Practical Privacy-Preserving
Authentication for SSH

Lawrence Roy
Stanislav Lyakhov
Yeongjin Jang
Mike Rosulek

Oregon State University

USENIX Security 2022
ia.cr/2022/740

2022-08-12

https://ia.cr/2022/740

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

yes

A

SSH client SSH server

should I authenticate
with pub key 6c6c6568...7

no

should I authenticate
with pub key 73616664...7

-

no

yes

signature

A

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6c6c6568...7
N

) (no) g

g

should I authenticate
with pub key 73616664...7
P

) (o)]

D v

SSH client

shot
with p

shou
with pt

SSH server nrohlona. cneae

- ~

SSH WHOAMLFILIPPO.IO

Here's a fun PoC | built thanks to Ben's dataset.

bens ddldst.

| don't want to ruin the surprise. so just try this command. (It's harmless.)

ssh whoami.filippo.io

For the security crowd: don't worry. | don't have any OpenSSH oday and evenif I did |
wouldn't burn them on my blog. Also, ssh is designed to log into untrusted servers.

Filippo Valsorda https: //words . filippo. i0/ssh-whoami- filippo-io/

[keys

https://words.filippo.io/ssh-whoami-filippo-io/

SSH client

shot
with p

shou
with pt

[[kochanski:~]$ ssh whoami.filippo.io

_o/ Hello Mike Rosulek!
pid you know that ssh sends all your public keys to any server
it tries to authenticate to?
That's how we know you are @rosulek on GitHub!

|

|

|

|

|

|

|

||

| Ah, maybe what you didn't know is that GitHub publishes all users'
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk).
|

|

|

|

|

|

|

|

|

|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
https://github.cum/FiloSottile/whcami.filippu.io

Connection to whoami.filippo.io closed.

[keys

SSH client

shot
with p

shou
with pt

[[kochanski:~1$ ssh whoami.filippo.io

I _o/ Hello Mike Rosulek! l

it tries to authenticate to?

pr—

|

|

pid you know that ssh sends all your public keys to any server |
|

|

That's hche know you are @rosulek on GitHubq

|

|

|

|

|

|

|

|

i — |
| Ah, maybe what you didn't know is that GitHub publishes all users' |
| ssh public keys. Myself, I learned it from Ben (benjojo.co.uk). |
| |
| |
|

|

|

|

|

|

|

|

That's pretty handy at times :) for example your key is at
https://github.com/rosulek.keys

—- @FiloSottile (https://twitter.com/FilcScttile)

p.S. The source of this server is at
https://github.com/FiloSottile/whcami.filippo.io

Connection to whoami.filippo.io closed.

[keys

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6c6c6568...7
N

) (no) "

p——g

> can configure client to send only “correct” key

should I authenticate
with pub key 73616664...7
N

) (o)]

D \—/

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with Bob’s pub key?

yes/no
~ problem: client can probe server:

> can configure client to send only “correct” key

>

> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)

SSH client SSH server problem: server can fingerprint client:

should I authenticate > refuse all advertisements = learn all keys
with pub key 6C6C6568“;? > can configure client to send only “correct” key
no

~ problem: client can probe server:

> offer someone else’s pub key, observe response

should I authenticate > pre-emptive signatures possible (in principle)
with pub key 73616664...7
> problem: server sees which key was used:
no
< » and can prove it! = authentication not deniable
» fundamental to protocol
yes

A

signature

SSH client SSH server
should I authenticate

with pub key 6c6¢c6568...7

)

N—

>

problem: server can fingerprint client:
> refuse all advertisements = learn all keys

> can configure client to send only “correct” key

problem: client can probe server:
> offer someone else’s pub key, observe response

> pre-emptive signatures possible (in principle)

problem: server sees which key was used:
» and can prove it! = authentication not deniable

» fundamental to protocol

problem: server can act as honeypot:
> accept any key, even ones never seen before

» fundamental to protocol

goals of this work

1 server & client should learn minimal information

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

https://github.blog/2021-09-01-improving-git-protocol-security-github/

EOdlS of thic awnrl

Requests by signature type

ecdsa-sha2

ssh-ed26519 ssh-dss
7.3% 0.3%

https://github. blog/2021-69-01-1imp roving-git-protocol-secu rity-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site configuration

https://github.blog/2021-09-01-improving-git-protocol-security-github/

our new authentication method: big picture

client server

Skl, Sk4, Sk9 — | pkl,pkz, ceey pk6
our protocol

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

our new authentication method: big picture

client server
Skl, Sk4, Skg — | pkl,pkz, ceey pk6

our protocol
client has 3 keys, including

at least one of {ski, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

our new authentication method: big picture

client

Skl, Sk4, Skg —

server has 6 keys,
including pk; and pk,

our protocol

Server

<— pky, pko, . . ., pke

client has 3 keys, including

at least one of {ski, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

our new authentication method: big picture

client

Skl, Sk4, Skg —

server has 6 keys,
including pk; and pk,

our protocol

Server

<— pky, pko, . . ., pke

client has 3 keys, including

at least one of {ski, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

> does not depend on site-specific configuration;
safe to use all keys in every authentication attempts

our new authentication method: big picture

client P server
Skl, Sk4, Skg — | pkl,pkz, ceey pk6
our protocol
server has 6 keys, client has 3 keys, including
including pk; and pk, at least one of {ski, ..., sks}

> any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

> does not depend on site-specific configuration;
safe to use all keys in every authentication attempts

> client won’t connect unless server knows and explicitly
includes one of client’s keys

technical overview

client (with {sk;};): server (with {pk;};):

technical overview

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

¢ {m}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;
c hides pk; recipients

technical overview

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

c ¢ {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

c hides pk; recipients

technical overview

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

c ¢ {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

{mi := Dec(sk;, c)}i c hides pk; recipients

technical overview

client (with {sk;};): server (with {pk;}:):
((st tphih) 1. anonymous multi-KEM

c ¢ {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

i c hides pk; recipients

{'rfli := Dec(sk;, c)}

2. private set intersection
{m;}; P

each party has set of items;

technical overview

client (with {sk;};): server (with {pk;}:):
((st tphih) 1. anonymous multi-KEM

c ¢ {mj}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

i c hides pk; recipients

{ﬁi := Dec(sk;, c)}

2. private set intersection
{m;}; P

each party has set of items;
client learns intersection;

{mi}i 0 {m;}; «—

technical overview

client (with {sk;};): server (with {pk;}:):
((st ok 1. anonymous multi-KEM

c ¢ {m}; — Enc({pkj}j) address ciphertext to {pk;};;
skj decrypts c to m;;

i c hides pk; recipients

{ﬁi := Dec(sk;, c)}

2. private set intersection
{m;}; P

each party has set of items;
client learns intersection;
server learns whether empty

{mi}in{m}; —1—n=0?

technical overview & contributions

client (with {sk;};): server (with {pk;}:):
((st tphih) 1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{ﬁi := Dec(sk;, c)} porting RSA, ECDSA, & EdDSA

i

2. private set intersection
{m;}; P

each party has set of items;
client learns intersection;
server learns whether empty

{mi}in{m}; —1—n=0?

technical overview & contributions

client (with {sk;};): server (with {pk;};):
1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{ = Dec(ski o)} porting RSA, ECDSA, & EADSA

i

{(m}; 2. private set intersection

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

{mi}in{m}; —1—n=0?

technical overview & contributions

client (with {sk;};): server (with {pk;}:):
((st tphih) 1. anonymous multi-KEM

c c.{mj}; — EnC({ij}j) single MKEM construction sup-

{m,- = Dec(sks, c)} porting RSA, ECDSA, & EADSA

i

2. private set intersection
{m;}; P

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

{mi}in{m}; —1—n=0?

+ full UC security analysis

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
) 10 60 ms 12 kB 9 ms 8 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
5 10 60 ms 12 kB 9 ms 8 kB
20 100 320 ms 53 kB 28 ms 12 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only
(worst case for us) (best case for us)
client server time comm time comm
5 10 60 ms 12 kB 9 ms 8 kB
20 100 320 ms 53 kB 28 ms 12 kB
20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh

2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

client server

set of secret keys — <— set of “authorized” public keys

our protocol
of server keys;

of client keys;
identity of authorized keys

were any of them authorized?

v efficient, practical
v mixture of existing RSA & EC keys

v safe without special per-site configuration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740

client server

set of secret keys — <— set of “authorized” public keys

our protocol
of server keys;

of client keys;
identity of authorized keys

were any of them authorized?

v efficient, practical

/
v mixture of existing RSA & EC keys tha n k Sic

v safe without special per-site configuration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740

(backup slides)

github over SSH:

client github.com

authenticate server

username = git

Y

negotiate choice of pk

YIVY

Al A

authenticate

>

commit to repositoryname

github over SSH:

client github.com

authenticate server

Y

username = git

Y

negotiate choice of pk
29

\ AR

Al A

authenticate

>

commit to repositoryname

github over SSH:

client github.com

authenticate server

Y

username = git > server must decide set of authorized keys
before running our protocol!

negotiate choice of pk
29

\ AR

Al A

authenticate

commit to repositoryname

github over SSH:

client github.com

authenticate server

Y

username = git

tiate choice of pk
negotiate choice of p

¢

\ AR

Al A

authenticate

commit to repositoryname

> server must decide set of authorized keys
before running our protocol!

> server does not know repository name yet!

github over SSH:

client new.github.com

authenticate server

>

<

> server must decide set of authorized keys

username = repositoryname
> before running our protocol!

our > server does not know repository name yet!

protocol -~

> use repository name as username

commit

A\

