
Software Practitioner Perspectives on Merge
Conflicts and Resolutions

Shane McKee∗, Nicholas Nelson∗, Anita Sarma, and Danny Dig
Oregon State University, Corvallis, OR

{mckeesh, nelsonni, anita.sarma, digd}@oregonstate.edu

Abstract—Merge conflicts occur when software practitioners
need to work in parallel and are inevitable in software de-
velopment. Tool builders and researchers have focused on the
prevention and resolution of merge conflicts, but there is little
empirical knowledge about how practitioners actually approach
and perform merge conflict resolution. Without such knowledge,
tool builders might be building on wrong assumptions and
researchers might miss opportunities for improving the state of
the art.

We conducted semi-structured interviews of 10 software prac-
titioners across 7 organizations, including both open-source
and commercial projects. We identify the key concepts and
perceptions from practitioners, which we then validated via a
survey of 162 additional practitioners.

We find that practitioners are directly impacted by their
perception of the complexity of the conflicting code, and may
alter the timeline in which to resolve these conflicts, as well as
the methods employed for conflict resolution based upon that
initial perception. Practitioners’ perceptions alter the impact of
tools and processes that have been designed to preemptively
and efficiently resolve merge conflicts. Understanding whether
practitioners will react according to standard use cases is impor-
tant when creating human-oriented tools to support development
processes.

I. INTRODUCTION

Collaborative development is essential for the success of

large projects [1], and is enabled by version control systems.

In Git and other version control systems, practitioners work on

their changes in seclusion, and periodically synchronize them

by merging with the main line of development. Although a

large number of commits cleanly merge, parallel changes can

overlap, leading to merge conflicts. Kasi et al. [2] and Brun et

al. [3], in their studies of several open source projects, found

that merge conflicts occur in approximately 19% of all merges.

Resolving merge conflicts is nontrivial, especially when

changes diverge significantly, making their synchronization

difficult. The resolution process can be tedious and can cause

delays as practitioners figure out how to approach and resolve

conflicts [2]. Poorly-performed merge conflict resolutions have

been known to cause integration errors [4], workflow disrup-

tions, and jeopardize project efficiency and timelines [5].

Practitioners are aware of the merge-resolution “pains” and

follow different informal processes to avoid having to resolve

conflicts; e.g. sending out emails to the rest of the team,

performing partial commits, or racing to finish changes [6][7].

∗ First and second author contributed equally to this work.

Unfortunately, these practices cause changes to diverge more

and makes merge conflict resolution even harder [3].

Past work has examined different mechanisms for proactive

conflict detection [3][8][9], proposed tools for resolving merge

conflicts [10][11], and discussed advantages of syntax- and

semantic-aware merges [12][13]. However, there are several

key questions that remain unanswered: How do practition-

ers actually approach merge conflicts? How do practitioners

perceive the difficulty of a merge conflict resolution? Do the

current tools support practitioners’ conflict resolution needs?

Without such knowledge, tool builders might be building on

wrong assumptions and researchers might miss opportunities

for improving the state of the art.

To answer the above key questions, we talked directly to

practitioners, which is crucial to understanding problems in

context [14]–[17]. We interviewed 10 software practitioners

from 7 organizations about their experiences and perceptions

of merge conflicts in the software development process. Our

participants had a median of 5 years of software development

experience, and work on a mix of both small-scale projects

(<10 contributors) and large-scale projects (>1000 contribu-

tors). These interviews helped us understand how practitioners

approach merge conflicts, and their unmet needs.

To triangulate our findings and provide a broader under-

standing of practitioners’ perceptions of merge conflicts and

their difficulty, we deployed a survey to a larger population

of software practitioners. The survey sampled 162 participants,

spanning both open source and commercial projects. 74.2% of

our participants had 6 or more years of software development

experience, and reported that they face merge conflicts a few

times a week.

To understand the effects and implications of software

practitioner perceptions, we answer the following research

questions:

• RQ1: How do software practitioners approach merge
conflicts?

• RQ2: What unmet needs impact the difficulty of a merge
conflict resolution?

• RQ3: How well do tools meet practitioner needs for
merge conflicts?

We found that practitioners, when initially assessing a merge

conflict, focus on the code complexity of the conflicting lines
and their own knowledge in the area of the conflict as the top

two factors when estimating the difficulty of a conflict. These

2017 IEEE International Conference on Software Maintenance and Evolution

978-1-5386-0992-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSME.2017.53

467

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

concerns cause practitioners to alter their resolution strategy,

and in some cases delay resolution.

After understanding the merge conflict, practitioners must

resolve the conflict in order to return to normal development.

We found that the key challenges that practitioners face when

resolving conflicts is understanding the conflicting code, their
knowledge in the area of code conflict, and having enough

meta information about the conflicting code (who made the

change, why, etc).

We found that development tools struggle to address practi-

tioners’ perceptions that increases in merge conflict complexity

have a greater impact on the conflict difficulty than increases in

size. This could partially be alleviated by focusing on the tool

improvements most desired by practitioners: better usability,

better information filtering, and better history exploration.

This paper makes the following contributions:

• We conduct exploratory semi-structured interviews with

10 software practitioners, then confirm these findings with

a survey of 162 practitioners from around the world.

• We provide empirically-derived rankings of merge con-

flict difficulties based on practitioners’ perceptions.

• We expose disparities between practitioners’ merge con-

flict needs and development toolsets.

II. METHODOLOGY

We use mixed methods to first explore the topic of practi-

tioners’ difficulties when encountering merge conflicts through

a set of exploratory interviews, and then validate our find-

ings through a survey of practitioners, as per guidelines by

Easterbrook et al. [18]. Mixed methods allow us to analyze

both qualitative and quantitative data to get both an individual

and a population-wide perspective of software practitioners.

We codified the interview transcripts into a taxonomy of

barriers, constraints, and concerns following established guide-

lines [19]–[21]. We then created a survey to get a broader

perspective on how software practitioners approach merge

conflicts, using the vocabulary generated from the interviews

to create the survey questions.

A. Terminology

For this work, we define merge conflict as a scenario in

which two copies of the same codebase diverge and cannot be

automatically merged, thus requiring human intervention to

resolve. While we recognize that other types of conflicts exist

in software projects (i.e. social conflicts or semantic conflicts,

such as build or test failure), we focused our interviews and

survey on code-related merge conflicts.

B. Interviews

We conducted semi-structured interviews with software

practitioners to understand their concerns when facing merge

conflicts and the factors that impact merge conflict difficulty.

We selected interview participants from top contributors

to open-source projects, and from industry contacts using

snowball sampling [22] to reach a larger sample size. Each

participant was asked to identify additional practitioners for

recruitment to our study. We interviewed ten software practi-

tioners from seven different organizations spanning six differ-

ent industries: Semiconductor Manufacturing (3 participants),

Healthcare Software (2), Academia (2), Business Software
(1), IT Services (1), and Sports & Wellness Technology (1).

Each participant was asked to describe their role within their

organization, resulting in five roles with multiple responses for

Software Engineer / Developer. Table I provides additional

demographics data, including project sizes and whether the

participant primarily focuses on open- or closed-source soft-

ware development.

TABLE I: Interview Participant Demographic

Ptc.i Exp.ii Role Project
Source

Project
Contrib.iii

P1 18 yrs. Sr. Software Developer Open 1700

P2 6 yrs. Software Engineer Open 1700

P3 3 yrs. Software Engineer Open 1700

P4 10 yrs. Software Developer Open <10

P5 3 yrs. Infrastructure Engineer Closed <10

P6 5 yrs. Software Developer Closed <10

P7 5 yrs. Software Engineer Open 200

P8 25 yrs. Director Open 600

P9 8 yrs. Software Developer Open 600

P10 2 yrs. Software Developer Open <5

i Ptc. = Participant ii Exp. = Years of Software Development Experience
iii Project Contrib. = Approximate number of contributors (between March

2016-March 2017)

Each interview lasted between 30 to 60 minutes. Participants

were offered US$50 in either cash, gift card, or a donation to

a charity of their choice.

At the beginning of the interview we gave participants a

short explanation of the research goals, our definition of merge

conflicts, and collected demographics data. We then asked

participants about the roles that they play in their project, their

experience working in team settings, questions about merge

conflicts, the process of conflict resolution, and the difficulties

that they faced in conflict resolution.

We formulated the interview questions about merge conflicts

in order to understand how practitioners perceived and how

they approached merge conflicts. The following is an example

of some of the questions we asked in the interview. The full

set of questions can be found in our companion site [23].

• Can you describe a merge conflict, or a set of conflicts,

that you would consider to be the typical case?

• Do you have any particularly memorable merge conflict

resolutions that you can recall?

• Have you had some code structures, design patterns,

coding styles, etc., that you would consider a “usual

suspect” in a conflict?

• What kind of measures would you take to minimize the

amount of defects that you introduce?

The semi-structured interview format allowed participants

to provide us with unanticipated information [24]. Further,

468

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

we allowed open-ended discussion about merge conflicts in

general at the end of the interview, which allowed participants

to share ideas and topics that they found particularly impor-

tant. We continued interviewing participants until we reached

saturation in the answers [25].

Analysis: Interviews were audio-taped and transcribed.

The first two authors unitized [26] the interview transcripts

into cards that each contained a single logically consistent

statement. To organize these cards we employed card sorting,

a collaborative technique of exploring how people think about

a certain topic [27][28], which allows key concepts and

associations to be identified through an open sorting method

that iteratively develops categories during the process.

We performed two iterations of the open card sorting

process. In the first iteration, we developed a standardized

coding scheme and improved it to an acceptable point by

negotiated agreement, which was reached when no further

thematic categories could be created and agreed upon by both

coders [29][30]. The coding scheme dictated that sentences

must be consecutive and topically related to be grouped

into a single card. Logically connected statements that were

separated by other lines were considered to be separate cards,

as a conservative measure to preserve context within each card.

In the second iteration, the first two authors sorted cards

according to our coding scheme and discussed the resulting

taxonomies until consensus was reached. Based upon our

research questions, we grouped the resulting categories as fol-

lows: the factors that impact how practitioners approach merge

conflicts (Section III-A), the difficulties that practitioners face

when resolving conflicts (Section III-B), and the impact of

development tools on the resolution process (Section III-C).

TABLE II: Survey Participant Rolesi

Sof
t.

D
ev

el
op

er
s

Sys
. A

rc
hi

te
ct

s

D
ev

O
ps

Pro
je

ct
M

an
ag

er
s

Pro
je

ct
M

ai
nt

ai
ne

rs

Sys
. A

dm
in

s

O
th

er

Software Developers 154

System Architects 53 54

DevOps 51 34 53

Project Managers 44 29 20 44

Project Maintainers 39 21 24 22 40

Systems Administrators 22 16 15 14 12 23

Other 8 4 4 3 1 2 11

i Survey respondents were allowed to select multiple roles. Each
entry represents the number of respondents that selected both of the
roles indicated for the column and row. 62 out of 162 respondents
(38%) selected three or more roles.

C. Survey

We conducted a 50-question survey of software develop-

ment practitioners in order to examine the themes and cate-

gories found in the interviews. We sought to understand which

factors impact practitioners the most when they encounter and

resolve merge conflicts. The survey was conducted online and

anonymity was guaranteed in order to elicit honest responses

from participants. We developed questions to confirm, extend,

and broaden the results from the interviews.

We recruited survey participants from contributor lists on

popular open-source repositories on GitHub1, advertised on

social networking sites (Facebook2 and Reddit3), and by

directly contacting software practitioners via email. Due to the

nature of social media and mailing lists, we cannot compute

a response rate. However, our participants spanned different

organization structures and geographical locations, giving us

generalizability of results. The survey was available for 56

days and we received 162 survey responses, but individual

parts of the survey have varying response rates and are

reported where appropriate in Section III.

Survey participants were primarily male (91.9% overall).

Participants were given six different software roles to se-

lect, and in many cases, participants considered themselves

to be fulfilling multiple roles. Table II provides a pairwise

breakdown of participants’ role selections, with a majority

of respondents considering themselves to be Software Engi-
neer/Developer (95.1% overall). Survey participants indicated

a median software development experience of 6-10 years

(36.4% overall), and worked on project sizes ranging from

2 to more than 51 developers (the median was 2-5 developers,

constituting 48.8% of all responses).

The survey was divided into four categories, with each

category containing 5-7 questions (see [23] for questions).

First, we elicited background information about demographics,

roles, and experience. Second, we asked questions related to

difficulties that practitioners experience when encountering

merge conflicts. Third, we asked questions related to conflict

resolution and the factors that affect practitioners. Finally

we asked questions about the tools and tool features that

practitioners use when working with merge conflicts. Ques-

tions were presented either as 5-point Likert-type scales (with

no pre-selected answers) or open-ended text forms to gather

additional insights.

Analysis: We evaluated the distribution of survey answers

for each Likert-type question by analyzing across demographic

categories. Where answers differed across a demographic

category, we note the difference and provide further discussion

of these results in Section III.

We used Likert-type questions to measure the extent to

which participants agreed with a particular statement. This

means that lower mean and median values indicate less

agreement with the statement in a particular question. We use

this design to validate both the degree of agreement to the

interview results, as well as the existence of individual factors.

III. RESULTS

A. RQ1: How do practitioners approach merge conflicts?

To understand the perspective of practitioners when encoun-

tering a merge conflict, we asked interview participants to

reflect on situations when they initially face a merge conflict:

1 github.com 2 facebook.com 3 reddit.com

469

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Factors of Merge Conflict Difficulty from Survey

Factor Description 1 2 3 4 5 Mean Median

F1 Complexity of conflicting lines of code 5 29 38 56 34 3.52 4
F2 Your knowledge/expertise in area of conflicting code 5 23 50 54 30 3.50 4
F3 Complexity of the files with conflicts 8 34 49 51 18 3.23 3
F4 Number of conflicting lines of code 2 40 64 45 11 3.14 3
F5 Time to resolve a conflict 14 56 51 25 15 2.82 3

F6 Atomicity of changesets in the conflict 20 48 51 29 13 2.80 3

F7 Dependencies of conflicting code on other components 20 56 39 33 14 2.78 3

F8 Number of files in the conflict 10 69 50 26 6 2.68 3

F9 Non-functional changes (whitespace, renaming, etc.) 47 63 31 15 4 2.16 2

what kind of information do they seek, how do they approach

the resolution of the conflict, and what tools they use.

We identified nine factors (from card sorting) that practi-

tioners consider when approaching a conflict and attempting

to determine its difficulty (see Table III). We asked survey

participants to rate how each of these nine factors affected their

perceptions of difficulty when approaching a merge conflict.

We received 162 responses and present the aggregated

results in Table III; ranked according to the mean score for

each factor. Here, we discuss in detail the top 4 factors with

a mean score greater than 3.00. These factors can be grouped

into themes of technical aspects and expertise, and our results

are presented according to these groups.

Technical Aspects: Two of the top four factors refer to

perceptions about the complexity of merge conflicts (F1, F3),

with the third factor being number of conflicting lines (F4),

which can be construed as a specific metric of complexity

of the conflict. While practitioners mentioned complexity

of the lines of code and the file, none mentioned using

metrics, such as cyclomatic complexity [31][32] or Function

Point Analysis [33][34]. Instead, practitioners made educated

guesses on the complexity of the code based on their own

experience of either writing the code, or having worked with

it. Some of the simple to compute metrics, such as number
of conflicting lines of code (F4), number of files involved
(F8), atomicity of changesets (F6), and the time they thought

it would take to resolve the conflict (F5) were mentioned.

The only factor where static analysis tools can help was in

identifying the dependencies of the conflicting code (F7). This

indicates that understanding the complexity of the conflicting

code is important, but practitioners do not use the metrics that

have been proposed by research. While some of the simple

proxies for complexity are used, practitioners primarily rely

on their own “judgement” of the complexity of the conflict.

This perception of the conflict complexity can affect

whether a practitioner resolves the conflict immediately (when

small), or whether they should wait to examine the conflict

when further resources are available; P8 commented:

“Small is always easy. A 1-line merge conflict is always
easier to resolve than a 400-line merge conflict, and can
be done now.”

If a merge conflict is perceived to be large or complex,

a practitioner may decide to forgo attempting to resolve it

through code manipulation and choose to revert the changes

instead [35]. This “nuclear option” requires practitioners to

disrupt the development flow, set aside their current develop-

ment work, and potentially remove “good” code that was not

part of the conflict in order to return to a non-conflicting state.

In the interview, P1 describes this process as:

“If you have many conflicts involved, many commits in
the conflict...throw one of the branches away. You cannot
combine tens of commits conflicting...it’s not sane!”

Further, when integrators are preparing code for production

environments they prioritize merge conflicts for code review

based upon the perceived difficulty of resolving the affected

code. We find that these decisions rely on human judge-

ment factors as much as they rely on data-driven metrics.

Practitioners may not have the time to compute project-

wide complexity metrics, such as those proposed in literature.

Therefore, we need metrics that can be easily calculated by

“lay practitioners” as they face a conflict.
Expertise: Our findings show that expertise in the area of

conflicting code is one of the top factors in determining the

difficulty of a merge conflict (F2). This reiterates the fact that

practitioners rely on their own knowledge about the conflicting

code base when approaching a conflict.
Our results indicate that when practitioners feel they don’t

have the expertise in the conflicting code base, they consider

the conflict difficult to merge and seek out more information

or assistance from others. P5 illustrated this need for expertise

when describing his workflow:

“A lot of what I work on is in my own little area...I know
what to do. . . But in [unfamiliar part of code], then I’ll
get someone else to resolve the merge conflict for me. It’s
someone else’s code, and I don’t want to screw it up.”

Our findings confirm the need for tools that identify ap-

propriate experts [36] and encourage further research into

selection of knowledgeable practitioners for merge conflict

resolution.

B. RQ2: What unmet needs impact the difficulty of a conflict
resolution?

There can often be gaps in how practitioners perceive the

difficulty of merge conflicts and the actual hurdles that they

470

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Practitioners’ Needs for Merge Conflict Resolutions from Survey

Need Description 1 2 3 4 5 Mean Median

N1 How easy is it to understand the code involved in the merge conflict 0 14 25 65 37 3.89 4
N2 Your expertise in the area of code with the merge conflict 1 17 38 49 36 3.72 4
N3 The amount of information you have about the conflicting code 2 21 38 48 32 3.62 4
N4 How well tools present information in an understandable way 4 24 47 32 34 3.48 3
N5 Changing assumptions within the code 8 27 45 36 25 3.30 3

N6 Complexity of the project structure 6 38 39 41 17 3.18 3

N7 Trustworthiness of tools 17 29 39 32 34 3.12 3

N8 Informativeness of commit messages 18 32 30 44 17 3.07 3

N9 Project culture 13 37 43 27 21 3.04 3

N10 Tool support for examining development history 16 40 31 32 22 3.03 3

face when resolving these conflicts. These gaps can then in

turn affect how well practitioners can resolve the conflict.

We, therefore, asked our interview participants open-ended

questions about their experiences in resolving the most recent

past conflicts, especially their recollection of what made the

resolution difficult. Their responses indicated that there are

several unmet needs. We identified ten needs (see Table IV),

which range from needs about the ability to understand the

code, their expertise, and existing tool support.

Using results from the interview, we asked survey partici-

pants to rate how much each of the ten needs affected their

ability to resolve merge conflicts. We received 141 responses

using a 5-point Likert-type scale indicating the degree of effect

on resolution difficulty (1 being Not at all, 3 being A moderate
amount, and 5 being A great deal). Results of the survey are

presented in Table IV.

All the unmet needs have a mean score of at least 3.03
on the 5-point Likert-type scale, implying that all of them

mattered at least a moderate amount. We present and discuss

in detail the top four unmet needs, plus additional observations

regarding the other six unmet needs. As with the factors in the

previous section, all these needs also relate to technical aspects
(e.g., understanding the conflicting code) and their expertise
in resolving conflicts.

Technical Aspects: Three needs among the top four relate

to technical aspects of merge conflict resolution. The under-
standability of conflicting code (N1) is ranked as the most

important need, with both contextual information about the
conflict (N3) and the way in which tools present relevant
information (N4) ranking in the top four.

Data from version control systems is used by practitioners to

identify the evolution of the code [37], however, it is not easily

available and requires a context switch from the code editor to

the version control system [35]. Moreover, these changes are

often processed in isolation, especially when there are many

changes (conflicts) to process. Such decomposition of overall

conflicting changes into smaller “chunks” is needed to be able

to manage the complexity of the resolution process; however,

this occludes viewing the changes and their impact in a

holistic manner. Often practitioners deal with the decomposed

(smaller) changes, hoping that they will all together work out.

For example, P1 compared the resolution hurdles between

two conflicts, where one was simple, and the other spanned

multiple files and complex blocks of code.

“You focus on understanding the small change, not the
big one. It’s easier to understand... get the small change
to go with the flow of the bigger change.”

Another challenge when viewing changes in isolation, is

the fact that practitioners may miss the impact of the changes

made as part of the resolution to the rest of the code base.

Identifying the impact of changes on the rest of the code base

has been repeatedly found to be a problem in collaborative

development, as found by deSouza and Redmiles [38] and

more recently by Guzzi et al. [35]. The top unmet needs in

our study too revolved around the challenges that practitioners

face in how much information they had about the conflicting

code (N3), and the difficulty in finding the needed information

from current tools and practices (N3, N4, N8, N10). This indi-

cates that despite advances in supporting parallel development

practices, the right information needed to resolve conflicts is

still not easily available to practitioners.

Conflict resolution can sometime lead to defects in the code

base. This can arise because of several reasons. For example

the rationale of the two conflicting changes might be unclear

and the merge might cause unintentional problems down the

line. Or the resolved changes might not follow rigorous code

review and testing to which the original changes were subject

to. Therefore, even when the practitioner understands the

particular conflicting code, they may still need additional meta

information about the rationale of changes and idea of future

feature implementation. This is especially true in situations

where the code base is old, and such information not readily

available. During our interview, P7 commented:

“It’s harder to merge code when you’re merging in some
legacy code... But if you’re a young team, and everybody
who wrote the code is still a part of the team, it’s easier.”

Expertise: Knowledge is a key component of practitioner’s

needs when resolving merge conflicts, but along with that

general knowledge is a need for expertise in the specific areas

of code involved in a conflict. Practitioners recognize this need

as having a sizable effect on their ability to resolve a merge

471

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Improvements for Practitioner Toolsets from Survey

Improvement Description 1 2 3 4 5 Mean Median

I1 Better usability 6 17 32 48 16 3.43 4
I2 Better ways of filtering out less relevant information 8 15 32 48 16 3.41 4
I3 Better ways of exploring project history 7 21 36 39 16 3.30 3
I4 Better graphical presentation of information 13 26 26 37 16 3.14 3
I5 Better transparency in tool functionality/operations 16 36 24 40 3 2.82 3

I6 Better terminology that is more consistent with my other tools 23 41 32 15 8 2.53 2

conflict, and selected expertise in the area of conflicting code
(N2) as the second most important need.

Examining code artifacts, reviewing change history, and

reading documentation help with understanding the code when

they are present and well-maintained. However, locating and

maintaining these supporting documents is not always pos-

sible. In fact, Forward et al. [39] conducted a survey of

48 software practitioners and found that 68% either agreed

or strongly agreed that documentation is always outdated.

When these gaps arise, practitioners compensate by consulting

experts in the area of conflicting code instead.

This result aligns with the goals of the TIPMerge tool [36],

which seeks to locate experts that are best suited to resolve

conflicts in a particular area of code. However, TIPMerge, as

well as other recommendation tools are not being used by real-

world practitioners, as evidenced by the lack of such tools in

the list of top 10 merge tools (see Table VI). The reason for this

lack of research tools adoption requires further investigation.

Another surprising fact was that while the informative

nature of commit messages (N8) and project culture (N9) were

mentioned, they were not as highly ranked. We had expected

them to be higher based on prior work [40]–[43]. We found

no statistical differences between commercial or open source

projects, including when accounting for experience levels. Our

results indicate that team practices, including writing commit

messages may have matured enough, such that these factors

are no longer considered critical in our sample set.
Open-Source vs. Closed-Source Needs: It is interesting to

note that for needs N1-N8 there was no statistical difference

between practitioners focused on open-source and those fo-

cused on closed-source development when it comes to their

conflict resolution needs. We found that practitioners who

focus on open-source software development consider tool
support for examining development history (N10) to be the

3rd highest unmet need (mean: 3.60). Whereas, practitioners

who focus on closed-source software development consider it

to be the least impactful unmet need (mean: 2.86).

This was also true in our interviews, with P8 stating:

“I’m often dealing with code other people wrote. No-
body can review every pull request. So now I have to go
back and do some archaeology to find out what’s going
on. Code is much easier to write than read.”

This result suggests that history exploration in open-source

projects is a more difficult task due to the lack of upfront

planning and large number of volunteering contributors.

C. RQ3: How well do tools meet practitioner needs in resolv-
ing merge conflicts?

Development tools need to be easy to use and provide

contextualized, pertinent information in a manner that is easy

to understand. To investigate how well current tools satisfy the

needs of practitioners, we asked interview participants open-

ended questions about how they resolve merge conflicts. We

also ask about improvements that would be most valuable to

them.

Our results indicate that practitioners use a wide range of

tools, with many directly using the Git command line interface.

Our interview participants mentioned six different dimensions

along which they would like improvements to tool support

(see Table V).

We framed the survey questions to validate the improvement

needs expressed in our interviews, and ranked those six needs

according to mean score. Table V presents the needs from the

survey responses ordered by their mean scores. We received

119 responses using a 5-point Likert-type scale to indicate

the usefulness of each type of tool improvement (1 being Not
Useful, 3 being Moderately Useful, and 5 being Essential).

In addition, we also asked participants which tools they use

during conflict resolution. We identified 105 different tools

from the 115 responses. Some mentioned generic responses

such as “ text editor”, for which we create a separate cate-

gory. Table VI lists the top 10 most common tools used by

participants to resolve merge conflicts.

In examining the list of these tools, we note that prac-

titioners most often use basic tools (e.g. Git, Vim/vi, or a

Text Editor) to handle merge conflicts instead of employing

specialized tools or plugins to modern IDEs. In this list, there

is only one IDE (Eclipse), and three diff/merge toolsets (Git

Diff, KDiff3, and Meld). This indicates that practitioners are

currently not leveraging the functionalities provided by many

research prototypes (e.g., Palantir [8], Crystal [3]) that are

specifically designed to facilitate proactive conflict detection,

since they are built as plug-ins to modern IDEs.

We next discuss the top four improvements rated by survey

respondents. These are the responses that have a mean value

higher than 3.00.

Better Usability: Usability is an important factor that

determines whether a toolset supports or hinders the prac-

titioner’s workflow. Our survey results indicate that better
usability (I1) is the most desired improvement of toolsets

used for conflict resolution. While usability of a particular

472

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Survey Participant Merge Toolsets (Top 10)

Tool # Participants Description

Git 37 Version Control System

Vim/vi 17 Text Editor

Text Editor (unspecified) 14 Text Editor

Git Diff 11 Diffing Tool

GitHub 11 Website

Eclipse 10 IDE

KDiff3 9 Diff & Merge

Meld 8 Diff & Merge

SourceTree 8 Git/Hg Desktop Client

Sublime Text 7 Text Editor

tool is important, the usability concerns become even more

pertinent when they span multiple tools that are similar and

must operate in sync with each other. Survey results indicate

that participants use an average of 2.5 tools, and as many as 7

tools, to resolve merge conflicts. For instance, in our interview

P1 demonstrated how he typically resolved a merge conflict

by using four different tools and said:

“I have to jump around between tools and copy and paste
version numbers...this is why integration matters.”

Switching across multiple tools while resolving a conflict

is disruptive and comes at a cost. Psychology studies [44][45]

have shown that task switching reduces performance and

causes mental fatigue. Gerald Weinberg highlighted that con-

text switching arising from toolset fragmentation is a big

problem in engineering teams [46].

Better Exploration of Project History: Practitioners have

been known to use historical data to understand code evolution

and development processes [37]. Version control and bug

tracking systems contain a huge amount of meta-information

about the evolution of code and development processes. How-

ever, it is not easy to find the right bit of information in

these large systems. Currently, there is insufficient support for

performing detailed analysis of how a code snippet evolved

over time and why. Better ways of exploring the project history

(I3) was one of the top requested improvements in our survey.

As P1 mentioned in the interview:

“Give me a way to explore the history. To drill down, to
go back up, you know? To resurface and understand what
happened.”

Currently, when performing any complex analysis it is easier

to write stand alone scripts to extract the information. During

the interview, P1 mentioned that he has written several scripts

to locate particular historical commits that relate to a current

merge conflict. Similarly, P9 described a tool, git-diff,

that was developed by their team to add additional difference

analysis functionality across branches:

“git-diff will just do the diff based on the SHAs... we’re
adding metadata... It also hooks into GitHub labels to do
some more advanced heuristics.”

While writing these scripts allows extraction of relevant data

contextualized to the need, it also leads to a proliferation of

multiple scripts that are written by individual practitioners and

need to be maintained or integrated. This further adds to the

problem of context-switching when practitioners must switch

between multiple tools, and execute multiple scripts.

We are not the first to recognize the gap in tool support

provided for analyzing development history among practition-

ers [37], [47]–[49]. It appears that practical applications of

history exploration are still beyond the reach of practitioners.

One of the reasons for this might be the simple set of text

editors, and toolsets, that our study participants seem to prefer.

Better Filtering of Less-Relevant Information: Tools that

routinely handle large or complex datasets require filtering in

order to efficiently locate desired pieces of information. For

example, when there are several commits in a pull request and

multiple levels of code review at the line level. It is difficult

to extract the key issue in the pull request, which can get lost

in the sea of low level details. Similarly, if there are multiple

commits in a pull request or branch, it is hard to extract the

right information. Therefore, tools that provide filtering can

better assist practitioners in working with large amounts of

metadata associated with the changes. Better ways of filtering
out less relevant information (I2) was selected as the second

most important need; P1 explained:

“You want to extract the relevant commits. The ones
that actually clash...you want to zoom in on them and
understand just enough and don’t waste time.”

While improvements in history exploration (I3) will make

project metadata more accessible, improvements in filtering

for relevant metadata will allow practitioners to focus on the

relevant parts of the code impacted by the merge conflict.

Better Graphical Presentation of Information: The use-

fulness of information is helped or hindered by the way in

which it is presented to users. In our survey results, we found

that better graphical presentation of information (I4) was

ranked the fourth highest improvement needed (mean: 3.14).

In our interviews, several practitioners reported experienc-

ing issues with inconsistent terminology, inconsistent visual

metaphors (e.g. colors, notifications, etc.), and the organi-

zational layout of different development tools. The cost of

context switching in software development is well-known to

researchers [50]–[53], and our results indicate that switching

between different terminology and information presentation

styles can also be a problem. There is a need for tools that

share commonality in both terminology and presentation.

Tool Mistrust/Transparency: Most merge tools attempt to

resolve conflicts using a variety of algorithms, but revert

to manual resolution when these algorithms fail. Several

interview participants indicated that they mistrust merge tools

when they obscure the steps and rationale for particular

results when resolving merge conflicts. The opaque nature of

history exploration tools was also found to be a source of

practitioners’ overall mistrust of their toolsets. P4 commented:

473

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Effectiveness of practitioners’ toolsets in supporting perceived size and complexity of merge conflicts, split on

development experience. Bubble values indicate number of survey responses for effectiveness of a particular merge conflict

size and complexity, and bubble size indicates the number of responses for comparison purposes.

TABLE VII: Practitioners’ Trust in their Merging, History

Exploration, and Conflict Resolution Toolsi

Trust Level Response Count Response %

Completely 20 16.52

A lot 50 41.32

A moderate amount 41 33.88

A little 10 8.26

Not at all 0 0.00

i Survey respondents answered on a 5-point Likert-type scale indicat-
ing trust in their toolset (1 being Not at all and 5 being Completely).

“I’ve never trusted the merge tools or diff tools... Some-
times I’ll even manually go and do the merge myself rather
than use a tool. Just because I’ve had several times where
it’s a bad merge, and I broke some code.”

Based upon this theme of mistrust, we asked survey par-

ticipants to rate the degree to which they trust their merging,

history exploration, and conflict resolution tools. We received

121 responses to this question, with a mean score of 3.66 plac-

ing the most common responses between a moderate amount
and a lot of trust (Table VII). Assuming that responses of a
moderate amount, a little, or not at all indicate some degree

of mistrust, we find that 42.15% of practitioners experience

some gap in toolset trust.

However, the severity of toolset mistrust is not as significant

as our interview results suggested. Only 8.26% of practitioners

indicated that they trust their toolset a little or not at all (10 out

of 121 responses). As the results of the survey were counter

to our interview results, we looked further. We found that: (1)

participants reported on the trust levels of the tools that they

regularly use, and (2) a large number of participants reported

that they had discontinued toolsets when they ran into errors.

This indicates that if participants had reported their trust level

of these discontinued tools the results would have been lower.

Perceptions of Tool Effectiveness: The perceived size and

complexity of merge conflicts affect the way in which prac-

titioners plan, allocate, and enact resolutions. To understand

the degree to which these two factors impact practitioners’

perceptions about the effectiveness of their toolsets, we asked

survey participants to rate their toolset across four different

merge conflict archetypes: (A1) simple, small merge conflicts,

(A2) simple, large merge conflicts, (A3) complex, small merge
conflicts, and (A4) complex, large merge conflicts.

Since individual participants have different toolsets, and

consider different factors when determining the perceived size

and complexity of a merge conflict, we instructed participants

to rate their own toolset against these archetypes using their

notion of what constitutes a simple vs. complex and small vs.

large merge conflict.

Fig. 1 provides a visual illustration of the results of this

474

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

survey question. The four plots display the results for each

of the archetypes, with archetype (A1) in the top-left plot,

(A2) in bottom-left plot, (A3) in the top-right plot, and (A4)

in the bottom-right plot. Individual plots are composed of a

horizontal axis containing participants’ software development

experience, which we collect since experience can determine

the range of conflicts that they have faced and their percep-

tions. The vertical axis shows the range of possible responses

for the effectiveness of merge toolsets. The size and number

within each bubble represent the number of respondents with

a particular amount of software development experience that

rated their toolset at that specific effectiveness level.

For example, a practitioner with 6-10 years of experience

who indicates that her merge toolset is Extremely Effective
for small, simple merge conflicts would be represented in

the largest bubble (containing 19) in A1. She would also be

represented in the largest bubble (containing 13) in the bottom-

right plot (A4) if she indicated that her merge toolset was

Moderately effective for large, complex merge conflicts.

Observing the overall trends when moving between plots,

we find that practitioners perceive complexity of the conflict

to have a greater impact on the effectiveness of their merge

toolsets than the size of merge conflicts. Numerical analy-

sis confirms this when finding that the mean response for

archetype (A1) is 4.278 (where 5 is Extremely Effective and

1 is Not effective at all), (A2) is 3.782, (A3) is 3.347, and

(A4) is 2.783. The shift from small to large merge conflict

size (A1 to A2) results in a difference in mean responses of

0.496, whereas the shift from simple to complex merge conflict

complexity results in a difference in mean responses of 0.930.

These results suggest that merge tools are currently

equipped to handle increases in the size of merge conflicts,

but not as well equipped for increases in complexity. The

increasing amount of code being developed in distributed

environments means that scaling support in both dimensions

is necessary to accommodate practitioners’ needs.

IV. IMPLICATIONS

A. For Researchers

Our results inform future research by providing insights into

software practitioners’ perspectives during merge conflicts.

The top factors that impact the assessment of merge conflict

difficulty are primarily focused on program comprehension

(F1, F3, F4 from Table III). Program comprehension has

been an important research focus, with entire conferences

dedicated to it. Previous research has explored tool support and

visualizations to help comprehend programs, both small and

large. Our results indicate that practitioners still have unmet

needs along the following dimensions: (1) comprehending

code snippets in isolation, (2) understanding the code context

underlying multiple code snippets that are split across multiple

files, and commits, and (3) the ability to quickly comprehend

the complexity of these code snippets.

Practitioners indicate that their needs during merge conflict

resolutions center around the retrieval, organization, and pre-

sentation of relevant information (N1, N3, N4 from Table IV).

With the variety of meta-information available across different

toolsets, and the inconsistent use of terminology, there is a

need for standardization and best practices to be developed.

Standardization efforts would likely help to alleviate some of

the mistrust of merging tools that practitioners have expressed.

However, researchers should investigate the margin of errors

that are tolerated by practitioners to determine the context in

which practitioners discontinue use of tools.

Expertise is seen as both a significant factor that affects the

assessment of merge conflict difficulty (F2), and an important

need for practitioners to effectively resolve the conflict (N2).

Previous work has focused on recommending developers

best suited to perform a collaborative merge based on the

previous edits to conflicting files [54] or developers’ experi-

ence across branches and project history [36]. However, these

efforts have resulted in tools that require standalone installa-

tion and execution. Our results indicate that practitioners are

concerned about toolset fragmentation, and therefore adding

an additional tool might be counterproductive to the workflow

of most practitioners.

Finally, we find that practitioners need to quickly estimate

whether they can fix the conflict, and whether to resolve it

now or delay the resolution. This indicates that practitioners

need mechanisms to identify the skillsets required to complete

the conflict resolution task, by viewing the code fragments.

Research should investigate mechanisms to identify required

skillsets by using information retrieval or machine learning

techniques on the code fragment and past edits.

B. For Practitioners

Practitioners indicate that understanding code, having ap-

propriate information, and dealing with complex codesets are

key themes of difficulty when working with merge conflicts

(Sections III-A, III-B). Existing tool support can help with

some of these issues, but practitioners also need to educate

themselves on development processes that prevent and allevi-

ate the severity of merge conflicts. For example, the number of

conflicting files and the size of changes are considered impor-

tant factors. Researchers [55] have previously found that when

developers use distributed version control systems that they

commit small changes often. Therefore, practitioners should

strive to make smaller commits, and commit often. Other

agile development processes such as continuous integration,

iterative development, and branch merging policies are known

to facilitate development in large, distributed teams. However,

not all practitioners are actively using such techniques [56],

and further work is needed to determine how to enable and

ease adoption of these processes and practices.

C. For Tool Builders

Version control systems provide an easy method for storing

and retrieving recent development history, but examining older

development history at scale and in a usable manner has

not completely met practitioners’ expectations. Tool builders

should work to address this unmet need by leveraging research

in search systems for developer-assistance [57] and machine

475

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

learning-based code assistance [58] to provide intuitive and

expressive tools for history exploration.

Practitioners indicate that current merge toolsets do not

scale to handle large, complex merge conflicts (see Sec-

tion III-C6). To address this concern, tool builders should

look at consolidating feature sets that currently span multiple

tools in order to provide better usability (I1 from Table V).

Tool builders should also add more expressive search and

filtering features for both project history and meta-information

related to merge conflicts (I2, I3) to ease the frustration of

practitioners that must understand the context and evolution

of code involved in the conflict.

Finally, we found practitioners having to “guess-timate” the

difficulty of the conflict resolution to decide whether to work

on it now or delay it, or whether to integrate the changes or

simply start over. Prediction tools that identify the complexity

of conflicts and difficulty of resolution can help alleviate this.

V. THREATS TO VALIDITY

As in any empirical study, there are threats to validity with

our work. We attempt to remove these threats where possible,

and mitigate the effect when removal is not possible.

Construct: Interview questions were open-ended and de-

signed to elicit practitioner opinions about the experiences,

difficulties, and perceptions of merge conflicts. We determined

particular factors and needs after concluding all interviews,

and thus did not bias interview participants to only factors

previously mentioned. We created survey questions using fac-

tors found through card-based unitization. This methodology

allowed us to capture the common themes that practitioners

experience when working with merge conflicts, but might

have allowed themes specific to particular sub-groups to be

unrepresented in our results.

Internal Validity: Central tendency bias [59] occurs when

using 5-point Likert-type scales, since participants tend to

choose less opinionated answers. We lessen this effect by

examining the answers in comparison to each other, as op-

posed to analysis of absolute mean values. Because we use

this method to highlight stronger answers by degree, this also

means that we may have missed subtle trends across our data

that could have been visible otherwise.

External Validity: Interview results may not generalize to

all practitioners due to a small sample size, but we reduce

this effect by selecting interview participants from open- and

closed-source projects, varying industries, and varying project

sizes (see Table I). To expand and confirm our interview

results, we survey 162 practitioners to ensure our results match

with trends in the larger software development community. We

do not report a response rate for our survey, since social media

and mailing lists do not allow accurate measurement of the

number of individuals that read our recruitment message and

but did not choose to participate.

VI. RELATED WORK

Gousios et al. [60] conduct a study in which they ask

integrators to describe difficulties in maintaining their projects

and code contributions. They showed that integrators have

problems with their tools, have trouble with non-atomic

changesets, and rank git knowledge in the top 30% of their

list of biggest challenges. Gousios et al. [61] additionally

conducted a study into the challenges of the pull-based model

from the perspective of contributors. They found that most

challenges relate to code contribution, the tools and model

used to contribute, and the social aspects of contributing

(specifically highlighting merge conflicts). These works focus

on the collaborative processes that go into contributing to

open-source projects and operating as integrators within them,

whereas we examine the issues inherent to merge conflicts and

the tools built to support their resolution.

Guzzi et al. [35] conducted an exploratory investigation

and tool evaluation for supporting collaboration in teamwork

within the IDE. They found that developers working within a

variety of companies were able to quickly and easily resolve

merge conflicts, and did this using merge tools. However,

they also note that although automatic merging was used,

their participants also manually checked each conflict and

suggest that this reveals some mistrust of tools. Guzzi et al.

further explain that their interviewees avoid merge conflicts

by using strict policies and software modularity. Their results

complement our findings that toolset mistrust is a major

concern, and that standards need to be implemented in order

to avoid complex merge conflicts.

Codoban et al. [37] seek to evaluate developer understand-

ing and usage of code history. Our results show that tool

support during history exploration factors into the difficulty

of a merge conflict a moderate amount (N10). This result in-

dependently verifies their findings that practitioners experience

tool limitations in usability (I1) and history visualization (I4).

VII. CONCLUSION

Practitioner perceptions of merge conflicts have an impact

on their development process. First, they use perceptions to

determine which tactics they will use to resolve the con-

flict. After choosing how to resolve the conflict, practitioners

encounter a new set of needs, both technical and social.

Understanding these perceptions and needs is critical to un-

derstanding how to design tools which conform to the issues

that these practitioners face in collaborative development. We

provide actionable implications for researchers, tool builders,

and practitioners to harness the results of our study. In future

work, we hope to explore whether these factors, needs, and

desired toolset improvements can be seamlessly merged into

tools or techniques that assist developers’ workflows.

ACKNOWLEDGMENTS

We thank Iftekhar Ahmed, Amin Alipour, Alex Hoffer,

Michael Hilton, Sruti Ragavan, and the anonymous reviewers

for their valuable comments on earlier versions of this paper.

We also thank all of our interview and survey participants,

especially those who helped distribute survey links. This

research was partially supported by NSF grants CCF-1439957,

CCF-1553741, CCF-1560526, and IIS-1559657.

476

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Hattori and M. Lanza, “Syde: A tool for collaborative software
development,” in International Conference on Software Engineering
(ICSE), 2010, pp. 235–238.

[2] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in International Conference on
Software Engineering (ICSE), 2013, pp. 732–741.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in International Symposium and European
Conference on Foundations of Software Engineering (ESEC/FSE), 2011,
pp. 168–178.

[4] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in International Symposium on the Foundations of
Software Engineering (FSE), 2012, p. 45.

[5] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
merge conflicts in distributed software development,” in International
Conference on Global Software Engineering (ICGSE), 2014, pp. 26–35.

[6] C. R. de Souza, D. Redmiles, and P. Dourish, “Breaking the code,
moving between private and public work in collaborative software
development,” in International Conference on Supporting Group Work
(GROUP), 2003, pp. 105–114.

[7] M. Cataldo and J. D. Herbsleb, “Communication networks in geo-
graphically distributed software development,” in ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW),
2008, pp. 579–588.

[8] A. Sarma, “Palantir: Enhancing configuration management systems with
workspace awareness to detect and resolve emerging conflicts,” Ph.D.
dissertation, University of California, Irvine, 2008.

[9] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in International Conference on Software Engineering
(ICSE), 2012, pp. 342–352.

[10] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolution
by using fine-grained code change history,” in International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 2016, pp.
661–664.

[11] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans-
actions on Software Engineering (TSE), vol. 28, no. 5, pp. 449–462,
2002.

[12] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-aware
configuration management for object-oriented programs,” in Interna-
tional Conference on Software Engineering (ICSE), 2007, pp. 427–436.

[13] J. J. Hunt and W. F. Tichy, “Extensible language-aware merging,” in
International Conference on Software Maintenance (ICSM), 2002, pp.
511–520.

[14] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in International Conference on Software
Engineering (ICSE), 2010, pp. 175–184.

[15] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in International Symposium on
Foundations of Software Engineering (FSE), 2006, pp. 23–34.

[16] B. De Alwis and G. Murphy, “Answering conceptual queries with ferret,”
in International Conference on Software Engineering (ICSE), 2008, pp.
21–30.

[17] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in International Conference on Software
Engineering (ICSE), 2007, pp. 344–353.

[18] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
Advanced Empirical Software Engineering. Springer, 2008, pp. 285–
311.

[19] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in International Conference on
Software Engineering (ICSE), 2006, pp. 492–501.

[20] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical
Software Engineering. Springer, 2008.

[21] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,”
in International Symposium on the Foundations of Software Engineering
(FSE), 2012, p. 51.

[22] L. A. Goodman, “Snowball sampling,” The Annals of Mathematical
Statistics, pp. 148–170, 1961.

[23] “Companion site,” http://engr.oregonstate.edu/∼nelsonni/icsme17.html.

[24] C. B. Seaman, “Qualitative methods,” in Guide to Advanced Empirical
Software Engineering. Springer, 2008, pp. 35–62.

[25] P. I. Fusch and L. R. Ness, “Are we there yet? data saturation in
qualitative research,” The Qualitative Report, vol. 20, no. 9, p. 1408,
2015.

[26] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement,” Sociological Methods & Research, vol. 42,
no. 3, pp. 294–320, 2013.

[27] D. Spencer, Card Sorting: Designing Usable Categories. Rosenfeld
Media, 2009.

[28] W. Hudson, “Card sorting,” in The Encyclopedia of Human-Computer
Interaction. Interaction Design Foundation, 2013.

[29] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability,” The Internet and Higher Education, vol. 9, no. 1,
pp. 1–8, 2006.

[30] J. Ritchie, J. Lewis, C. M. Nicholls, R. Ormston et al., Qualitative Re-
search Practice: A Guide for Social Science Students and Researchers.
Sage, 2013.

[31] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
Engineering (TSE), vol. 26, no. 8, pp. 797–814, 2000.

[32] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering (TSE), no. 4, pp. 308–320, 1976.

[33] D. Garmus and D. Herron, Function Point Analysis: Measurement
Practices for Successful Software Projects. Addison-Wesley Longman
Publishing Co., 2001.

[34] C. R. Symons, “Function point analysis: Difficulties and improvements,”
IEEE Transactions on Software Engineering (TSE), vol. 14, no. 1, pp.
2–11, 1988.

[35] A. Guzzi, A. Bacchelli, Y. Riche, and A. van Deursen, “Supporting de-
velopers’ coordination in the IDE,” in Computer Supported Cooperative
Work & Social Computing (CSCW), 2015, pp. 518–532.

[36] C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “TIPMerge: Recom-
mending experts for integrating changes across branches,” in Interna-
tional Symposium on Foundations of Software Engineering (FSE), 2016,
pp. 523–534.

[37] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,”
in International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 1–10.

[38] C. R. B. de Souza and D. F. Redmiles, “An empirical study of software
developers’ management of dependencies and changes,” in International
Conference on Software Engineering (ICSE), 2008, pp. 241–250.

[39] A. Forward and T. C. Lethbridge, “The relevance of software docu-
mentation, tools and technologies: A survey,” in ACM Symposium on
Document Engineering (DocEng), 2002, pp. 26–33.

[40] K. Yamauchi, J. Yang, K. Hotta, Y. Higo, and S. Kusumoto, “Clustering
commits for understanding the intents of implementation,” in Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2014, pp. 406–410.

[41] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classification of large changes into maintenance categories,” in Interna-
tional Conference on Program Comprehension (ICPC), 2009, pp. 30–39.

[42] L. F. Cortés-Coy, M. L. Vásquez, J. Aponte, and D. Poshyvanyk, “On
automatically generating commit messages via summarization of source
code changes,” in International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2014, pp. 275–284.

[43] L. P. Hattori and M. Lanza, “On the nature of commits,” in International
Workshop on Automated engineeRing of Autonomous and run-tiMe
evolvIng Systems (ARAMIS), ASE Workshops, 2008, pp. 63–71.

[44] N. Meiran, “Modeling cognitive control in task-switching,” Psycholog-
ical Research, vol. 63, no. 3, pp. 234–249, 2000.

[45] D. Gopher, L. Armony, and Y. Greenshpan, “Switching tasks and
attention policies,” Journal of Experimental Psychology: General, vol.
129, no. 3, p. 308, 2000.

[46] G. M. Weinberg, Quality Software Management, Vol. 1: Systems Think-
ing. Dorset House Publishing Co., 1992.

[47] X. Sun, B. Li, Y. Li, and Y. Chen, What Information in Software
Historical Repositories Do We Need to Support Software Maintenance
Tasks? An Approach Based on Topic Model. Springer, 2015, pp. 27–37.

477

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

[48] J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and
M. Vierhauser, “Cold-start software analytics,” in International Con-
ference on Mining Software Repositories (MSR), 2016, pp. 142–153.

[49] Y. Yan, M. Menarini, and W. Griswold, “Mining software contracts for
software evolution,” in International Conference on Software Mainte-
nance and Evolution (ICSME), 2014, pp. 471–475.

[50] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2004, pp. 175–182.

[51] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Workshop on Experimental Computer Science (ExpCS), FCRC Work-
shop, 2007, p. 2.

[52] A. Blackwell and M. Burnett, “Applying attention investment to end-user
programming,” in Symposia on Human-Centric Computing Languages
and Environments (HCC), 2002, pp. 28–30.

[53] G. Convertino, J. Chen, B. Yost, Y. S. Ryu, and C. North, “Exploring
context switching and cognition in dual-view coordinated visualiza-
tions,” in International Conference on Coordinated and Multiple Views
in Exploratory Visualization (CMV), 2003, pp. 55–62.

[54] J. R. da Silva, E. Clua, L. Murta, and A. Sarma, “Niche vs. breadth:
Calculating expertise over time through a fine-grained analysis,” in Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2015, pp. 409–418.

[55] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” in Proceedings of the 36th International Conference on
Software Engineering (ICSE). ACM, 2014, pp. 322–333.

[56] S. Phillips, J. Sillito, and R. Walker, “Branching and merging: An
investigation into current version control practices,” in International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2011, pp. 9–15.

[57] T. Nabi, K. M. Sweeney, S. Lichlyter, D. Piorkowski, C. Scaffidi,
M. Burnett, and S. D. Fleming, “Putting Information Foraging Theory
to work: Community-based design patterns for programming tools,”
in Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2016, pp. 129–133.

[58] A. W. Bradley and G. C. Murphy, “Supporting software history explo-
ration,” in Working Conference on Mining Software Repositories (MSR),
2011, pp. 193–202.

[59] J. P. Guilford, Psychometric Methods. McGraw-Hill, 1954.
[60] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work

practices and challenges in pull-based development: The integrator’s per-
spective,” in International Conference on Software Engineering (ICSE),
2015, pp. 358–368.

[61] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspective,”
in Proceedings of the 38th International Conference on Software Engi-
neering (ICSE). ACM, 2016, pp. 285–296.

478

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 21:07:02 UTC from IEEE Xplore. Restrictions apply.

