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SSH server nrohlona. cneae

- ~

SSH WHOAMLFILIPPO.IO

Here's a fun PoC | built thanks to Ben's dataset.

bens ddldst.

| don't want to ruin the surprise. so just try this command. (It's harmless.)

ssh whoami.filippo.io

For the security crowd: don't worry. | don't have any OpenSSH oday and evenif I did |
wouldn't burn them on my blog. Also, ssh is designed to log into untrusted servers.

Filippo Valsorda https: //words . filippo. i0/ssh-whoami- filippo-io/
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SSH client

shot
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[[kochanski:~]$ ssh whoami.filippo.io

_o/ Hello Mike Rosulek!
pid you know that ssh sends all your public keys to any server
it tries to authenticate to?
That's how we know you are @rosulek on GitHub!

|

|

|

|

|

|

|

||

| Ah, maybe what you didn't know is that GitHub publishes all users'
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk).
|

|

|

|

|

|

|

|

|

|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
https://github.cum/FiloSottile/whcami.filippu.io

Connection to whoami.filippo.io closed.
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[[kochanski:~1$ ssh whoami.filippo.io
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with Bob’s pub key?
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SSH client SSH server
should I authenticate

with pub key 6c6¢c6568...7

)

N—

>

problem: server can fingerprint client:
> refuse all advertisements = learn all keys

> can configure client to send only “correct” key

problem: client can probe server:
> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)

problem: server sees which key was used:
» and can prove it! = authentication not deniable

» fundamental to protocol

problem: server can act as honeypot:
> accept any key, even ones never seen before

» fundamental to protocol
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Requests by signature type

ecdsa-sha2

ssh-ed26519 ssh-dss
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goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site configuration


https://github.blog/2021-09-01-improving-git-protocol-security-github/

our new authentication method: big picture
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> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt
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our new authentication method: big picture

client P server
Skl, Sk4, Skg — | pkl,pkz, ceey pk6
our protocol
server has 6 keys, client has 3 keys, including
including pk; and pk, at least one of {ski, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

> does not depend on site-specific configuration;
safe to use all keys in every authentication attempts

> client won’t connect unless server knows and explicitly
includes one of client’s keys
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technical overview & contributions

client (with {sk;};): server (with {pk;}:):
( (st tphih) 1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{m,- = Dec(sks, c)} porting RSA, ECDSA, & EADSA

i

2. private set intersection
{m;}; P

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

{mi}in{m}; —1—n=0?

+ full UC security analysis



concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN


https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
) 10 60 ms 12 kB 9 ms 8 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN


https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
5 10 60 ms 12 kB 9 ms 8 kB
20 100 320 ms 53 kB 28 ms 12 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN


https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

# of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
5 10 60 ms 12 kB 9 ms 8 kB
20 100 320 ms 53 kB 28 ms 12 kB
20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh

2 commodity desktop computers on LAN
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v safe without special per-site configuration
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github over SSH:

client new.github.com

authenticate server

>

<

> server must decide set of authorized keys

username = repositoryname
> before running our protocol!

our > server does not know repository name yet!

protocol -~

> use repository name as username

commit

A\




