosulek The State Of The Art In Program Obfuscation



Introduction
Negative Results
Positive Results

Additional Topics

Obfuscatability-Preserving Reductions
Obfuscations In Context

Composing Obfuscated Programs

Does security hold in presence of other obfuscated programs?

I Obfuscations of [LPS04] have self-composable security:

Pr[A(O(δx1), . . . ,O(δxm)) = 1] ≈ Pr[Sδx1 ,...,δxm () = 1]

I Obfuscations of [W05] not known to self-compose.

I All known impossibility results involve composing several
obfuscations.

Open Problem: Find nontrivial obfuscations with self-composable
security.
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Any questions?

Thank you!
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