Unlinkable Blind Copying

Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
- Eve can’t tell whether C' was a “copy” or fresh encryption
- “Unlinkable blind copy”
Unlinkable Blind Copying

Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
- Eve can’t tell whether C' was a “copy” or fresh encryption
- “Unlinkable blind copy”

Malleability is now a concern, but...
Unlinkable Blind Copying

Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
- Eve can’t tell whether C' was a “copy” or fresh encryption
- “Unlinkable blind copy”

Malleability is now a concern, but...

- CCA security rules out copying feature!
Unlinkable Blind Copying

Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
- Eve can’t tell whether C' was a “copy” or fresh encryption
- “Unlinkable blind copy”

Malleability is now a concern, but...

- CCA security rules out copying feature!
- Ideally, want scheme to be “non-malleable except for copying”
Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
- Eve can’t tell whether C' was a “copy” or fresh encryption
- “Unlinkable blind copy”

Malleability is now a concern, but...

- CCA security rules out copying feature!
- Ideally, want scheme to be “non-malleable except for copying”

Strong tradeoff between features and non-malleability:

- Copying is allowed, in very robust sense
Imagine encryption scheme with following feature

- Alice sends $C = \text{Enc}(m)$ to Bob
- Carl sees C, generates a “copy” C' which also decrypts to m.
- Eve can’t tell whether C' was a “copy” or fresh encryption
- “Unlinkable blind copy”

Malleability is now a concern, but...

- CCA security rules out copying feature!
- Ideally, want scheme to be “non-malleable except for copying”

Strong tradeoff between features and non-malleability:

- Copying is allowed, in very robust sense
- **Everything else** is forbidden, in the strongest sense
Formalizing the Problem

Rerandomizability

For any $C \leftarrow \text{Enc}_{PK}(m)$, $\text{Rerand}(C)$ has same distribution as $\text{Enc}_{PK}(m)$.

Rerandomizable RCCA Encryption
Formalizing the Problem

Rerandomizability
For any $C \leftarrow \text{Enc}_{PK}(m)$, Rerand$(C)$ has same distribution as $\text{Enc}_{PK}(m)$.

Replayable-CCA (RCCA) security [Canetti, Krawczyk, Nielsen]
Scheme is CCA secure, except it may be possible to “maul” an encryption of m into another that decrypts to same m.
Formalizing the Problem

Rerandomizability
For any $C \leftarrow \text{Enc}_{PK}(m)$, $\text{Rerand}(C)$ has same distribution as $\text{Enc}_{PK}(m)$.

Replayable-CCA (RCCA) security [Canetti, Krawczyk, Nielsen]
Scheme is CCA secure, except it may be possible to “maul” an encryption of m into another that decrypts to same m.

Question [Canetti, Krawczyk, Nielsen]
Are there rerandomizable, RCCA-secure encryption schemes?
Related work

Canetti, Krawczyk, Nielsen \cite{CanettiKraNi03} Defined RCCA, posed problem.
Related work

Canetti, Krawczyk, Nielsen \textit{[CRYPTO’03]}
- Defined RCCA, posed problem.

Golle, Jakobsson, Juels, Syverson \textit{[RSA’04]}
- Applications of rerandomizability for \textit{anonymous} schemes
- Rerandomizable, CPA-secure scheme
Canetti, Krawczyk, Nielsen \([CRYPTO’03]\)
- Defined RCCA, posed problem.

Golle, Jakobsson, Juels, Syverson \([RSA’04]\)
- Applications of rerandomizability for anonymous schemes
- Rerandomizable, CPA-secure scheme

Gröth \([TCC’04]\) gives two rerandomizable schemes:
- Achieves weaker variant of RCCA security
- Achieves full RCCA in generic group model
Our Results

First rerandomizable RCCA scheme in standard model.

- Security proven under DDH assumption.
- More efficient than Gröth’s schemes.
First rerandomizable RCCA scheme in standard model.

- Security proven under DDH assumption.
- More efficient than Gr"oth’s schemes.

Natural security characterization in the UC framework.

- Justifies choice of security definitions
- Positive result for sophisticated functionality in standard UC model
Our Results

First rerandomizable RCCA scheme in standard model.
- Security proven under DDH assumption.
- More efficient than Gröth’s schemes.

Natural security characterization in the UC framework.
- Justifies choice of security definitions
- Positive result for sophisticated functionality in standard UC model

Full version (and this talk) has improved construction
Recipe

Key Idea #1

Use two “strands” of Cramer-Shoup encryption
- First strand is usual encryption
- Second strand helps with rerandomization
Recipe

Key Idea #1
Use two “strands” of Cramer-Shoup encryption
- First strand is usual encryption
- Second strand helps with rerandomization

Key Idea #2
“Tie strands together” with correlated randomness
- The 2 strands useful only when combined with each other
Recipe

Key Idea #1
Use two “strands” of Cramer-Shoup encryption
- First strand is usual encryption
- Second strand helps with rerandomization

Key Idea #2
“Tie strands together” with correlated randomness
- The 2 strands useful only when combined with each other

Key Idea #3
“Twist first strand” (technical)
- Make the 2 strands of different type
- Avoid bad ways of combining the 2 strands together
Double-Strand Idea

Key Idea #1

Use two “strands” of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization
Double-Strand Idea

Key Idea #1

Use two “strands” of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Golle et al. [RSA’04] use a double-strand idea with ElGamal.

- In their case, second strand carries public key data needed to rerandomize ElGamal.
Double-Strand Idea

Key Idea #1

Use two “strands” of Cramer-Shoup encryption

- First strand is usual encryption
- Second strand helps with rerandomization

Golle et al. [RSA’04] use a double-strand idea with ElGamal.

- In their case, second strand carries public key data needed to rerandomize ElGamal.
- In our case, second strand carries message data needed for rerandomize Cramer-Shoup.
Double-Strand ElGamal

Double-strand idea illustrated with ElGamal [Golle et al]:

- Normal ElGamal encryption of m (public key is g^a):

 $$g^x, m(g^a)^x \text{ for random } x$$
Double-Strand ElGamal

Double-strand idea illustrated with ElGamal [Golle et al]:

▶ Normal ElGamal encryption of m (public key is g^a):

$$g^x, m(g^a)^x \quad \text{for random } x$$

▶ “Double-Strand” ElGamal encryption of m:

$$g^x, mg^{ax}, g^y, g^{ay} \quad \text{for random } x, y$$
Double-Strand ElGamal

Double-strand idea illustrated with ElGamal [Golle et al]:

- Normal ElGamal encryption of \(m \) (public key is \(g^a \)):
 \[
g^x, m(g^a)^x \quad \text{for random } x
 \]

- “Double-Strand” ElGamal encryption of \(m \):
 \[
g^x, mg^{ax}, g^y, g^{ay} \quad \text{for random } x, y
 \]

- Rerandomize \(x \) additively
 \[
g^x(g^y)^s, \quad mg^{ax}(g^{ay})^s, \quad \text{for rand } s
 \]
 \[
 = g^{x+ys}, \quad mg^{a(x+ys)}
 \]
Double-Strand ElGamal

Double-strand idea illustrated with ElGamal [Golle et al]:

- Normal ElGamal encryption of m (public key is g^a):
 \[g^x, m(g^a)^x \text{ for random } x \]

- "Double-Strand" ElGamal encryption of m:
 \[g^x, m g^{ax}, g^y, g^{ay} \text{ for random } x, y \]

- Rerandomize x additively, y multiplicatively
 \[
 g^x(g^y)^s, \quad m g^{ax}(g^{ay})^s, \quad (g^y)^t, \quad (g^{ay})^t
 \text{ for rand } s, t
 \]
 \[
 = g^{x+ys}, \quad m g^{a(x+ys)}, \quad g^{yt}, \quad g^{a(yt)}
 \]
Double-Strand ElGamal

Double-strand idea illustrated with ElGamal [Golle et al]:

- Normal ElGamal encryption of m (public key is g^a):
 \[g^x, m(g^a)^x \] for random x

- “Double-Strand” ElGamal encryption of m:
 \[g^x, mg^{ax}, g^y, g^{ay} \] for random x, y

- Rerandomize x additively, y multiplicatively

 \[g^x(g^y)^s, \quad mg^{ax}(g^{ay})^s, \quad (g^y)^t, \quad (g^{ay})^t \] for random s, t

 \[= g^{x+ys}, \quad mg^{a(x+ys)}, \quad g^{yt}, \quad g^{a(yt)} \]

Result is distributed as fresh double-strand encryption
Double-Strands for Cramer-Shoup

We apply double-strand idea to Cramer-Shoup:

- Normal Cramer-Shoup: \((\mu \text{ is hash of first 3 components})\)

 \[g_1^x, g_2^x, m B^x, (CD^\mu)^x \quad \text{for random } x \]
Double-Strands for Cramer-Shoup

We apply double-strand idea to Cramer-Shoup:

- Normal Cramer-Shoup: \((\mu \text{ is hash of first 3 components}) \)
 \[
g_1^x, g_2^x, m B^x, (CD\mu)^x \quad \text{for random } x
 \]

- Double-strand idea applied: \((\mu \text{ is encoding of message}) \)
 \[
g_1^x, g_2^x, m B^x, (CD\mu)^x, g_1^y, g_2^y, B^y, (CD\mu)^y \quad \text{for rand } x, y
 \]
Double-Strands for Cramer-Shoup

We apply double-strand idea to Cramer-Shoup:

- Normal Cramer-Shoup: (μ is hash of first 3 components)

$$g_1^x, g_2^x, m B^x, (CD^\mu)^x$$

for random x

- Double-strand idea applied: (μ is encoding of message)

$$g_1^x, g_2^x, m B^x, (CD^\mu)^x, g_1^y, g_2^y, B^y, (CD^\mu)^y$$

for rand x, y

Possible Attack!

Can “mix-and-match” strands from 2 independent ciphertexts, if they carry the same message (μ).
Tie the Knot

Key Idea #2

“Tie strands together” with shared randomness u; give an additional encryption of u

$$(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, \text{Enc}(u)$$
Key Idea #2

“Tie strands together” with shared randomness u; give an additional encryption of u

\[(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, \text{Enc}(u)\]

Thwarts “mix-and-match” attack:
- Strands only combine if they share common u
- Receiver must remove u to decrypt
Tie the Knot

Key Idea #2

“Tie strands together” with shared randomness u; give an additional encryption of u

\[
(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, \text{Enc}(u)
\]

Thwarts “mix-and-match” attack:

- Strands only combine if they share common u
- Receiver must remove u to decrypt

Encryption of u must be:

- malleable, to allow rerandomization of u
- rerandomizable, for randomness within Enc
Key Idea #2

“Tie strands together” with shared randomness u; give an additional encryption of u

$$(g_1^x)^u, (g_2^x)^u, mB^x, (CD^\mu)^x, (g_1^y)^u, (g_2^y)^u, B^y, (CD^\mu)^y, \text{Enc}(u)$$

Thwarts “mix-and-match” attack:

- Strands only combine if they share common u
- Receiver must remove u to decrypt

Encryption of u must be:

- malleable, to allow rerandomization of u
- rerandomizable, for randomness within Enc

Double-strand “Cramer-Shoup lite” has these properties.
Twist the First Strand

\[g_{1}^{xu}, g_{2}^{xu}, mB^{x}, (CD^{\mu})^{x}, g_{1}^{yu}, g_{2}^{yu}, B^{y}, (CD^{\mu})^{y}, \text{Enc}(u) \]

Possible Attack
Can rerandomize first strand multiplicatively, if plaintext is known.
Twist the First Strand

\[g_1^{x_1}, g_2^{x_2}, mB^x, (CD^\mu)^x, g_1^{y_1}, g_2^{y_2}, B^y, (CD^\mu)^y, \text{Enc}(u) \]

Possible Attack

Can rerandomize first strand multiplicatively, if plaintext is known.

Key Idea #3

Make first strand fundamentally different, so it can only be rerandomized in the prescribed way.
Twist the First Strand

\[g_1^{x_u}, g_2^{x_u}, mB^x, (CD^\mu)^x, g_1^{y_u}, g_2^{y_u}, B^y, (CD^\mu)^y, \text{Enc}(u) \]

Possible Attack

Can rerandomize first strand multiplicatively, if plaintext is known.

Key Idea #3

Make first strand fundamentally different, so it can only be rerandomized in the prescribed way

Analysis uses linear-algebraic interpretation:

- First strand’s randomness \(x \) is perturbed by fixed vector
- More components \((g_1, \ldots, g_4)\) needed for linear independence.
Security of our Scheme

Our scheme satisfies:

- RCCA security (Canetti, Krawczyk, Nielsen [CRYPTO’03])
- Perfect rerandomizability
- Several correctness properties
Security of our Scheme

Our scheme satisfies:

- RCCA security (Canetti, Krawczyk, Nielsen [CRYPTO'03])
- Perfect rerandomizability
- Several correctness properties

Proof uses:

- DDH assumption in 2 groups (for CS and CS-lite)
 - Requires 3 large primes of special form (Cunningham chain)
- Linear algebra interpretation of our scheme
Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
- Can also imagine different tradeoff (e.g., non-malleable other than some homomorphic operation)
Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
- Can also imagine different tradeoff (e.g., non-malleable other than some homomorphic operation)
- What are the “right” security, correctness definitions?
Some philosophical thoughts:

- Want scheme that is non-malleable except for unlinkable copying feature
- Can also imagine different tradeoff (e.g., non-malleable other than some homomorphic operation)
- What are the “right” security, correctness definitions?
- Details motivated by natural UC formulation...
Universal Composition (UC) framework for security definitions

- Proposed by Canetti [FOCS’01]
- Simulation-based security with arbitrary interactive environment
- “Natural” formulations of security via ideal functionalities
Universal Composition (UC) framework for security definitions

- Proposed by Canetti [*FOCS’01*]
- Simulation-based security with arbitrary interactive environment
- “Natural” formulations of security via ideal functionalities
- No secure protocols for most tasks (unless model is significantly weakened)!
Our Results

We define a powerful new UC functionality.

- Users send private messages to each other
- Anyone can cause previous message to be re-sent
Our Results

We define a powerful new UC functionality.

- Users send private messages to each other
- Anyone can cause previous message to be re-sent

Theorem

Any rerandomizable, RCCA-secure scheme (with our correctness properties) is a secure realization of this functionality.
Our Results

We define a powerful new UC functionality.

▶ Users send private messages to each other
▶ Anyone can cause previous message to be re-sent

Theorem

Any rerandomizable, RCCA-secure scheme (with our correctness properties) is a secure realization of this functionality.

▶ Justifies our security definitions, correctness properties
▶ Positive UC result in standard model.
▶ Can easily extend to add features
Our Results

First rerandomizable, RCCA-secure encryption scheme under standard assumption

- Can make unlinkable “copies” of ciphertexts
- Scheme is otherwise totally non-malleable
Our Results

First rerandomizable, RCCA-secure encryption scheme under standard assumption

- Can make unlinkable “copies” of ciphertexts
- Scheme is otherwise totally non-malleable

Natural characterization in UC framework

- Justifies choice of security definitions
- Sophisticated positive result for standard UC model
Anonymous, rerandomizable RCCA scheme?

- Adversary cannot tell which public key used to generate ciphertext
- Most interesting applications of rerandomizability also require anonymity
Anonymous, rerandomizable RCCA scheme?

- Adversary cannot tell which public key used to generate ciphertext
- Most interesting applications of rerandomizability also require anonymity

Other tradeoffs between features and non-malleability in encryption schemes

- Features can be performed in an unlinkable way
- Scheme is non-malleable otherwise
Thanks for your attention!

fin.
Carefully tying the knot

When rerandomizing u value (say, $u \leadsto ru$):

- Multiplication in exponent of Cramer-Shoup group (e.g., \mathbb{Z}_p^*):

 $g^y_u \leadsto g^{(ty)(ru)}_1$

- ... and as the malleable operation of CS-lite:

 $\text{Enc}(u) \leadsto \text{Enc}(ru)$

For 2 operations to coincide, must have:

- CS-lite group is subgroup of \mathbb{Z}_p^*.
- DDH in both groups (that of CS and CS-lite)

Is it an unreasonable relationship between 2 groups?
Carefully tying the knot

When rerandomizing u value (say, $u \leadsto ru$):

- Multiplication in exponent of Cramer-Shoup group (e.g, \mathbb{Z}_p^*):
 \[
 g_1^{yu} \leadsto g_1^{(ty)(ru)}
 \]
Carefully tying the knot

When rerandomizing u value (say, $u \sim ru$):

- Multiplication in exponent of Cramer-Shoup group (e.g, \mathbb{Z}_p^*):

 $$g_1^{yu} \sim g_1^{(ty)(ru)}$$

- ... and as the malleable operation of CS-lite:

 $$\text{Enc}(u) \sim \text{Enc}(ru)$$
Carefully tying the knot

When rerandomizing u value (say, $u \rightsquigarrow ru$):

- Multiplication in exponent of Cramer-Shoup group (e.g., \mathbb{Z}_p^*):
 \[
g_{1}^{yu} \rightsquigarrow g_{1}^{(ty)(ru)}
 \]

- ... and as the malleable operation of CS-lite:
 \[
 \text{Enc}(u) \rightsquigarrow \text{Enc}(ru)
 \]

For 2 operations to coincide, must have:

- CS-lite group is subgroup of \mathbb{Z}_p^*.
- DDH in both groups (that of CS and CS-lite)

Is it an unreasonable relationship between 2 groups?
Cunningham Chains

Definition

A Cunningham chain is 3 primes of the form $q, 2q + 1, 4q + 3$.
Cunningham Chains

Definition

A Cunningham chain is 3 primes of the form \(q, 2q + 1, 4q + 3 \).

- \(\text{QR}^{*}_{4q+3} \) and \(\text{QR}^{*}_{2q+1} \) have desired relationship
- DDH believed to hold (\(4q + 3 \) and \(2q + 1 \) are safe primes).
- Cunningham chains known to exist for \(q \sim 2^{20,000} \).
Security Proof Outline

What is adversary’s advantage in RCCA experiment?

normal encryption ?

normal decryption ?

≈ alternate encryption ✓
≈ alternate decryption ✓

Lemma
Alternate decryption indistinguishable from normal decryption (linear algebra analysis).

Adversary’s entire view independent of choice of plaintext!
Define an “alternate encryption.”

- normal encryption
- normal decryption
- alternate encryption
- alternate decryption

Lemma

Alternate encryption indistinguishable from normal encryption (DDH assumption).
Lemma

Alternate encryption independent of choice of plaintext.
Security Proof Outline

Decryption answers might leak information about private key!

normal encryption

normal decryption

\approx

alternate encryption ✓

normal decryption ?

Lemma

Alternate encryption independent of choice of plaintext.

Adversary's entire view independent of choice of plaintext!
Security Proof Outline

Define a (computationally unbounded) “alternate decryption.”

\[\begin{align*}
\text{normal encryption} \quad & \approx \quad \text{alternate encryption} \checkmark \\
\text{normal decryption} \quad & \approx \quad \text{normal encryption} \checkmark
\end{align*} \]

\[\begin{align*}
\text{normal encryption} \quad & \approx \quad \text{alternate decryption} \checkmark
\end{align*} \]

Lemma

Alternate decryption indistinguishable from normal decryption (linear algebra analysis).
Lemma

Alternate decryption computed using only public key and challenge ciphertext.

Adversary’s entire view independent of choice of plaintext!