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Abstract

In secure multi-party computation, a reactive functionality is one which maintains persistent
state, takes inputs, and gives outputs over many rounds of interaction with its parties. Reactive
functionalities are fundamental and model many interesting and natural cryptographic tasks;
yet their security properties are not nearly as well-understood as in the non-reactive case (known
as secure function evaluation).

We present new combinatorial characterizations for 2-party reactive functionalities, which we
model as finite automata. We characterize the functionalities that have passive-secure protocols,
and those which are complete with respect to passive adversaries. Both characterizations are in
the information-theoretic setting.

1 Introduction

Ever since Yao [y82] introduced the concept of secure multi-party computation (SMPC) with his
famous Millionaire’s Problem, the majority of research in the area has focused on understanding
secure function evaluation (SFE) tasks. In an SFE task, all parties provide inputs and then
receive outputs according to a (typically) deterministic function, in a single round of interaction
with the functionality. The functionality that carries out this task has no need for persistent
memory — it simply receives inputs from the parties, computes outputs, and thereafter forgets
everything.

Yet, SMPC security models (e.g., [c01]) allow for functionalities that maintain internal state
across many rounds of interaction. We call such functionalities reactive. The most well-known
example of an inherently reactive functionality is bit-commitment, the cryptographic equivalent of
a locked box.

In a secure protocol, the parties must achieve the same effect as the functionality. Reactivity
introduces new and unique challenges; in particular, there is a tension between the fact that the
parties may individually have a great deal of uncertainty about the functionality’s internal state,
and the fact that the parties collectively must be able to maintain its internal state in order to
correctly simulate its behavior.

To understand reactive functionalities is, therefore, to understand how persistent information
can be maintained, updated, kept secret, and computed upon. What’s more, from a practical
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perspective, reactive tasks are fundamental — any task involving time-sensitive release of infor-
mation or the ability for parties to adapt to new information learned from an interaction must be
necessarily reactive.

Background & Related Work. The first security model for which SFE tasks were understood
is the model of passive security against computationally unbounded adversaries. Beaver [b89] &
Kushilevitz [k89] independently characterized secure realizability for 2-party SFE tasks in this
model. These results characterized which functionalities have perfectly secure protocols; the same
characterization was later extended to the case where negligible security error is allowed [mpr09,
kmr09]. We strongly leverage this characterization in our own result for the reactive case.

A functionality F is said to be complete (with respect to some security notion for protocols)
if every functionality has a secure protocol in which the parties are allowed to make use of ideal
instances of F . Kilian [k91] was the first to characterize completeness for 2-party SFE functional-
ities. The result was later generalized to functionalities with possibly different outputs to the two
parties [kmq11]. As before, we strongly leverage the well-known characterization for the SFE case
in our own result for the reactive case.

These characterizations, and many others for SFE tasks (e.g., [ck91, k00, kkmo00]) are exclu-
sively combinatorial in nature. Each SFE is associated with its 2-dimensional input/output table
and then classified based on whether this table has a certain structure — say, a forbidden kind of
2× 2 submatrix.

In some security settings, there exist secure protocols for every SFE functionality (e.g., stand-
alone security in the computationally bounded setting); it is not hard to see that this also implies
secure protocols for all reactive functionalities as well. However, hardness (infeasibility) results for
reactive functionalities are much rarer in the literature. Some fundamental reactive functionalities
like bit commitment have been studied in an ad hoc fashion [cf01]. To the best of our knowledge,
large classes of reactive functionalities have been considered only in [pr08, mpr10, r12]. Of these,
only one result of Maji, Prabhakaran, and Rosulek [mpr10] involves a combinatorial (decidable)
characterization. They characterize the 2-party reactive functionalities which have UC-secure pro-
tocols without any setup (the characterization is the same for both the computationally bounded
and unbounded settings). They model functionalities as deterministic, finite-state transducers; our
work uses the same automata model of reactive functionalities. We note that, while the SMPC
paradigm allows one to consider reactive functionalities that cannot be represented as such finite
automata, many important and natural functionalities can indeed be modeled in this way (e.g., bit
commitment).

1.1 Our Results

We derive combinatorial characterizations for the cryptographic properties of 2-party reactive func-
tionalities. In particular, we characterize triviality (i.e., feasibility) and completeness with respect to
computationally unbounded, passive (a.k.a. semi-honest, or honest-but-curious) adversaries. Ours
is the first work to classify properties of reactive functionalities in this fundamental setting. Fol-
lowing [mpr10], we model reactive functionalities as finite automata.

For a reactive functionality F , define a related non-reactive functionality F (k) which takes a
length-k sequence of inputs from each of Alice and Bob, then runs F for k rounds on these inputs
and gives each party their corresponding length-k sequence of outputs. It is not difficult to see
that:

• F is passive-trivial if and only if for all k ∈ N, F (k) is passive-trivial.
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• F is passive-complete if and only if F (k) is passive-complete for some k ∈ N.

In this way it is possible to reduce the characterizations for reactive functionalities to the corre-
sponding well-known ones for SFE functionalities.

However, the above characterizations are of limited use. Both conditions are infinitary in nature
(requiring either the universe of all protocols to be enumerated, or an infinite number of values k
to be checked). Our technical contribution is in our analyses showing that only a finite number of
values k need to be checked. We obtain characterizations of the following form:

Main Theorem. Let F be a reactive 2-party functionality. There exist constants Kt and Kc,
which depend only on the number of states in F , such that:

1. F is passive-trivial if and only if for all k ≤ Kt, F (k) is passive-trivial; and

2. F is passive-complete if and only if F (k) is passive-complete for some k ≤ Kc.

Thus we obtain total decision procedures for determining triviality and completeness of reactive
functionalities. The characterizations for SFE are combinatorial in nature, and thus ours also
inherit that flavor. Also, the statement of the main theorem is valid even if protocols are allowed
a negligible error (though the final characterization for passive-triviality is the same whether zero
error or negligible error is required).

The bulk of our effort is devoted to proving the existence of the constant Kt above. The main
technical challenge when dealing with reactive functionalities is accounting for the uncertainty both
parties have about the (hidden) internal state of the functionality. For example, even if the behavior
of the functionality is benign in every state, it may still be possible to elicit non-trivial behavior
from the functionality when both parties have uncertainty about its internal state. To justify our
somewhat complicated analysis, we show that simply inspecting the local behavior of each state
does not suffice to characterize the security properties of reactive functionalities.

To properly deal with the complications of a functionality’s hidden internal state, we develop a
“normal form” for functionalities that explicitly captures the common knowledge both parties have
about the internal state. The final characterization follows then by the requirements imposed by
this normal form.

Our characterizations are for functionalities that give possibly different outputs to each party.
Using the normal form described above, we show that, unless a functionality is passive-complete,
it is isomorphic to one with symmetric output. This generalizes an analogous result of [kmq11] for
non-reactive functionalities.

2 Preliminaries

A probability p(n) is negligible if for all c > 0, p(n) < n−c for all but finitely many n. We use bold
symbols (e.g., x, y) to denote sequences over some finite alphabet (e.g., X or Y ). We write |x|
to denote the length of a sequence, and we use ‖ to denote concatenation of sequences (e.g., x‖x).
When T is a 2-dimensional table, and a and b are appropriate indices, we use the notation T [a, b]
to denote the entry of T in row a, column b.

2.1 Passive Security

We use the standard real-ideal paradigm [gmw87] to define protocol security. We exclusively
consider security against passive (a.k.a. honest-but-curious, or semi-honest) and computationally
unbounded adversaries, and we call protocols which achieve this standard passive-secure for short.
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We say that a protocol uses the functionality G if the parties are instructed to interact with ideal
instances of the functionality G (i.e., the protocol is in the “G-hybrid model”).

We say that a functionality F is passive-trivial if there is a passive-secure protocol for F with-
out any setups. We say that F is passive-complete if there is a passive-secure oblivious-transfer
protocol that uses access to ideal instances of F . In this work, we consider the information-theoretic
setting exclusively, so adversaries are computationally unbounded. Unlike the first characterizations
for SFE functionalities [b89, k89], we do not restrict our attention to protocols that achieve perfect
security. Instead, we use the now-standard notion of passive security, which permits protocols to
have a negligible simulation error.

Isomorphism. We call a protocol for F using G a local protocol if it uses just one instance of
G to realize an instance of F , does not use communication between the parties other than G, and
each round of outputs for F is realized in the protocol by the parties making a single call to G.
Then call two functionalities F and G isomorphic if there is a local, passive-secure protocol for F
using G and vice-versa.

2.2 Notation and Characterizations for SFE

We briefly review known characterizations for passive-triviality and passive-completeness of SFE
functionalities. We state the characterizations in terms of new notation, which cleanly unifies the
cases of symmetric and non-symmetric output for the two parties. The terminology defined here is
used throughout the work.

A 2-party SFE F is specified by finite sets X and Y , and two deterministic functions fA :
X × Y → {0, 1}∗ and fB : X × Y → {0, 1}∗. We use these default variable names throughout this
work. As a cryptographic functionality, Alice and Bob provide inputs x ∈ X and y ∈ Y to F ,
respectively, and receive outputs fA(x, y) and fB(x, y), respectively.1

Let restrict(F , A × B) denote the restriction of F to the input domain A × B ⊆ X × Y . For
(x, y) ∈ X × Y , we define rectangle(F , x, y) = Ax,y ×Bx,y where Ax,y = {x′ | fB(x′, y) = fB(x, y)}
and Bx,y = {y′ | fA(x, y′) = fA(x, y)}. We say that F is basic on X̃ × Ỹ if: for all y ∈ Ỹ , fB is
a constant function on X̃ × {y}, and for all x ∈ X̃, fA is a constant function on {x} × Ỹ . Basic
functions require no interaction to evaluate (a party’s input has no influence on the other’s output).
Finally, an or-minor in F is a tuple (x, x′, y, y′) ∈ X2 × Y 2 with:

fA(x, y) = fA(x, y′); fB(x, y) = fB(x′, y);(
fA(x′, y), fB(x, y′)

)
6=
(
fA(x′, y′), fB(x′, y′)

)
.

Passive-Completeness. or-minors exactly characterize passive-completeness for SFE function-
alities:

Lemma 2.1 ([kmq11]). The following are equivalent for a 2-party SFE F :

1. F is passive-complete.

2. F has an or-minor.

3. There exist inputs x, y such that F is not basic on rectangle(F , x, y).

1In this work we consider security only against passive adversaries. As such, issues of fairness in output delivery
are not relevant.
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Proof. The equivalence of 1 & 2 was shown by Kraschewski & Müller-Quade [kmq11], generalizing
the analogous statement for symmetric-output functions by Kilian [k91]. The equivalence of 2 &
3 follows straightforwardly from the definitions of or-minor and rectangle(F , x, y).

The following useful lemma was also proven in [kmq11]:

Lemma 2.2 (Symmetrization [kmq11]). Given an SFE F , define the (symmetric) SFE function-
ality Fsym, which on input x from Alice and y from Bob gives both parties output rectangle(F , x, y).

If F has no or-minor, then F is isomorphic to Fsym.

Passive-Triviality. Passive-triviality for SFE functionalities is characterized by a combinatorial
condition called decomposability.

Definition 2.3 ([b89, k89]). An SFE F is decomposable if one of the following holds:

1. F is basic (defined above); or,

2. There is a partition X = X̃1 ∪ X̃2 so that for all x1 ∈ X̃1, x2 ∈ X̃2 and y ∈ Y , fB(x1, y) 6=
fB(x2, y), and furthermore restrict(F , X̃1 × Y ) and restrict(F , X̃2 × Y ) are decomposable; or,

3. There is a partition Y = Ỹ1 ∪ Ỹ2 so that for all x ∈ X, y1 ∈ Ỹ1, and y2 ∈ Ỹ2, fA(x, y1) 6=
fA(x, y2), and furthermore restrict(F , X × Ỹ1) and restrict(F , X × Ỹ2) are decomposable.

Lemma 2.4 ([mpr09, kmr09]). F is passive-trivial if and only if it is decomposable.

This lemma was originally proved for the case of perfectly secure protocols by Beaver [b89]
& Kushilevitz [k89] (independently); later it was extended for the standard notion of security
(allowing negligible error) by Maji, Prabhakaran & Rosulek [mpr09] and Künzler, Müller-Quade
& Raub [kmr09] (independently).

2.3 Model of Reactive Functionalities

We use the model of reactive functionalities from [mpr10]:

Definition 2.5 ([mpr10]). A (2-party) deterministic finite functionality (DFF) is a tuple
F = (Q,X, Y, δ, fA, fB, q0), where

• Q is a finite set of states,

• X and Y are finite input sets,

• δ : Q×X × Y → Q is the state transition function,

• fA, fB : Q×X × Y → {0, 1}∗ are two output functions, and

• q0 ∈ Q is the start state.

The behavior of F as an ideal functionality is defined formally in Figure 1.2 As before, we use these
standard variable names throughout.

We extend the functions δ, fA, and fB to sequences of inputs in the natural way. Let x =
(x1, . . . , xk) ∈ Xk and y = (y1, . . . , yk) ∈ Y k. We write δ(q,x,y) to denote the state of F
after receiving inputs (x1, y1), . . . , (xk, yk) starting in state q. We write fA(q,x,y) to denote the
concatenation of Alice’s k outputs when F receives inputs (x1, y1), . . . , (xk, yk) starting in state
q. We write F (k) to denote the SFE functionality which on input (x,y) with |x| = |y| = k,
gives output fA(q0,x,y) to Alice and fB(q0,x,y) to Bob. Then we have the following simple
observations:

2As before, issues of fairness in output delivery are not relevant when considering only passive adversaries.
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Set variable q := q0. Then repeatedly do:

• Wait for input x ∈ X from Alice and input y ∈ Y from Bob. Give outputs fA(q, x, y) to
Alice and fB(q, x, y) to Bob. Update q := δ(q, x, y) and repeat.

Figure 1: Semantics of the DFF functionality F = (Q,X, Y, δ, fA, fB, q0)

Proposition 2.6. Let F be a DFF, and F (k) defined above.

1. For all k, there is a passive-secure protocol for F (k) using F .

2. There is a passive-secure protocol for F using {F (k)}k∈N.

Hence:

3. F is passive-trivial if and only if, for all k, F (k) is passive-trivial.

4. F is passive-complete if and only if F (k) is passive-complete for some k.

The secure protocol for F using (the infinite set of functionalities) {F (k)} requires both parties
to maintain their history of inputs x and y. In the (k+ 1)th round with histories x and y and new
inputs x and y, both parties call F (k+1) with inputs x‖x and y‖y.3

3 Limits of Local Conditions

When classifying a DFF for its cryptographic properties, one is tempted to examine the behaviors
of each state, in isolation, for certain properties. We call such a test local, and in this section we
describe the limitations of such local tests.

One way that local tests fail stems from the fact that local information is not enough to de-
termine even whether two states have identical behavior. Given that, suppose some state has a
transition function that contains an or-minor involving states q, q′. How this or-minor affects the
triviality/completeness of the functionality depends crucially on whether q and q′ have identical
behavior. Still, we will show that, even when redundant states have been removed, local tests are
insufficient to classify the cryptographic properties of DFFs.

We say that two states q and q′ are redundant in F if for all x,y with |x| = |y| we have
fA(q,x,y) = fA(q′,x,y) and fB(q,x,y) = fB(q′,x,y). Redundant states can easily be collapsed
in F using the classical Myhill-Nerode DFA minimization algorithm. Throughout this work we
will generally assume without loss of generality that redundant states have been collapsed. Non-
redundant state pairs (q, q′) have a distinguishing sequence (x,y) satisfying(

fA(q,x,y), fB(q,x,y)
)
6=
(
fA(q′,x,y), fB(q′,x,y)

)
.

Local tests can give an indication of the complexity of some DFFs, but cannot give a complete
characterization. We consider local tests which inspect the output and transition functions of each
state. To formalize this, we define for a DFF F a related DFF Fst to be a modification to F which
always announces its internal state to both parties. Then the output function of state q in Fst

contains all the relevant information about both the output and transition functions of q in F .

Lemma 3.1. Let F be a DFF that contains no redundant states.

3Note that we use the fact that the parties honestly follow the protocol, as they must faithfully keep track of their
history of inputs to simulate F using {F (k)}.
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1. If any reachable state in Fst has an output function that is not decomposable, then F is not
passive-trivial.

2. If any reachable state in Fst has an output function that contains an or-minor, then F is
passive-complete.

3. The converses of the above statements are false. In fact, there exist functionalities of arbitrary
status (i.e., passive-trivial, passive-complete, neither) without redundant states whose output
functions are constant and whose transition functions are decomposable in every state.

Proof. For items (1) and (2), we can assume without loss of generality that it is the start state of
F that has the offending transition/output functions. More formally, let F [q] denote F with its
start state changed to q. If q is reachable in F— say, via sequence (x,y) — then a passive-secure
protocol for F [q] using F is to have both parties send an initial “preamble” of (x,y) to F and then
proceed with the dummy protocol.

For items (1) and (2), if it is an output function in F (i.e., not in Fst) that is non-decomposable
(resp. contains an or-minor), then the claim follows much more easily. There is a natural passive-
secure protocol using F that realizes the start state’s (SFE) output function – the parties simply
interact with F for one round. The claims then follow from the complete characterizations for
passive-triviality and passive-completeness of SFE (see Section 2.2).

(1) We fall into the case described above unless the start state’s output function is decomposable.
So, let G = (gA, gB) denote the SFE which evaluates the first round only of Fst and Let X̃ × Ỹ
denote minimal subsets such that restrict(G, X̃ × Ỹ ) is not decomposable.

Next we show that the output function of the start state in F (not Fst) is basic on X̃×Ỹ . If not,
then since it is decomposable, it induces either a corresponding row- or column-decomposition step
in G (which includes the F-output as well as the state). This splits X̃ × Ỹ into at least two smaller
subdomains, which by the minimality condition are decomposable. Thus G is decomposable on
X̃ × Ỹ , which we have assumed to be false. By this contradiction, we see that the output function
of F ’s start state must be basic on X̃ × Ỹ .

Let q, q′ be two distinct states reachable from the start state by single transitions on (x, y) ∈
X̃ × Ỹ . As these states are non-redundant, let (x,y) be a distinguishing sequence for them, with
|x| = |y| = k. Now consider the SFE functionality H = (hA, hB) which on input (x, y) ∈ X̃ × Ỹ
gives output fA(q0, x‖x, y‖y) to Alice and fB(q0, x‖x, y‖y) to Bob. There is a passive-secure
protocol for H using F (H is a submatrix of F (k+1)). By Lemma 2.4 it suffices to show that H is
not decomposable.

We have that rectangle(G, x, y) ⊆ rectangle(H, x, y), since the first round of F gives basic output
for inputs in X̃ × Ỹ . Also, by our choice of x,y as a distinguishing sequence we have that H
itself is not basic. Consider any partition of X̃, say, X̃ = X̃0 ∪ X̃1. Since G is minimal and not
decomposable, there exists x0 ∈ X̃0, x1 ∈ X̃1, y ∈ Ỹ such that gB(x0, y) = gB(x1, y). Hence,
hB(x0, y) = hB(x1, y) so X̃ = X̃0 ∪ X̃1 does not satisfy the requirement for decomposability of
H. Symmetrically, no partition of Ỹ satisfies the requirement; hence H is not decomposable, as
desired.

(2) Let (x0, x1, y0, y1) be the inputs of the relevant or-minor in the start state of Fst; as above,
we may assume that the output function of q0 in F is basic over {x0, x1} × {y0, y1}. Hence, the
or-minor occurs entirely in the transition function of F ; i.e., δ(q0, xi, yj) = ri∨j for some states
r0 6= r1. Let (x,y) be a distinguishing sequence for r0, r1, with |x| = |y| = k. Then it is straight-
forward to verify that (x0‖x, x1‖x, y0‖y, y1‖y) is an or-minor in F (k+1). Note that we crucially
use the fact that the output of F is basic in the first round for the chosen input sequences.

(3) Let G be an arbitrary symmetric SFE functionality to be chosen later, and define F to do
the following: In the first round, F gives constant output (regardless of the input) and remembers

7



Alice’s input x in its states, ignoring Bob’s input. In the second round, F gives constant output
and transitions to state rF(x,y), where y is the input of Bob in the second round (Alice’s input in
this round is ignored). Here, states {ri}i are a set of states distinct from those used to implement
rounds 1 & 2. Finally, in state ri, F gives constant output i and self-loops.

Note that the transition functions of F are all decomposable (in particular, at each round the
transitions depend on at most one party’s input), as are the output functions (they are constant
functions in each state). A passive-secure protocol for G can be obtained from F , and vice-versa, in
the natural way. Thus, F and G have the same status (e.g., trivial, complete, neither). We complete
the proof by taking G to be an appropriate passive-trivial, passive-complete, or intermediate SFE.

4 Characterizing Completeness

Theorem 4.1. Let F be a DFF with n states. Then F is passive-complete if and only if there
exists k ≤ n4 such that F (k) contains an or-minor.

Proof. The “⇐” direction follows trivially from Proposition 2.6 and the characterization of com-
pleteness for SFE functionalities based on or-minors [k91, kmq11].

For the other direction, let π be a passive-secure protocol for 1-out-of-2 oblivious transfer (OT)
using F . For sake of contradiction, suppose that for every k, F (k) has no or-minor. Following
Proposition 2.6, we can without loss of generality modify π to obtain a passive-secure OT protocol
using the collection of SFE functions{F (k)}k.

Consider an execution of the protocol in which input bits a0, a1 for Alice and b for Bob are
chosen uniformly (i.e., Bob should learn ab and Alice should learn nothing). Let V denote the
messages exchanged in the protocol along with the list of rectangle(F (k), x, y) values for every time
F (k) is invoked with inputs (x, y) in the protocol. Define Ps,t = Pr[as = t | V ] for s, t ∈ {0, 1}.
Importantly, since no F (k) contains an or-minor, both parties can compute V (Lemma 2.2), and
hence the Ps,t values.

Suppose Bob guesses Alice’s input as to be the value t that maximizes Ps,t. By a straight-
forward argument, this guess will be correct with probability Ps,t. Hence, by the security of the
protocol, P1−b,0 and P1−b,1 must be close to 1/2 with high probability (recall that b is Bob’s choice
bit). However, by the correctness of the protocol we must also have Pb,ab close to one and Pb,1−ab
close to zero with high probability as well.4 Since Alice can also compute these Ps,t values, this
gives her a way to determine Bob’s choice bit b with high probability (i.e., guess the value b such
that Pb,ab is maximized). Hence, we contradict the passive-security of the protocol, as desired.
We note that this part of the proof is essentially the same as Kilian’s proof for the case of SFE
functionalities [k91].

So far we have shown only that some F (k) must have an or-minor. Fix k to be minimal
value such that F (k) contains an or-minor. If k ≤ n4 then we are done. Otherwise, let d(x,y, i)
denote the internal state of F after the first i rounds when the input sequence is (x,y), when
i ≤ k = |x| = |y|. Define

D(x,y,x′,y′, i) :=
(
d(x,y, i), d(x,y′, i), d(x′,y, i), d(x′,y′, i)

)
∈ Q4.

4The correctness of the protocol implies that Bob’s entire view determines ab with high probability, whereas Ps,t

is computed using less information than Bob’s view. In particular, V does not include Bob’s inputs to the ideal
functionality. However, every input for Bob from rectangle(F (k), x, y) would have had exactly the same effect on the
interaction, in the absence of an or-minor. In other words, an honest Bob only needs to remember his input with as
much specificity as rectangle(F (k), x, y).
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Let (x,x′,y,y′) be the or-minor of F (k). By the pigeonhole principle (since k > n4) there are
distinct indices i, j ∈ {0, . . . , k} such that D(x,y,x′,y′, i) = D(x,y,x′,y′, j). Then removing
positions i through j − 1 in the input sequences x,y,x′,y′ yields an or-minor in F (k−j+i). But
this contradicts the minimality of k, so we must have originally had k ≤ n4.

5 Characterizing Passive Triviality

5.1 Overview

Our approach is to reduce our characterization of DFFs as much as possible to the known charac-
terizations for SFE (given in Section 2.2). For intuition, suppose Alice & Bob have performed k
rounds with F , giving input sequences x and y, respectively. When the functionality is passive-
trivial, both parties can agree on A×B = rectangle(F (k),x,y), knowing that (x,y) ∈ A×B. Their
uncertainty about the current state of F is then captured by restrict(δ(k), A×B), where δ(k) is the
extended transition function δ(k)(x,y) = δ(q0,x,y).

Intuitively, both parties can maintain the 2-dimensional table C = restrict(δ(k), rectangle(F (k),x,y)),
along with their respective inputs x and y to this table. Furthermore, these three pieces of in-
formation (x, y, and C) are enough to determine all future behavior of F . One could imagine a
“canonical” protocol for F in which parties maintain such information (Alice maintaining x and
C; Bob maintaining y and C).

With this as our starting point, we argue the following. First, duplicate rows & columns within
C can be canonically removed. Second, the table C is a submatrix of δ(k); as such, it can contain
no or-minor when F is passive-trivial. Finally, we prove a purely combinatorial lemma stating
that any table that avoids duplicate rows, duplicate columns, and or-minors must be bounded in
its dimensions (the bound is a function of the number of allowed values in the cells of the table).
Hence, when F is trivial, the table C described above has an a priori, finite bound in size.

Our combinatorial lemma reveals some structure of functions which avoid or-minors. In that
sense, our lemma is reminiscent of similar lemmas used in [ck91] and [k11], for the n-party setting.

We prove our characterization by converting F into an equivalent “normal form” F̂ , which
simulates F by keeping track of the information (x, y, and C) described above. In each state
of F̂ , we use the internal state variable C to associate a related submatrix of F (k) for some k.
We then show that F is passive-trivial if and only if each of these submatrices of {F (k)}k is itself
passive-trivial. Importantly, there can be only a finite number of states — hence, a finite number
of F (k) submatrices — to inspect when deciding whether F is passive-trivial.

We highlight one important subtlety in the construction of F̂ . Our combinatorial lemma shows
that the table C has bounded size, but we are also associating its rows & columns with F-input
sequences of length k. Thus, while the table itself has bounded size, conceivably the row- and
column-“labels” become unbounded in length. Our construction of F̂ implicitly shows that these
row- and column-labels are not used meaningfully; that is, they can be renormalized to simply be
numerical indices into the table. Hence, the entire state-space of F̂ (which contains this table C as
well as two labels indexing into the table) is indeed finite.

5.2 Combinatorial Lemma

Definition 5.1 (Grid colorings and their properties). A k-coloring of an m×n grid is a function
C : {1, . . . ,m}× {1, . . . , n} → {1, . . . , k}. A row i is a duplicate row if C(i, ·) ≡ C(i′, ·) for some
i′ 6= i. Duplicate columns are defined analogously. A tuple (i, i′, j, j′) forms an or-minor in C if
C(i, j) = C(i, j′) = C(i′, j) 6= C(i′, j′).
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We will use the following lemma, which states that sufficiently large grid colorings cannot avoid
duplicate rows, duplicate columns, and or-minors.

Lemma 5.2 (Unavoidable structures of grid colorings). There is a function R : N→ N satisfying
the following property. For every k-coloring C of an m × n grid, if max{m,n} ≥ R(k), then C
contains either a duplicate row, duplicate column, or an or-minor.

Proof. We prove the lemma for the bound R(2) = 3; R(k) = k · R(k − 1). Thus R(k) = Θ(k!). In
fact, we prove the two stronger statements that (1) if m ≥ R(k) then C contains either a duplicate
row or an or-minor; (2) if n ≥ R(k) then C contains either a duplicate column or an or-minor.
The two proofs are symmetric and we give the proof of (1) here. The case of R(2) = 3 can be
verified by exhaustion.

For the inductive case, consider a k-coloring C with more than R(k) rows. We assume that C
has no or-minors, and will show that there must be a duplicate row. By the pigeonhole principle,
there must be some color (by symmetry, color #k) which appears more than R(k)/k = R(k − 1)
times in the first column. The properties we seek are invariant under permuting rows and columns,
so permute the rows and columns so that the north-west corner is colored #k, and the instances
of color #k in the first row and first column are contiguous.

Since C contains no or-minor, we have that C can be partitioned into four quadrants, NW, NE,
SE, SW:

C =

[
NW NE

SW SE

]
,

where NW has more than R(k− 1) rows, NW contains only color #k, and NE and SW contain only
colors {1, . . . , k−1}. Thus, NE is a (k−1)-coloring with more than R(k−1) rows and no or-minors.
As such it contains duplicate rows. When augmented to the left with identical sequences of k’s, we
obtain corresponding duplicate rows in C, as desired.

We proved the existence of such an R with R(k) = Θ(k!), which suffices for our purposes but
which may or may not be optimal. We can obtain a lower bound of 2k−1 on the optimal value of
R(k), by considering the following recursively-defined k-colorings of a 2k−1 × 2k−1 grid:

C1 = [1]; Ck =

[
Uk Ck−1
Ck−1 Uk

]
.

Here Uk denotes the 2k−2 × 2k−2 grid filled uniformly with color k. The colorings {Ck}k avoid
duplicate rows, duplicate columns, and or-minors. We conjecture that R(k) = 2k−1 is the optimal
value for R as in the lemma statement.

5.3 Normal Form

Let T be a 2-dimensional table with row- and column-labels A and B, respectively. Define an
equivalence relation, where a ≈A a′ if for all b ∈ B, we have T [a, b] = T [a′, b] — that is, a ≈A a′

if rows a and a′ of T are identical. We define an equivalence relation ≈B analogously. Finally, let
[a]A and [b]B denote equivalence classes under these relations, respectively.

Definition 5.3. Let T , A, and B be as above. Let eA1 , . . . , e
A
m denote the distinct equivalence classes

of ≈A, and let eB1 , . . . , e
B
n denote the distinct equivalence classes of ≈B.

We define trim(i, j, T ) for (i, j) ∈ A×B to denote a tuple (i′, j′, T ′), where:

10



1. T ′ is a table with row-labels A′ = {1, . . . ,m} and column-labels B′ = {1, . . . , n}. For each
i∗, j∗, we have T ′[i∗, j∗] = T [a, b], where a is any representative of eAi∗ and b is any represen-
tative of eBj∗.

2. eAi′ = [i]A. That is, i′ is the index of i’s equivalence class.

3. eBj′ = [j]B. That is, j′ is the index of j’s equivalence class.

By item (1) we see that T ′ has no duplicate columns or rows. Essentially, trim removes duplicate
rows/columns and re-normalizes the row/column labels. Furthermore, the mapping i 7→ i′ does not
depend on j, the mapping j 7→ j′ does not depend on i, and the mapping T 7→ T ′ does not depend
on i or j.

Definition 5.4. Let T be a 2-dimensional table with row- and column-labels A and B, respectively,
and whose entries are states of a DFF F . Then explode(T ) is a 2-party SFE with input domain
(A × X) × (B × Y ). On input (a, x) from Alice and (b, y) from Bob, the output of explode(T ) is
fA(T [a, b], x, y) for Alice and fB(T [a, b], x, y) for Bob.

Normal form F̂ . Let F = (Q,X, Y, δ, fA, fB, q0) be a DFF. Then define F̂ to be a functionality
given by Figure 2. Note that we define F̂ without explicitly considering whether it is a DFF (that
is, whether it has a finite number of states). Whether F̂ has a finite number of states depends on
F in a way that will be established later Lemma 5.7.

Maintain internal state (a, b, C), initialized to a = b = 1 and C = [q0] (that is, a 1×1 matrix),
where q0 is the start state of F .

With internal state (a, b, C), and on input x ∈ Y from Alice and y ∈ Y from Bob:

1. Give output fA(C[a, b], x, y) to Alice and fB(C[a, b], x, y) to Bob.

2. Set A′ × B′ = rectangle(explode(C), (a, x), (b, y)). Write A′ and B′ in some canonical
ordering A′ = {(a′1, x′1), . . . , (a′m, x′m)} and B′ = {(b′1, y′1), . . . (b′n, y′n)}. (Recall that
inputs to explode(C) are tuples of this form.)

3. Define an m× n table C ′ via C ′[i, j] := δ(C[a′i, b
′
j ], x

′
i, y
′
j).

4. Set a′ := indexof((a, x), A′) and b′ := indexof((b, y), B′), where indexof(s, S =
{s1, . . . , sn}) denotes the value i such that si = s.

5. Set (a, b, C) := trim(a′, b′, C ′).

Figure 2: Functionality F̂ : the “normal-form” representation of F .

Lemma 5.5. Let F and F̂ be as above, and let δ(k) denote the function δ(k)(x,y) = δ(q0,x,y).
Suppose that F is not passive-complete. Then, after reading inputs x and y (with |x| = |y|), F̂ is
in state

(a, b, C) = trim(x,y, restrict(δ(k), rectangle(F (k),x,y))).

It then follows that F and F̂ have identical external behavior (since the above implies that C[a, b] =
δ(k)(x,y), and F̂ gives outputs matching those of state C[a, b] in F).

Proof. The claims are true when x and y are empty sequences. Suppose F̂ is in state (a, b, C) after
receiving inputs (x,y), with |x| = |y| = k. Suppose that F̂ receives inputs (x, y) at this point;
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we will prove the claims with respect to x′ = x‖x, y′ = y‖y. Denote the rows & columns of C as
A×B.

First, we prove the desired claims without the call to trim, for a variant of F̂ that does not call
trim. It is straight-forward to verify that it makes no difference to the end result to “postpone” all
trim steps taken by F̂ until the last step, at which point they are clearly idempotent.

By the inductive hypothesis, we have an isomorphism between restrict(δ(k), rectangle(F (k),x,y))
and C. Thus, we freely identify A×B with rectangle(F (k),x,y), where a with is identified with x,
and b is identified with y.

Since A×B = rectangle(F (k),x,y), and F (k) has no or-minor (recall we assume that F is not
passive-complete), we have that F (k) is basic on A×B (Lemma 2.1). As such, for any x′ ∈ A×X
and y′ ∈ B × Y we have that

rectangle(restrict(F (k+1), A×X,B × Y ),x′,y′) = rectangle(F (k+1),x′,y′).

That is, within this domain of inputs, a party’s input can influence the other’s output only in the
k + 1 round.

explode(C) is an SFE whose inputs are then (A×X)×(B×Y ) — which we associate with input
sequences of length k + 1 for Alice & Bob, respectively — and whose output is the corresponding
output of F in the (k + 1)-th round only. But again, when restricted to input domain A×B, the
first k rounds of output are basic, so

rectangle(explode(C),x′,y′) = rectangle(restrict(F (k+1), A×X,B × Y ),x′,y′).

Putting things together, from lines 3–4 of F̂ it follows that C ′ is exactly restrict(δ(k+1), rectangle(F (k+1),x′,y′)),
a′ is identified with x′, and b′ is identified with y′, as desired.

Lemma 5.6. If F is not passive-complete, then while interacting with F̂ , Alice has no uncertainty
about (a,C) and Bob has no uncertainty about (b, C), where (a, b, C) is the internal state of F̂ .

Proof. The claim is true for the initial configuration of F̂ . In round k, both parties inductively
know C (and hence explode(C)) from round k − 1. When F is not passive-complete, then each
explode(C) contains no or-minor. Hence, after giving inputs x and y respectively, and receiving
their outputs (computed from explode(C)), each party can deduce R = rectangle(explode(C), x, y).
In F̂ , the value C is updated based only on this common information R. The value a is updated
based only on R and x; the value b is updated based only on R and y. Each party thus has enough
information to update the values required for the lemma.

Lemma 5.7. Let F be a DFF. If F is not passive-complete, then in F̂ the internal variable C is
bounded in size by a constant that depends only on F . Thus F̂ has a finite number of states (at
most R(n)2 · nR(n)2).

Proof. It follows from the definition of F̂ that, in every reachable state (a, b, C), the table C has
no duplicate rows or columns. We will show that C also contains no or-minor. Then it will follow
from Lemma 5.2 that C has dimensions at most R(n) × R(n), where n is the number of states in
F . Since a and b are row and column indexes into C, there are at most R(n)2nR(n)2 states in F̂ .

Without loss of generality, assume that F contains no redundant states. Suppose for contradic-
tion that C contains an or-minor (a0, a1, b0, b1), so that C(ai, bj) = ri∨j for distinct states r0 and
r1. Let x∗,y∗ be a distinguishing sequence for states r0 and r1, with |x∗| = |y∗| = `.

From Lemma 5.5, C is a submatrix of δ(k) for some k, so there exist input sequences x0,x1,y0,y1

with δ(k)(xi,yj) = C[ai, bj ]. Furthermore, {x0,x1} × {y0,y1} ⊆ rectangle(F (k),xi,yj), and so

(since we are assuming that F is not passive-complete) F (k) is basic restricted to {x0,x1}×{y0,y1}.
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But then (x0‖x∗,x1‖x∗,y0‖y∗,y1‖y∗) is an or-minor in F (k+`), contradicting our assumption
that F is not passive-complete. The reasoning is exactly the same as in the proof of Lemma 3.1.
Importantly, Alice’s input does not influence Bob’s output (and vice-versa) for the first k rounds,
and at least one party’s total output depends only on whether r0 or r1 was reached in round k.

5.4 Deciding Passive-Triviality

The following theorem and its corollary provide total decision procedures for determining whether
a given DFF is passive-trivial.

Theorem 5.8. Let F be a DFF and F̂ be as above. Suppose F is not passive-complete. Then F is
passive-trivial if and only if, for every reachable state (a, b, C) in F̂ , explode(C) is decomposable.

Proof. (⇒) Let (a, b, C) be a reachable state in F̂ . Then from Lemma 5.5 we have that C is a
submatrix of δ(k) for suitable k. As such, explode(C) is a submatrix of F (k+1). By Proposition 2.6,
F (k+1), and hence all of its submatrices, is decomposable.

(⇐) A passive-secure protocol for F̂ (and hence F , since they have identical external behavior
— Lemma 5.5) is the following. Alice maintains (a,C) and Bob maintains (b, C) corresponding to
the internal state of F̂ at all times, as in Lemma 5.6. Inductively they will at each round compute
the correct outputs and can thus update these (a, b, C) values. When Alice receives input x and
Bob receives input y, both parties run a passive-secure protocol for evaluating explode(C) at inputs
a‖x and b‖y, respectively. Since explode(C) is decomposable, it follows that such a secure protocol
exists; furthermore, both parties know a common C and can agree upon this protocol.

Corollary 5.9. Let F be a DFF with n states, and let K := R(n)2 ·nR(n)2, where R is the function
from Lemma 5.2. Then F is passive-trivial if and only if, for all k ≤ K, F (k) is decomposable.

Proof. The forward direction (⇒) follows trivially from Proposition 2.6.
For the other direction, if each of {F (k)}k≤K is decomposable, then F is not passive-complete

(Theorem 4.1). Then from Lemma 5.7, there are at most K distinct states in F̂ . Any reachable
state in F̂ is therefore reachable by an input sequence of length at most K − 1. If state (a, b, C) is
reachable by an input sequence of length k, then explode(C) appears as a submatrix of F (k+1); so
if each of {F (k) | k ≤ K} is decomposable, then so is each explode(C). Hence, F is passive-trivial
by Theorem 5.8.

5.5 Symmetrization

Theorem 5.10. Let F be a DFF. If F is not passive-complete, then there exists a symmetric
functionality (that is, one which gives identical output to each party in every round) G that is
isomorphic to F .

This theorem is a generalization of an analogous theorem of Kraschewski and Müller-Quade [kmq11]
for the special case of SFE.

Proof. As described in the discussion after Lemma 2.1, when F is an SFE, we can take G to be
the SFE that gives output rectangle(F , x, y) to both parties on input x and y.

Now consider when F is a DFF, and recall its associated F̂ . If F is not passive-complete, then
F̂ is also a DFF (Lemma 5.7). In state (a, b, C) and on inputs (x, y) in F̂ , the parties are given
the output of explode(C) on inputs (a, x) and (b, y). Define G to be the same as F̂ , except that
both parties are given output z = rectangle(explode(C), (a, x), (b, y)). Since both parties know C,
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Alice without loss of generality knows (a, x), and Bob without loss of generality knows (b, y), the
output z is enough for both parties to infer the corresponding output of F̂ . Similarly, both parties
can infer z from their outputs from F̂ . Thus, F and G are isomorphic.

6 Conclusion and Discussion

We presented two new characterizations for cryptographic properties of reactive functionalities,
in the setting of computationally unbounded passive adversaries. We highlight several remaining
areas of inquiry:

Active adversaries. While there is a characterization of triviality of reactive functionalities in
the UC model [mpr10], there is no such characterization for the standalone model. There is a
characterization for completeness of DFFs as well [mpr10], but it is in the polynomial-time setting.
No characterization exists for completeness of reactive functionalities against active adversaries in
the information-theoretic setting.

We conjecture that the characterization for active-completeness of DFFs will follow that of the
SFE case [kmq11]. That is, we expect there to be a suitable definition of redundant inputs for
DFFs so that F is active-complete if and only if F is passive-complete after removing all redundant
inputs. We note that [mpr10] do in fact define a notion of redundant inputs for DFFs, but only
for inputs in the first round. The characterization we seek would require the simultaneous removal
of redundant inputs in all states.

A characterization of active (standalone) triviality for DFFs will require a significantly different
approach than the one here for passive triviality. We highlight several fundamental aspects of our
techniques that seem incompatible with active adversaries:

• We use the fact that F can be securely realized using {F (k)}k and vice-versa. Neither direction
of this equivalence holds with respect to active security. When emulating the kth round of
F using F (k), we rely on the fact that parties honestly maintain their history of inputs and
provide them as part of their input to F (k). To emulate F (k) using F , the protocol invokes
k rounds of F . An active adversary could (depending on F) violate security by adaptively
changing its behavior based on the partial information it learns about the other party’s input
in the first k − 1 rounds.

• In our proofs we use the fact that certain SFE functionalities appear as a submatrix of some
F (k), to demonstrate their triviality. In the passive security setting, every submatrix of an
SFE inherits the triviality of the parent SFE. This property is not true in the active security
setting; the characterization of standalone-triviality for SFE [mpr09, kmr09] is not closed
under the submatrix relation.

Randomized functionalities. Compared to deterministic functionalities, our understanding of
randomized functionalities is practically non-existent (an exception is for completeness of certain
classes of SFE functionalities; cf. [k00]). For example, there is still no analog of the Beaver-
Kushilevitz characterization of passive-trivial SFE [b89, k89] in the randomized case (not even for
perfectly-secure protocols).

Our characterization in this work reduces the reactive case to the non-reactive case in some
sense. It may be that a similar approach would work even for DFFs with randomized output
(even if the actual characterization for SFE is unknown). However, we expect that a randomized
transition function would lead to complications that are not present in the deterministic case.
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