
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Recommending Participants for
Collaborative Merge Sessions

Catarina Costa, Jair Figueirêdo, João Felipe Pimentel, Anita Sarma, and Leonardo Murta

Abstract—Development of large projects often involves parallel work performed in multiple branches. Eventually, these branches
need to be reintegrated through a merge operation. During merge, conflicts may arise and developers need to communicate to
reach consensus about the desired resolution. For this reason, including the right developers to a collaborative merge session is
fundamental. However, this task can be difficult especially when many different developers have made significant changes on
each branch over a large number of files. In this paper, we present TIPMerge, an approach designed to recommend participants
for collaborative merge sessions. TIPMerge analyzes the project history and builds a ranked list of developers who are the most
appropriate to integrate a pair of branches (Developer Ranking) by considering developers’ changes in the branches, in the
previous history, and in the dependencies among files across branches. Simply selecting the top developers in such a ranking is
easy, but is not effective for collaborative merge sessions as the top developers may have overlapping knowledge. To support
collaborative merge, TIPMerge employs optimization techniques to recommend developers with complementary knowledge
(Team Recommendation) aiming to maximize joint knowledge coverage. Our results show a mean normalized improvement of
49.5% (median 50.4%) for the joint knowledge coverage with the optimization techniques for assembling teams of three
developers for collaborative merge in comparison to choosing the top-3 developers in the ranked list.

Index Terms— Version Control, Branch Merging, Collaborative Merge, Developer Recommendation, Optimization

—————————— u ——————————

1 INTRODUCTION
he software development process often requires paral-
lel work made by multiple people because of a host of

reasons, such as time-to-market, maintenance of old ver-
sions, and implementation of a subsystem. Such parallel
work is usually isolated from each other by using branches.
A branch provides an isolated area where changes can be
made, designs explored, and code tested in parallel with
other teams working in other branches [1].

Changes made in branches need to be reintegrated pe-
riodically through a merge operation. The effort involved
in such an integration is usually dependent on how much
work went on in the branch and also in the other branches
in the intervening time [2], especially in situations when
conflicts occur [3].

In the case of conflicts, developers often need to discuss
their choice of conflict resolution with other developers
since conflicts also suggest differences in opinions and
strategies [4]. In such situations, some developers may not
have enough knowledge to make the right decision. There-
fore, the collective knowledge of project members can help
such conflict resolutions, with all involved parties partici-
pating in a collaborative effort [4], [5]. For instance, a sur-
vey of 164 developers [6] showed that when performing a
merge, people frequently (75%) contacted other developers
to resolve the conflicts together.

Inviting the right set of developers to a collaborative
merge session is a key requirement for dealing with this
problem. However, this requires knowledge about the pro-
ject to prioritize among developers [3]: who are aware of

the project history, the dependencies in the project, and the
changes in the branches. Inviting all involved developers
to a merge session is infeasible due to cost and developer
availability. Moreover, some developers may have similar
knowledge, as they may have changed the same files. In
this case, recommending such developers could lead to an
overlap in knowledge. Therefore, a global view of
knowledge distribution among developers is fundamental.

Existing approaches do not address how to select devel-
opers who are the best suited to perform a collaborative
merge. Some proposals focus on supporting collaborative
model merging [4], [7] and collaborative real-time editor
[5], [8]. These studies aim at enabling all involved partici-
pants to work in a collaborative fashion. We also found
works that assign developers to software activities, mainly
assigning developers to issues [9]–[16] or pull request [17]–
[23]. However, assigning developers to a collaborative
merge session brings additional challenges due to the
number of developers, the time interval between branch
synchronizations, and the number of commits per branch.
Finally, dependencies among files across branches add fur-
ther complexity to the merge process.

In this paper, we propose TIPMerge, an approach de-
signed to recommend developers for collaborative merge
sessions. TIPMerge builds a ranked list of developers who
are the most appropriate to integrate a pair of branches (the
Developer Ranking). As the top developers in the ranking
may have similar knowledge, this ranked list is then used
to detect knowledge coverage of the artifacts. TIPMerge
checks the developer’s knowledge coverage of changed
files and methods and shows which set of developers have
the highest joint coverage (the Team Recommendation). As
the number of developers in the ranking can be high, we
use an optimization algorithm to find which developers
make the best team to deal with a specific merge case.

In previous a paper [3], we presented the first version of
TIPMerge, which builds a ranked list of suitable candidates

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• Catarina Costa, João Felipe Pimentel, and Leonardo Murta are with the

Computing Institute, Fluminense Federal University, Niterói, RJ, Brazil.
E-mail: (ccosta, jpimentel, leomurta}@ic.uff.br.

• Jair Figueirêdo and Catarina Costa are with the Federal University of Acre,
Rio Branco, AC, Brazil. E-mail: {jjcfigueiredo, catarina}@ufac.br.

• Anita Sarma is with School of Electrical Engineering and Computer Sci-
ence, Oregon State University, Corvallis, OR, USA. E-mail:
anita.sarma@oregonstate.edu.

T

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

to perform the merge based on a medal count system. Alt-
hough useful for conventional merge, in which just one de-
veloper is selected for the task, picking the top developers
from a ranked list is not appropriate for collaborative
merges. This work complements our previous work by in-
troducing the concept of joint knowledge coverage and
providing an optimization strategy to select developers
that form the most suitable team for the merge. As shown
by our experiments, optimizing the joint knowledge cov-
erage when assembling teams of three developers for col-
laborative merge leads to a mean normalized improve-
ment of 49.5% in the knowledge coverage when compared
to choosing the top-3 developers in the ranked list.

In summary, our main contributions are:
Approach - We present an approach that analyzes

change history in branches, file dependencies, and the past
history to build a ranked list of developers who are the
most appropriate to integrate a pair of branches. Using this
ranked list, our approach is able to recommend the most
suitable developers in terms of joint knowledge coverage to
team up in a collaborative merge session.

Implementation - We implemented our approach in a
tool that is able to build a ranked list of suitable candidates
to perform the merge based on a medal count system. It
also recommends the maximum knowledge coverage for a
collaborative merge session. Given the number n of devel-
opers provided by the user, TIPMerge recommends the n de-
velopers that maximize the joint knowledge coverage.

Empirical Evaluation - We quantitatively evaluated
TIPMerge over 25 real-world projects. We verified the nor-
malized improvement in joint knowledge coverage of the
TIPMerge team recommendation for collaborative merge
over the selection of the top developers from the ranked
list. In summary, our evaluation was designed to answer
the following research question: Does the n-developer TIP-
Merge Team Recommendation for collaborative merge improve
the percentage of joint knowledge coverage over teaming up the
top-n developers from the Developer Ranking?

2 TIPMERGE
The primary goal of TIPMerge is to recommend teams for
a collaborative merge session with the expertise to inte-
grate changes across two branches. Our approach has the
following steps, shown in Fig. 1: (1) It extracts data from
the repository until the branch tips – the two most recent
commits of the two branches that will be merged (see Sec-
tion 2.2); (2) It detects dependencies among files by identi-
fying files that were frequently committed together. We
calculate dependencies from the data before the branch
creation (see Section 2.3); (3) It Identifies developers who
edited key files – files that were edited in both branches or
had dependencies across branches (see Section 2.4); (4) It
builds a ranked list of suitable candidates to perform the
merge based on a medal count system (see Section 2.5); (5)
It recommends a team of developers that have together the
maximum knowledge coverage over the key files for a col-
laborative merge session, considering the ranking and con-
tributions of each developer (see Section 2.6).

Fig. 1. Steps of the approach

2.1 Scenario
Here is an intentionally simple scenario that we use as a
running example to explain how TIPMerge works. Con-
sider a hypothetical project, Calculator, which employs a
feature branch in parallel to the master branch to imple-
ment advanced operations. Fig. 2 presents a commit his-
tory that includes these two branches, and five developers:
Alice, Alex, Bob, Peter, and Tom. Let us assume that Bob
creates a feature branch from the master (C50) and per-
forms three commits (C51, C54, and C56). Alex and Tom
also committed to this branch (C57 and C59, respectively).
Alice and Peter continue to work in the master branch in
parallel. Alice performs two commits (C52 and C53), fol-
lowed by two commits from Peter (C55 and C58). Let us
further assume that Alice and Bob change the same files,
QuadraticEquation and Subtraction, across the branches (see
Table 1 and Table 2). Alex also changed the file Subtraction
in the feature branch. Peter changed the files Multiplication
and Division in the master branch. Tom changed only the
file IEquation in the feature branch. However, there is a log-
ical dependency in this scenario: file QuadraticEquation de-
pends on file IEquation.

Fig. 2. Example of Merging Branches

TABLE 1
COMMITS IN THE MASTER BRANCH

File Name Alice Peter
QuadraticEquation 2 (C52, C53) 0
Subtraction 1 (C53) 0
Multiplication 0 2 (C55, C58)
Division 0 2 (C55, C58)

TABLE 2
COMMITS IN THE FEATURE BRANCH

File Name Alex Bob Tom
QuadraticEquation 0 2 (C51, C56) 0
Subtraction 1 (C57) 3 (C51, C54, C56) 0
IEquation 0 0 1 (C59)

In our example, developers are unaware of changes
made in the other branch. Therefore, Alice does not know
about the parallel changes in the feature branch made by
Bob to QuadraticEquation and Subtraction, and made by
Alex to Subtraction. An automatic merge of the branches
could fail due to direct conflicts. Further, Tom changed IE-
quation in the feature branch, on which QuadraticEquation
depends, and was changed by Alice in the master branch.
A merge of these branches could also generate build or test
failure due to indirect conflicts.

Additionally, Table 3 shows a hypothetical change his-
tory of the project files before the branching. Alex had ed-
ited all the five files and Anna four of the five files.

We analyze information about changes across branches
and those in the previous history since both are relevant.
Developers who have made changes in the branches know
about recent changes that need to be integrated. Develop-
ers who have modified files in the past may know about
the history and goals of the implementation.

C0 C50

C51 C54 C56 C59

C52 C53 C55 C58 C60

Bob Tom

Alice Peter

…
master

feature
C57

Alex

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

COSTA ET AL.: TITLE 3

TABLE 3
CONTRIBUTIONS IN HISTORY BEFORE BRANCHING

File Name Alex Alice Anna Bob Tom
QuadraticEquation 14 0 4 0 0
Subtraction 3 0 0 2 0
Multiplication 4 0 2 0 0
Division 1 0 3 0 0
IEquation 6 0 2 0 4

2.2 Data Extraction
The first step in our approach is extracting the data about
branches from the projects. Formally, we can define a pro-
ject 𝑝 as a tuple (𝐹, 𝐷, 𝐶), where F is a set of files, D is a set
of developers, and C is a set of commits. Each commit 𝑐) ∈
𝐶 is a tuple (𝐹), 𝑎), 𝑃)), where 𝐹) ⊆ 𝐹 is the set of files
changed (add, remove, or edit) by 𝑐); 𝑎) ∈ 𝐷 is the author
of 𝑐); and 𝑃) ⊂ 𝐶 is the set of parent commits of 𝑐).

Commits are organized in a directed acyclic graph (e.g.,
Fig. 2), where the first commit of the project has no parent
(e.g., commit C0 in Fig. 2), revision commits have only one
parent (e.g., commit C53 in Fig. 2), and merge commits have
two or more parents (e.g., commit C60 in Fig. 2). All reach-
able commits from 𝑐) form its history, including 𝑐) itself and
the transitive closure over its parents. In Fig. 2, {C0, …, C51,
C54, C56, C57, C59} is the history of commit C59. The his-
tory of 𝑐) ∈ 𝐶 is 𝐻) = 1𝑐 ∈ 𝐶2𝑐 = 𝑐) ∨ ∃𝑝5: (𝑝5 ∈ 𝑃) ∧ 𝑐 ∈ 𝐻5)8.

Two commits 𝑐), 𝑐5 ∈ 𝐶 that do not reach each other (i.e.,
𝑐) ∉ 𝐻5 ∧ 𝑐5 ∉ 𝐻)) are called variants (e.g., commits C58 and
C59 in Fig. 2). Variants may have a common history, which
comprises all commits that exist in both histories. In Fig. 2,
{C0, …, C50} is the common history of commits C58 and
C59. The common history of 𝑐), 𝑐5 ∈ 𝐶 is 𝐶𝐻),5 = 𝐻) ∩ 𝐻5.

The history of each variant also comprises commits that
do not belong to the common history, forming an inde-
pendent line of development called branch history. For ex-
ample, {C51, C54, C56, C57, C59} is the branch history of
C59 when merging with C58; and {C52, C53, C55, C58} is
the branch history of C58 when merging with C59 (Fig. 2).
As branches can be created from other branches, the
branch history may vary depending on the opposing
branch, as a consequence of different common histories.
The branch history of 𝑐) ∈ 𝐶 when merging with 𝑐5 ∈ 𝐶 is
𝐵𝐻),5 = 𝐻)\𝐻5.

Each branch history comprises a set of files changed by
its commits. The files changed in the branch history of 𝑐) ∈
𝐶 when merging with 𝑐5 ∈ 𝐶 is 𝐹),5 = ⋃ 𝐹?@A∈BCD,E .

In addition, files changed in the common history (i.e.,
⋃ 𝐹?@A∈FCD,E) are extracted to determine expertise over the
key files. Currently, we collect data of all past commits, but
the approach can be easily adapted to only consider
changes in a given time frame (e.g., past release) to accom-
modate decay in expertise [24].

2.3 Dependency Detection
Next, TIPMerge identifies dependencies among files that
are edited across branches. This is vital since parallel
changes to dependent files can cause indirect conflicts
when the branches are integrated. The majority of software
projects often use a combination of different programming
languages. Therefore, we use logical dependencies [25] in-
stead of structural coupling [26] in TIPMerge.

TIPMerge uses the change history of the project (before
branching) to determine dependencies between pairs of

files. Of course, it is possible that these dependencies might
change based on edits in the branches. However, the past
history provides us a baseline of these dependencies.

We assume that all commits within the same branch
have already been integrated: in our scenario, since Peter
and Alice are working on the same (master) branch, we as-
sume that Peter has integrated his changes with Alice’s
prior to his commits.

In order to understand how we compute the logical de-
pendencies across files, let’s assume that each file 𝑓H ∈ 𝐹 has a
set of dependencies 𝐷𝑒𝑝H ⊂ 𝐹 that are obtained by using an
association rule mining technique. An association rule is a
pair (𝑋, 𝑌) of two disjoint sets 𝑋, 𝑌 ⊂ 𝐹. In the notation 𝑋 →
𝑌, 𝑋 is called antecedent and 𝑌 is called consequent [27]. It
means that, when 𝑋 occurs, 𝑌 also occurs, even if they are
not structurally related [28]. However, its probabilistic in-
terpretation is based on the evidence in the transactions
[25], which is determined by two metrics [27]: (1) support,
the joint probability of having both antecedent and conse-
quent, and (2) confidence, the conditional probability of
having the consequent when the antecedent is present.

The confidence value can range from 0 to 1, where 1
means that every time that the antecedent is changed, the
consequent is also changed. In this case, the use of a thresh-
old is necessary because low confidence implies low prob-
ability that changing a file causes impact in the dependent
file. Therefore, the use of confidence (instead of support)
allows us to define the direction in the dependencies. De-
velopment teams have the freedom to decide the threshold
above which a dependency becomes relevant. Our ap-
proach parameterizes the threshold and uses the value set
by the user. Here, after some empirical tests, we have cho-
sen a confidence threshold of 0.6 to determine dependency.
We wanted a considerable value, a little above the middle,
thus we tested thresholds of 0.6 and 0.8. We found that 0.6
provided higher normalized improvement of the Devel-
oper Ranking accuracy in contrast with the top-k develop-
ers who performed most of the merges in the past.

In our scenario, we have dependencies between the files
QuadraticEquation and IEquation. IEquation was changed in
12 commits. Let us assume that of these 12 commits, 8 also
included changes to QuadraticEquation (Table 3). The confi-
dence of the association rule (IEquation →QuadraticEqua-
tion) is 8/12 = 0.66. Based on a threshold of 0.6, we say that
QuadraticEquation depends on IEquation. As confidence is
not symmetric, the confidence of the rule QuadraticEquation
→IEquation can be different. In our scenario, QuadraticEqua-
tion was changed in 18 commits, and of these 18 commits,
8 also included changes to IEquation. The confidence of this
rule is 8/18 = 0.44. Therefore, IEquation does not depend
on QuadraticEquation.

2.4 Key File Editors Identification
The next step in our approach is to identify the developers
who have modified files that are relevant to the merging of
the branches. We term these files as key files:

𝐾𝐹),5 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑓? ∈ 𝐹
R

R

S𝑓? ∈ 𝐹),5 ∩ 𝐹5,)T ∨
S𝑓? ∈ 𝐹),5 ∧ 𝐷𝑒𝑝? ∩ 𝐹5,) ≠ ∅T ∨
S𝑓? ∈ 𝐹5,) ∧ 𝐷𝑒𝑝? ∩ 𝐹),5 ≠ ∅T ∨
S𝑓? ∈ 𝐷𝑒𝑝H ∩ 𝐹),5 ∧ 𝑓H ∈ 𝐹5,)T ∨
S𝑓? ∈ 𝐷𝑒𝑝H ∩ 𝐹5,) ∧ 𝑓H ∈ 𝐹),5T ⎭

⎪⎪
⎬

⎪⎪
⎫

Key files are files changed in parallel in both branches
(e.g., Subtraction and QuadraticEquation) – captured in the
first line of the equation – or files that were changed in one

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

branch (e.g., IEquation), but have a dependency with files
that were changed in the other branch (e.g., QuadraticEqua-
tion) – captured in the second and third lines of the equa-
tion. As both the dependent and the dependency are con-
sidered key files, the fourth and fifth lines of the equation
are necessary to capture the dependencies. Changes to the
former class of files can cause a merge failure (direct con-
flicts), whereas changes to the latter class can potentially
lead to build or test failures (indirect conflicts). Only key
files are relevant for us, as all other files can be automati-
cally merged safely.

Once we have identified the key files, we identify the
developers who have changed these files: (1) in a branch,
which signals expertise in the change, or (2) in the previous
history, which signals expertise in the file.

In our scenario, the key files are QuadraticEquation, Sub-
traction, and IEquation. According to Table 1 and Table 2,
Alice changed QuadraticEquation twice and Subtraction
once in the master branch. Bob changed the same files in
the feature branch: two and three times, respectively. Alex
changed Subtraction once in the feature branch. Moreover,
Tom changed IEquation once in the feature branch. Accord-
ing to Table 3, Alice did not change any file in previous his-
tory, Bob changed Subtraction, and Tom changed IEquation.
Further, Alex changed all the key files and Anna changed
two of them (QuadraticEquation and IEquation).

2.5 Developer Ranking
Next, TIPMerge uses an algorithm that counts the number
and type of contribution – changes in a branch or in the
previous history – to build a ranking of suitable candidates
for performing the merge. We use a medal system to rank
developers. This is analogous to how countries are ranked
in the Olympic Games, based on medal counts. The follow-
ing rules define when developers receive gold, silver, or
bronze medals.

A gold medal is awarded when a developer changes a key
file in a branch. The rationale is that developers who
changed a key file are the most knowledgeable about the
change and its implications. They probably are also well
versed with the file in general, and therefore, likely to be
able to perform additional edits during a merge if neces-
sary. Gold medals are defined as:

𝐺),5(𝑑) = \] 𝐹? ∩ 𝐾𝐹),5
@A∈BCD,E∧^A_`

\ + \] 𝐹? ∩ 𝐾𝐹),5
@A∈BCE,D∧^A_`

\

A silver medal is awarded when a developer has changed
a key file in the past. Developers who created or edited files
in the past likely possess knowledge about the goals and
requirements of these files, which can be helpful. Silver
medals are defined as:

𝑆),5(𝑑) = \] 𝐹? ∩ 𝐾𝐹),5
@A∈FCD,E∧^A_`

\	

A bronze medal is awarded when a developer changes a
file that depends on another file. We assume that develop-
ers who have changed a dependent file may have learned
about the API of the file that they are using. Consequently,
they may know the goals and expectations of such a file,
which may help in determining the impact of a change.
Bronze medals are defined as:

𝐵),5(𝑑) = \]] 𝐷𝑒𝑝H ∩ 𝐹5,)
de∈fA@A∈BCD,E∧^A_`

\ + \]] 𝐷𝑒𝑝H ∩ 𝐹),5
de∈fA@A∈BCE,D∧^A_`

\	

TIPMerge assigns a medal for each edited file, irrespec-
tive of the number of commits made. In our scenario, Alice,
Alex, and Bob each get one gold medal for Subtraction, even
though Alice committed the file once in the master branch,
and Bob committed it three times and Alex once in the fea-
ture branch. Similarly, Bob and Alex each get one silver
medal for Subtraction, because of their past changes (before
branching). As commits may have different granularities
[29], counting commits for distinguishing the relevance of
the contribution over files could lead to incorrect interpre-
tations. Moreover, in our approach we assume that when a
developer edits a file, that developer has knowledge about
the entire file. While our approach can support a finer-
grained expertise calculation at the method level, we leave
it for future work as such fine-grained analysis would be
language dependent.

Our algorithm prioritizes developers with gold medals
since: (1) they are the expert on the change, and (2) they
have the most recent knowledge about the changed file. In
the case of a tie in the number of gold medals, we use the
number of silver medals to break the tie. This is because,
everything being equal, a developer who has more experi-
ence overall is likely to be more suitable in merging
changes. Finally, when there is a tie in the number of silver
medals, we consider bronze medals. The notion is that if
two developers have an equal knowledge of the changes
and an equal knowledge of the project history, a developer
who has additional knowledge about another file is more
suitable for the merge. This medal ranking is formally de-
fined as:

𝑅),5 =

⎝

⎜
⎜
⎜
⎜
⎛

𝑑k ∈ 𝐷

R

R

𝐺),5(𝑑k) + 𝑆),5(𝑑k) + 𝐵),5(𝑑k) > 0 ∧

⎝

⎜
⎜
⎛

𝐺),5(𝑑k) > 𝐺),5(𝑑kno) ∨

⎝

⎜
⎛

𝐺),5(𝑑k) = 𝐺),5(𝑑kno) ∧

p
𝑆),5(𝑑k) > 𝑆),5(𝑑kno) ∨

q
𝑆),5(𝑑k) = 𝑆),5(𝑑kno) ∧
𝐵),5(𝑑k) > 𝐵),5(𝑑kno)

r
s

⎠

⎟
⎞

⎠

⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

	

Table 4 shows that Alice and Bob changed Quadrat-
icEquation in the master and feature branches, respectively
– earning them gold medals. Alex and Anna also changed
it in the previous history, each receiving a silver medal. Al-
ice, Alex, and Bob changed Subtraction in the branches,
earning them a gold medal each. Alex and Bob get silver
medals for editing Subtraction file in the previous history.
Only Tom modified file IEquation in the feature branch
(earning a gold medal), and Tom, Alex, and Anna changed
this file in the previous history (earning silver medals). Al-
ice receives a bronze medal for IEquation, because she ed-
ited QuadraticEquation. Remember, file IEquation is a key
file because it was changed in the feature branch and Quad-
raticEquation, changed on the master branch, depends on
it. Moreover, our assumption is that to be able to under-
stand and edit the dependent file (QuadraticEquation), the
developer must have some knowledge about the depend-
ency (in this case the interface IEquation).

TABLE 4
MEDALS (GOLD | SILVER | BRONZE)

File Alex Alice Anna Bob Tom
QuadraticEquation 0 | 1 | 0 1 | 0 | 0 0 | 1 | 0 1 | 0 | 0 0 | 0 | 0
Subtraction 1 | 1 | 0 1 | 0 | 0 0 | 0 | 0 1 | 1 | 0 0 | 0 | 0
IEquation 0 | 1 | 0 0 | 0 | 1 0 | 1 | 0 0 | 0 | 0 1 | 1 | 0

By counting the medals and tie-breaking when neces-
sary, TIPMerge generates a Developer Ranking. In our sce-
nario, Bob has the same number of gold medals as Alice,

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

COSTA ET AL.: TITLE 5

but he has a silver medal, which places him in the first po-
sition (Table 5). Here, the first four candidates (Bob, Alice,
Alex, and Tom) all have gold medals. For the ones that
know about equal “amounts” of recent changes performed
in the branches (Bob and Alice with two gold medals each,
and Alex and Tom with one gold medal each), the tiebreak-
ers involving past changes or dependency information dif-
ferentiate them.

TABLE 5
DEVELOPER RANKING

Developer Gold Medal Silver Medal Bronze Medal
Bob 2 1 0
Alice 2 0 1
Alex 1 3 0
Tom 1 1 0
Anna 0 2 0

2.6 Team Recommendation for Collaborative
Merge

Collaborative merge recommendation considers the rank-
ing, the contributions of each developer, and the team size
to recommend a team of developers that together have the
maximum knowledge coverage over the key files to per-
form the merge.

TIPMerge identifies developers who have complemen-
tary expertise based on changes made in the key files in the
branches and previous history. Although the ranking de-
tailed in Section 2.5 sorts developers based on their exper-
tise, the top developers in the ranking may have similar
knowledge, as they may have changed the same files. In
this case, selecting these developers could lead to an over-
lap in knowledge and, consequently, in an ineffective col-
laborative merge session.

Recommending the optimal team of developers is a
combinatorics problem with the complexity of 𝑂(2y) for 𝑛
developers. Since the number of developers who have
made some changes to the project (and are therefore in the
ranking) can be high, it is desirable to have solutions that
do not require trying all the combinations to optimize the
combination of developers that TIPMerge recommends.
Meta-heuristics can achieve it and speedup the process at
the expense of having a chance of not finding the optimal
solution. In this work, we implemented a Tabu search me-
taheuristic algorithm [30]. However, other metaheuristics
are also suitable for this problem.

The user can parametrize the algorithm with a mini-
mum coverage threshold. The algorithm ignores all solu-
tions with less coverage than the threshold, speeding up
the process. For example, a threshold of 40% indicates that
teams with coverage of less than 40% of the total absolute
coverage considering all developers would be discarded.
On the other hand, a threshold of 0% indicates that all pos-
sible teams would be considered during the optimization.

Given n, the number of desired developers that a user
wants to invite to a collaborative merge, TIPMerge creates
an initial solution with the top n developers from the de-
veloper ranking. Then, the Tabu search looks for solutions
in the neighborhood that optimizes the current best solu-
tion until the execution time reaches the maximum dura-
tion or the algorithm performs a number of iterations with-
out changes. Both stop conditions are provided by the user
as configuration parameters.

The algorithm updates the current best solution as soon
as it finds a new solution with a higher coverage, given by
a fitness function. We keep older solutions in a temporary

Tabu list to avoid recalculations. The fitness function is
𝑓),5(𝑆) = 𝑊| × 𝐺),5~ (𝑆) +𝑊� × 𝑆),5~ (𝑆) +𝑊B × 𝐵),5~ (𝑆), where

𝐺),5~ (𝑆) = \] 𝐹? ∩ 𝐾𝐹),5
@A∈BCD,E∧^A∈�

\ + \] 𝐹? ∩ 𝐾𝐹),5
@A∈BCE,D∧^A∈�

\	

𝑆),5~ (𝑆) = \] 𝐹? ∩ 𝐾𝐹),5
@A∈FCD,E∧^A∈�

\	

𝐵),5~ (𝑆) = \]] 𝐷𝑒𝑝H ∩ 𝐹5,)
de∈fA@A∈BCD,E∧^A∈�

\ + \]] 𝐷𝑒𝑝H ∩ 𝐹),5
de∈fA@A∈BCE,D∧^A∈�

\	

This value is based on the number of unique medals that
the combination of developers has and the weight of these
medals. That is, developers with medals obtained from the
same files in the same branch contribute only once to the
solution. TIPMerge also explores solutions with fewer de-
velopers with the same fitness value, as fewer developers
needed for a collaborative merge is considered better.

For our running example we used 𝑊| 	= 	1,𝑊� 	=
	0.8, 𝑎𝑛𝑑	𝑊B 	= 	0.3, but users can parameterize weights
according to their needs.

When exploring the solution space, TIPMerge first tries
to increase the size of the team to improve the knowledge
coverage if the current solution has less than n developers,
where n is the user-specified number of developers to at-
tend the merge session. Then, it tries to decrease the num-
ber of developers but keeping the same coverage. Finally,
it generates mutations of the solution by replacing devel-
opers in the solution with other developers.

We now describe the TIPMerge team recommendation
process to select two developers (n = 2) for the merge ses-
sion presented in Section 2.1. Since the top two developers
are Bob and Alice (see Table 5), they comprise the initial
solution.

Bob and Alice. In the master branch, Alice has two gold
medals because she changed two key files. In the feature
branch, Bob has two gold medals because he changed two
key files. Considering the history, Bob has a silver medal.
Finally, Alice has a bronze medal. By combining their med-
als (as there is no intersection among changed files) Bob
and Alice have four gold medals (two in each branch), a
silver medal, and a bronze medal. Thus, their fitness value
is 1 × (2 + 2) + 0.8 × 1 + 0.3 × 1 = 5.1.

With this solution, TIPMerge tests to see if the number
of developers should be increased. It stops since the solu-
tion already has the maximum allowed number of devel-
opers (n = 2 in this example). Then, it tries to reduce the
number of developers, generating the following solutions:

Bob has two gold medals in the feature branch and a
silver medal. His fitness value alone is 1 × 2 + 0.8 × 1	 =
	2.8.

Alice has two gold medals in the master branch and a
bronze medal. Her fitness value is 1 × 2 + 0.3 × 1 = 2.3.

Both solutions are worse than Bob and Alice together.
Thus, TIPMerge mutates the current best solution. TIP-
Merge follows the ranking order for the mutations. Thus,
it replaces Bob with Alex, creating the following mutation:

Alex and Alice. Alice has two gold medals in the master
branch and a bronze medal. Alex has a gold medal in the
feature branch and three silver medals. Together, they have
three gold medals, three silver medals, and a bronze
medal. Thus, their fitness value is 1 × (2 + 1) + 0.8 × 3 +
0.3 × 1 = 5.7, which is higher than the current solution.
Thus, this solution becomes the current best solution.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Since there is a better solution, TIPMerge stops the mu-
tations and restarts the algorithm. Thus, it tries to reduce
the number of developers, creating the following solution:

Alex has a gold medal in the feature branch and three
silver medals. His fitness value is 1 × 1 + 0.8 × 3 = 3.4.
This value is lower than the current best solution.

Note that TIPMerge does not generate a new solution
for Alice since her solution is already on the temporary
Tabu list. Then, TIPMerge tries to mutate the solution, gen-
erating the following solutions:

Bob and Alex. Alex has a gold medal in the feature
branch, but this medal is the same as one of the two gold
medals that Bob has in the feature branch. Similarly, Bob
has a silver medal, but it is the same as one of the three
silver medals that Alex has. Thus, together they have 2
gold medals and 3 silver medals, and their fitness value is
1 × 2 + 0.8 × 3 = 4.4. This value is lower than the current
best solution.

Alex and Tom. Alex has a gold medal in the feature
branch and three silver medals. Tom has a gold medal in
the feature branch and a silver medal. Since Tom and Alex
have the same silver medal, together they have two gold
medals and three silver medals. Their fitness value is
1 × 2 + 0.8 × 3 = 4.4. This value is lower than the current
best solution.

Alex and Anna. Alex has a gold medal in the feature
branch and three silver medals. Anna has two silver med-
als that Alex also has. Thus, Anna does not contribute to
this solution and their solution together has the same fit-
ness function as Alex’s solution alone (3.4).

At this moment, the algorithm already tried all combi-
nations that replace Alice. Therefore, it tries to replace
Alex. The first solution is Bob and Alice, but it is already
in the temporary Tabu list. It continues the mutations as
follows:

Alice and Tom. Alice has two gold medals in the master
branch and a bronze medal. Tom has a gold medal in the
feature branch and a silver medal. Together, they have
three gold medals, a silver medal, and a bronze medal.
Their fitness value is 1 × (2 + 1) + 0.8 × 1 + 0.3 × 1 = 4.1.
This value is lower than the current best solution.

Alice and Anna. Alice has two gold medals in the mas-
ter branch and a bronze medal. Anna has two silver med-
als. Together, they have two gold medals, two silver med-
als, and a bronze medal. Their fitness value is 1 × 2 +
0.8 × 2 + 0.3 × 1 = 3.9. This value is lower than the current
best solution.

At this point, it is not possible to perform other muta-
tions to improve the current best solution. The algorithm
recognizes this after a number of iterations without
changes and stops. The ranking of candidates for a collab-
orative merge with a team of two developers is in Table 6.
Alice and Alex, at the second and the third positions in the
developer ranking (Table 5), respectively, have together the
maximum knowledge coverage for this example.

TABLE 6
TEAM RECOMMENDATION (TOP-6)

Developers Gold
Medal

Silver
Medal

Bronze
Medal Coverage

Alice, Alex 3 3 1 5.7 (74%)
Bob, Alice 4 1 1 5.1 (66%)
Bob, Alex 2 3 0 4.4 (57%)
Alex, Tom 2 3 0 4.4 (57%)
Alice, Tom 3 1 1 4.1 (53%)
Alice, Anna 2 2 1 3.9 (50%)

The coverage is represented as a percentage, which is
calculated as follows: before the algorithm starts, the total
absolute coverage value is calculated considering all devel-
opers available for the merge. This value is used to calcu-
late the percentage of each combination. In the case of Alice
and Alex, for example, 74% corresponds to the absolute
value of Alice and Alex (5.7) divided by the total absolute
value considering all developers (7.7).

3 IMPLEMENTATION
TIPMerge is an open-source project available at
https://github.com/gems-uff/tipmerge under the MIT
License. It is implemented in Java and analyzes projects
versioned on Git independently of their programming lan-
guage. TIPMerge is language agnostic when analyzing ex-
pertise at the file-level. For Java projects, TIPMerge can de-
tect method level changes, which allows for future utiliza-
tion of our approach. It however requires a parser that can
identify method level changes.

We use an adapted version of Dominoes [24], [31] to
identify logical dependencies among files across branches.
Dominoes organizes data extracted from software reposi-
tories into matrices to denote relationships among soft-
ware entities. For example, [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒] denotes the files
that were changed by commits in the project. These matri-
ces are combined to depict higher-order relationships, such
as logical dependencies among files: [𝑓𝑖𝑙𝑒|𝑓𝑖𝑙𝑒] =
[𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]� × [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]. Dominoes runs matrix
transformations in GPU, speeding up the analysis process.

To get the recommendations for a collaborative merge,
a user first needs to select the two branches to merge via
the TIPMerge UI (Fig. 3 (a)). The user can also fine tune the
analysis to specific file extensions (Fig. 3 (b)). Once TIP-
Merge analyzes the project information, it shows the files
that each developer has edited and the editing frequency
in terms of commits (Fig. 3 (c)). This information is pro-
vided for each branch, for the intersection of both
branches, and for the previous history. The user can also
check the logical dependencies by clicking on the Get De-
pendencies button (Fig. 3 (d)).

Fig. 3. Information about changed files in the branches and history

In the Dependencies Analysis window (Fig. 4), the user
can configure the confidence threshold (Fig. 4 (a)) to deter-
mine the direction of logical dependencies among files.
The user can see the information about dependencies
across branches (Branch One -> Branch Two and Branch
Two -> Branch One) (Fig. 4 (b)). The Developer Ranking is
obtained by clicking on the Get Ranking button (Fig. 4 (c)).

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

COSTA ET AL.: TITLE 7

Fig. 4. File Dependencies

TIPMerge presents a ranked list of developers in the De-
veloper Ranking window (Fig. 5). For each developer and
each file (Fig. 5 (a)), it indicates the gold, silver, and bronze
medals. It also shows the branch in which the change was
made or if the change was made in the previous history
(Fig. 5 (b)). Further information can be obtained through a
tool tip, by hovering over the medal count. After getting
the ranking, the user can ask for a team recommendation
for collaborative merge by clicking on the Recommend Col-
laborative Merge button (Fig. 5 (c)).

In the Collaborative Merge Configuration window (Fig. 6),
the user can configure the maximum number of develop-
ers (Fig. 6 (a)), the minimum coverage threshold, and the
weights of each medal (Fig. 6 (b)). The user can also filter
developers (Fig. 6 (c)). Finally, the user can set the stop con-
ditions: the maximum time duration and the number of it-
erations that result in no changes (Fig. 6 (d)).

Fig. 5. Developer Ranking

Fig. 6. Collaborative merge configuration

The Team Recommendation for Collaborative Merge win-
dow (Fig. 7) provides the maximum joint knowledge cov-
erage for n developers (Fig. 7 (a)). Here (Table 6) Alice and
Alex are in the first position since they have the highest
joint knowledge coverage of 74% (Fig. 7 (b)). This window
also shows the files that they changed together (Fig. 7 (c)).

Fig. 7. Team Recommendation for Collaborative Merge

4 EVALUATION
In order to assess the recommendation provided by TIP-
Merge, we answered the research question “Is the top-n
TIPMerge recommendation using the Developer Ranking more
accurate than the top-n developers who performed the most
merges in the past?” in a previous paper [3]. The results in-
dicated that 85% of the top-3 developers from the Devel-
oper Ranking correctly included the developer who per-
formed the merge. Best (accuracy) results of recommenda-
tions were at 98%. Moreover, in 82% of the merges, TIP-
Merge obtained higher accuracy than selecting the devel-
oper who performed most of the previous merges (i.e., the
majority class). Our interviews with developers of two pro-
jects revealed that in cases where the TIPMerge recommen-
dation did not match the actual merge developer, the rec-
ommended developer had the expertise to perform the
merge, or was involved in a collaborative merge session.

In this paper, we answer the research question “Does the
n-developer TIPMerge Team Recommendation for collabora-
tive merge improve the percentage of joint knowledge coverage
over teaming up the top-n developers from the Developer Rank-
ing?”. We compared the knowledge coverage of the n-de-
veloper in the Team Recommendation (n = 2 & 3) with that
of teaming up the top-n developers from the Developer
Ranking. We checked the accuracy of n = 2 since pairing
developers is a common practice, especially in Agile Meth-
ods. We explored n = 3 to increase the team size to the next
level.

4.1 Materials and Methods
To form the project corpus for our experiment, we started
from the 1,997,541 GitHub projects collected by Menezes et
al. [32]. We then selected the top 1,000 unique projects or-
dered by the number of developers. From this set, we se-
lected projects that were not forks and did not have a clear
integrator for analysis. For each project, we checked: (1)
whether the project includes merges, and (2) whether it
does not comprise a sole developer performing the major-
ity of the merges (majority class > 50%). The first criterion
is self-explanatory. The second criterion is used to filter out
those projects that either have an integration manager or a
small subset of developers who are responsible for per-
forming the merge. For instance, the project Git has a de-
veloper who performed 9,385 out of 9,699 total merges
(96.76%). Such projects do not need a recommendation sys-
tem and are filtered out from the dataset. After applying
these criteria, we had 27 projects.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Ideally, we would like to select only branch merges. But
we cannot identify such merges post hoc, as branches are
merely pointers to the tip commit and do not leave traces
in prior commits. Thus, we included a selection criterion:
merges should include (1) changes performed by two or
more developers in each branch and (2) key files. This cri-
terion only includes branch merges; but we may overlook
some simple branch merges with only one developer in a
branch. This dataset thus errs on the side of being too much
selective, eventually leading to false negatives. In two pro-
jects no merges fit the criteria. Consequently, this study an-
alyzed 2,040 branch merges in total, from 25 projects (see
Table 7), which represent the top 6% most complex merge
cases in those projects.

TABLE 7
PROJECT CORPUS

Project Lang Dev Date
activemerchant/active_merchant Ruby 402 11/23/15
akka/akka Scala 201 08/14/15
dschmidt/amarok Ruby 196 05/07/12
angular/angular TS 155 09/22/15
astropy/astropy Python 142 09/30/15
apache/Cassandra Java 103 06/01/15
mozilla/releases-comm-central TS 300 11/20/15
errbit/errbit Ruby 202 11/24/15
Netflix/eureka Java 36 08/10/15
Netflix/falcor JS 21 02/19/15
mozilla-mobile/firefox-ios C 40 08/13/15
jquery/jquery JS 227 12/06/09
Katello/katello Ruby 61 08/14/15
dib-lab/khmer Python 56 05/20/15
getlantern/lantern Go 48 08/20/15
apache/maven Java 45 06/22/15
nasa/mct Java 13 06/11/12
Perl/perl5 Perl 373 06/12/15
apache/phoenix Java 30 02/4/14
ComputationalRadiationPhysics/picongpu C++ 12 08/01/13
Netflix/Priam Java 27 06/02/15
gems-uff/sapos Ruby 10 07/30/15
spree/spree Ruby 638 11/20/15
sympy/sympy Python 385 03/01/16
voldemort/voldemort Java 55 07/29/15

Next, we calculated the Developer Ranking joint
knowledge coverage of top-2 and top-3 recommendations.
We then compared the Team Recommendation joint
knowledge coverage for 2 and 3 developers with the De-
veloper Ranking joint knowledge coverage for top-2 and
top-3, respectively. With these two values, we calculated
the joint knowledge coverage improvement of the Team
Recommendation to that of selecting from the Developer
Ranking.

As the Team Recommendation requires to set the num-
ber of developers and the weights of the medals, we cali-
brated the weights of the medals through a sensitivity test.
It used the following steps: (1) we randomly selected 120
merge cases of our dataset from four real projects (Akka,
Sympy, Katello, and Cassandra) – these merges were dis-
carded from the evaluation to avoid bias; (2) we set the
number of developers to n = 2 and 3; (3) we set different
medals weights varying from 1 to 0 with a step value of 0.1.
For instance, 𝑊� 	= 	1,𝑊� 	= 	0.9,𝑊� 	= 	0.8;		𝑊� 	= 	1,𝑊� 	=
	0.9,𝑊� 	= 	0.7;	𝑊� 	= 	1,𝑊� 	= 	0.9,𝑊� 	= 	0.6;… ;	𝑊� 	=
	0.3,𝑊� 	= 	0.2,𝑊� 	= 	0.1	, where 𝑊� > 𝑊� and 𝑊� > 𝑊�. In
total, the test had 120 different combinations of weights for
each merge case.

Considering the 120 merge cases and the 120 different
combinations of weights, we checked the number of

merges where we had improvement. Four combinations of
weights had the highest value (159 of 240 merges consider-
ing n = 2 and 3): 𝑊� 	= 	1,𝑊� 	= 	0.8,𝑊� 	= 	0.3;		𝑊� 	=
	0.9,𝑊� 	= 	0.8,𝑊� 	= 	0.4;	𝑊� 	= 	0.8,𝑊� 	= 	0.7,𝑊� 	=
	0.4;	𝑊� 	= 0.7,𝑊� 	= 	0.6,𝑊� 	= 	0.3. Since we needed to
choose a combination of weights, we defined in our exper-
iment the following: 	𝑊� 	= 	1,𝑊� 	= 	0.8,𝑊� 	= 	0.3. How-
ever, as discussed before, users can parameterize weights
according to their needs.

Directly comparing our dependent variable (i.e., joint
knowledge coverage) by their difference or direct propor-
tion may lead to inflated results (>100% improvement),
therefore, we use a measure for normalized improvement
in knowledge coverage.

Fig. 8 shows two scenarios where the joint knowledge
coverage difference between TR (Team Recommendation)
and DR (Developer Ranking) is 10%. In the first scenario
(Fig. 8 (a)), TR is 100% greater than DR (20% vs. 10%). In
the second scenario (Fig. 8 (b)), TR is just 12% greater than
DR (90% vs. 80%). If we simply calculate the difference in
knowledge coverage, it would indicate that both scenarios
are equivalent. On the other hand, if we perform a propor-
tional comparison, it would indicate a much higher in-
crease in the first scenario (100% vs. 12%).

Fig. 8. Examples of improvement in a dependent variable

Intuitively, it is clear that creating an algorithm that im-
proves an already high DR by 10% is much more difficult
(and useful) than improving on a low DR by the same
amount. For instance, the room for improving over DR in
the first scenario is 90% (from 10% to 100%) and TR only
reached 11% (10% ÷ 90%) of this potential. On the other
hand, the room for improving over DR in the second sce-
nario is only 20% (from 80% to 100%), but TR achieved 50%
(10% ÷ 20%) of this gain.

We thus normalize the percentage of improvement in
joint knowledge coverage by considering “the room for im-
provement” by using 𝑓� [14]:

𝑓� =

⎩
⎪
⎨

⎪
⎧𝑇𝑅� − 𝐷𝑅�

1 − 𝐷𝑅�
	, 𝑖𝑓	𝑇𝑅� > 	𝐷𝑅�

𝑇𝑅� − 𝐷𝑅�
𝐷𝑅�

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒									
 (Eq. 1)

Where 𝑇𝑅� represents the mean joint knowledge cover-
age obtained by the Team Recommendation for project 𝑝,
and 𝐷𝑅� represents the mean joint knowledge coverage of
the Developer Ranking for project 𝑝.

4.2 Results and Discussion
In our dataset (1,920 merges after discarding 120 merges
used in the sensitivity test), we calculated the normalized
improvement of joint knowledge coverage by the Team
Recommendation over that of the Developer Ranking.

Table 8 lists the mean joint knowledge coverage for the
top-2 developers in the Developer Rankings and for the
optimized Team Recommendation (n = 2) for each project.
We also list the normalized improvement of joint
knowledge coverage (Eq. 1) by the Team Recommendation
(color coded in the table). Team Recommendation led to
improvements in coverage for all projects except the MCT

10%

DR
0% 100%

20%

TR

80%

DR
0% 100%

90%

TR

(a)

(b)

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

COSTA ET AL.: TITLE 9

project. These improvements ranged from 2.2% (Falcor) to
52.4% (Phoenix), with a mean of 24.2% (median 21.2%).
Projects with already high coverage in the Developer
Rankings still improved with the Team Recommendations.
The MCT project is an outlier as it had only one merge case
with two developers in each branch. In this case, the devel-
opers in the top-2 Developer Ranking were the same as the
Team Recommendation for two developers.

Table 8 also presents similar data for three-developer
teams. The mean normalized improvement for three-de-
veloper teams is 49.5% (median 50.4%). In the Eureka pro-
ject, the normalized improvement is 100% and in Phoenix
it is 94.2% (from 91.3% to 99.5%), showing that the recom-
mendation with three developers can achieve a very high
or even full knowledge coverage.

TABLE 8
NORMALIZED IMPROVEMENT (NI) OF THE TEAM RECOMMENDA-

TION (TR) OVER THE DEVELOPER RANKING (DR)
Project Two-developer Teams Three-developer Teams

DR (%) TR (%) NI (%) DR (%) TR (%) NI (%)
Active Merchant 74.0 86.3 47.4 86.3 93.3 50.8
Akka 84.3 86.9 16.2 91.7 96.2 54.7
Amarok 68.0 71.5 10.8 77.8 81.9 18.6
Angular 56.5 61.3 11.0 73.1 75.3 8.3
Astropy 89.7 94.5 46.6 95.8 99.4 84.8
Cassandra 80.2 83.1 14.5 87.4 90.7 26.0
Comm-central 76.0 79.1 13.2 85.2 88.2 19.9
Errbit 73.1 78.3 19.6 85.4 88.7 22.2
Eureka 98.3 99.0 40.9 99.0 100.0 100.0
Falcor 93.2 93.4 2.2 96.0 98.8 69.5
Firefox for iOS 84.1 88.5 27.8 94.2 98.2 68.9
jQuery 79.1 89.0 47.1 87.8 97.7 80.8
Katello 74.0 78.0 15.7 84.2 88.4 26.8
Khmer 91.3 94.3 34.3 94.3 99.2 86.4
Lantern 89.5 92.5 29.1 91.3 97.4 70.7
Maven 89.2 92.4 29.1 95.8 96.2 10.7
MCT 74.1 74.1 0.0 89.7 89.7 0.0
Perl5 81.8 84.2 13.3 88.9 92.1 29.0
Phoenix 90.2 95.3 52.4 91.3 99.5 94.2
PIConGPU 88.1 92.9 40.4 95.6 98.6 68.9
Priam 93.6 94.7 18.1 96.3 99.1 76.0
Sapos 85.1 86.3 7.9 95.1 97.5 48.5
Spree 78.7 83.7 23.6 87.6 92.2 37.2
Sympy 80.3 84.5 21.2 89.1 92.9 34.5
Voldemort 81.2 85.7 24.0 91.5 95.8 50.4
Mean 24.2 49.5
Median 21.2 50.4

Fig. 9 uses box plots to compare the joint knowledge
coverages from the Team Recommendation and the Devel-
oper Ranking for two- and three-developer teams. It shows
that the Team Recommendation consistently does better.

Fig. 9. Developer Ranking (DR) and Team Recommendation (TR) joint
knowledge coverage distributions

To test for normality in the knowledge coverage data,
we used Shapiro-Wilk test (HØ = population is normally
distributed). We observed normality in the data for two-
developer teams (Developer Ranking p-value = 0.438 and
Team Recommendation p-value = 0.090) at 95% confidence
level. We did not observe normality in the data for three-
developer teams (Developer Ranking p-value = 0.052 and
Team Recommendation p-value = 0.001) at 95% confidence
level.

Thus, for the two-developer teams we used Fisher’s F
test (HØ = both populations have the same variance) to
check homoscedasticity and found that the variance is the
same (p-value = 0.750). Therefore, we applied the paired t-
test and observed a statistically significant difference (p-
value < 0.001) at 95% confidence level. We applied Wilcox
paired test for three-developer teams. We again observed a
statistically significant difference (p-value < 0.001) at 95%
confidence level.

We thus conclude that Team Recommendation for two
and three developers has higher joint knowledge coverage
in comparison to Developer Ranking for top-2 and top-3
developers. Finally, we checked the paired Cohen’s d effect
size (used for normal population) for two-developer team
and the Cliff’s Delta effect size (used for non-normal pop-
ulation) for three-developer teams. We observed a large ef-
fect size (1.416) [34] in the former and a medium effect size
(0.451) [35] in the latter. A lower effect size for three-devel-
oper teams was expected. As stated before, increasing an
already high value is harder. However, the mean normal-
ized improvement for three-developer teams is expressive
(49.6%).

We also analyzed whether the project characteristics,
such as number of commits, number of developers, num-
ber of merges, and number of branch merging, correlate
with the results, but we could not find any relevant corre-
lation.

In terms of execution time, TIPMerge presented differ-
ent times for different merge cases. TIPMerge generated
the Developer Ranking in few seconds for some cases, but
took more than one hour for others. The execution time de-
pends on the number of changed files; the larger the num-
ber of files the longer it is to check the dependencies. For
example, in a usual merge case with 29 files changed in
parallel and with dependencies, TIPMerge generated the
Developer Ranking with 7 developers in 1 second and 709
milliseconds, running on a i7 4790k (4GHz) with 4 cores
and 16 GB of memory (2 x 8 GB DDR3 1600). On the other
hand, in a more extreme merge case with 237 files changed
in parallel and with dependencies, TIPMerge needed 1
hour, 75 minutes, and 94 seconds to generate the Developer
Ranking with 265 developers, running on the same com-
puter. After obtaining the Developer Ranking, we applied
our optimization algorithm in the latter case, and we ob-
tained the Team Recommendation for two developers in 3
minutes and 1 second, and for three developers in 5
minutes and 6 seconds, in addition to the time needed to
obtain the Developer Ranking. This shows that the over-
head for obtaining the Team Recommendation is just a
small fraction of the total time, which includes the compu-
tation of the Developer Ranking.

5 THREATS TO VALIDITY
As in any study, our study has limitations. First, our ap-
proach uses the committers’ Git ID to identify developers.

jo
in

t k
no

w
le

dg
e

co
ve

ra
ge

60
%

70
%

80
%

90
%

10
0%

DR TR DR TR

Two−developer Teams Three−developer Teams

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

It is possible that developers use multiple aliases. We man-
ually verified the TIPMerge ranking with the merge devel-
oper to fix possible mistakes by considering their ID simi-
larity. Although this suffices in most cases, we may have
missed some cases when the aliases are lexically different.

Second, we checked for merges with at least two unique
developers in each branch. In these cases, there is no work-
space merge, which is a simpler scenario than branches
with a large number of contributors. However, we are ex-
posed to false negatives, as some merges of branches may
not be listed (branch merges with only one person on a
branch).

Finally, although we have commented about consider-
ing only changes in a given time frame (e.g., past release)
to accommodate decay in expertise, we considered all the
project history in our experiments. As the projects have dif-
ferent time frames, it can have some impact on the results.

6 RELATED WORK
To the best of our knowledge, there is no work that ad-
dresses recommendation of teams to collaborative merge
of branches. The more closely related works provide sup-
port for the identification of experts in software projects.
Besides that, some proposals focus on supporting collabo-
rative model merging.

6.1 Identification of Experts
Some approaches, such as Dominoes [24], [31], Emergent
Expertise Locator [36], Expertise Browser [37], and Usage
Expertise [38], aim at identifying experts in software pro-
jects. Some of these approaches (Dominoes and Emergent
Expertise Locator) are based on the approach by Cataldo et
al. [39], [40], who developed a technique to measure task
dependencies among people. They use matrices to repre-
sent various dependency relationships. From this, they aim
at answering who must coordinate with whom to get the
work done. Dominoes [24], [31] allows different kinds of
explorations over matrices, and can be used to identify ex-
perts for a given project or software artifact. Dominoes
[24], [31] is capable of using GPU for processing opera-
tions, which enables the analysis of large-scale data. Emer-
gent Expertise Locator [36] produces a ranked list of the
most likely emergent team members with whom to com-
municate, given a set of files currently deemed to be of in-
terest. Expertise Browser [37] identifies experts over re-
gions of the code, such as modules or even subsystems by
using the concept of: (1) Experience Atoms (EAs), which
are basic units of experience in change management sys-
tems, and (2) the atomic change (delta) made to the source
code or to the project’s documentation. Finally, the concept
of Usage Expertise [38] is introduced to recommend ex-
perts for files, where the developer accumulates expertise
not only by editing methods, but also by calling (using)
them.

All these approaches extract information from the Ver-
sion Control Systems and Issue Tracking Systems. Similar
to TIPMerge, some of these approaches analyze changes
performed via commits. Other approaches check for differ-
ent kinds of information, such as a method calls, opened
and closed issues, etc. While all these approaches identify
experts, they only take into consideration previous history,
and do not discern changes in branches. As a result, equal
weights are assigned to all files. However, in our situation

we know that changes across branches and their depend-
encies might have a bigger impact on the merge decision
than prior changes alone.

Other studies on identification of experts have focused
on pull request assignment [17]–[23] and factors that influ-
ence the reviewer assignment to pull requests [41]. Yu et al.
[19]–[21] proposed an approach that combines information
retrieval with social network analysis to help project man-
agers find a suitable reviewer for each pull request. Jiang
et al. [22], [23] proposed CoreDevRec to recommend core
members for contribution evaluation in GitHub. Core-
DevRec [23] uses support vector machines to analyze
different kinds of features, including file paths of modified
code, relationships between contributors and core mem-
bers, and activeness of core members. De Lima Júnior et al.
[17], [18] proposed the use data mining to identify the most
appropriate developers to analyze a pull request. They use
a set of attributes and classification strategies to suggest
developers to analyze pull requests. Also using data min-
ing, Soares et al. [41] mined association rules from 22,523
pull requests belonging to 3 projects and identified factors
that influence the reviewer assignment to pull requests,
such as that some reviewers have more chances to analyze
pull requests containing files that they have recently
changed.

These works are closely related to the recommendation
of developers for branch merging, as they aim to recom-
mend developers to verify the actual contribution and pos-
sibly merge it with the rest of the project. Nevertheless, in
general, pull requests contain commits of a single devel-
oper and are small [42]. Moreover, the author of the pull
request usually syncs their forked branch in advance to
ease reintegration, making the process more like a work-
space merge. In the more general case of merging branches,
the number of developers, the syncing interval, and the
number of commits per branch is variable and can be high
in some situations.

6.2 Collaborative Merge Support
Some proposals focus on supporting collaborative model
merging [4], [7] and collaborative real-time editor [5], [8].
Koegel et al. [4] propose an approach to collaborative
merging to facilitate discussion on conflicts and collabora-
tive conflict resolution. The approach is based on the appli-
cation and integration of Rationale Management into
Model Merging [4]. Brosch et al. [7] propose to use a model
checker to detect semantic merge conflicts in the context of
model versioning. This technique is used to check the se-
mantic consistency of an evolving UML sequence diagram
with respect to state machine diagrams that remain un-
changed [7]. Lautamäki et al. [8] and Nieminen [5] present
a process for real-time collaborative merging as well as a
web-based tool supporting the process, CoRED. A collabo-
rative real-time editor must somehow manage concurrent
edits by different users by applying each users' changes
into the shared document as well as possible [5].

These studies aim at enabling all involved participants
to work in a collaborative fashion. However, they do not
address how people should be chosen to participate in the
collaborative merge session. Studies based on model
checkers try to create strategies to facilitate the collabora-
tive modeling and works based on collaborative real-time
editors try to create an environment to help people resolve
the conflicts collaboratively. Nevertheless, these ap-
proaches still need support for choosing the right people to
collaborate, being complementary to TIPMerge.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

COSTA ET AL.: TITLE 11

7 CONCLUSION
In this research, we propose TIPMerge, a novel approach
that analyzes changes in branches, file dependencies, and
the past history to build a ranked list of developers who
are supposed to be the most appropriate to integrate a pair
of branches. Using this ranked list, TIPMerge is able to rec-
ommend the most suitable developers in terms of joint
knowledge coverage to a collaborative merge session. TIPMerge
can help software teams in complex merge cases, where
changes in key files can lead to direct and indirect conflicts.

We quantitatively evaluated TIPMerge over 25 real-
world projects. The Team Recommendation for two- or
three-developer teams led to a normalized improvement of
21.2% (median) and 50.4% (median) for collaborative
merge in comparison to choosing the top-2 or top-3 devel-
opers in the ranked list, respectively.

As a future work, we intend to qualitatively evaluate
the TIPMerge Team Recommendation in contrast to the
team composed by the top-n developers in the Developer
Ranking by interviewing the involved developers and ask-
ing which team is the most appropriate for some merge
case. Besides that, we would like to identify attributes that
indicate when merges should be performed by a single de-
veloper or team. TIPMerge could also consider other infor-
mation to recommend developers, such as developer skills
and social relationships. For instance, the skills on specific
design patterns or programming language features could
be considered during assignment. Besides that, as TIP-
Merge already has the option of not considering one or
more developers for a recommendation, we suggest that
TIPMerge could have an option to force someone to be part
of the recommendation for a collaborative merge, helping
on-boarding new developers.

ACKNOWLEDGMENT
This work is partially supported by CAPES (10614-14-1),
CNPq (305569/2014-7 and 306137/2017-8), FAPERJ (E-
26/201.523/2014), and NSF CCF- 1560526 and IIS-
1559657.

REFERENCES
[1] C. Bird and T. Zimmermann, “Assessing the Value of Branches with

What-if Analysis,” in ACM SIGSOFT Int’l Symp. Foundations of Software
Eng (FSE), New York, NY, USA, 2012, p. 45:1-45:11.

[2] C. Bird, T. Zimmermann, and A. Teterev, “A theory of branches as
goals and virtual teams,” in 4th International Workshop on Cooperative
and Human Aspects of Software Engineering, New York, NY, USA, 2011,
pp. 53–56.

[3] C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “TIPMerge: Recom-
mending Experts for Integrating Changes Across Branches,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, New York, NY, USA, 2016, pp.
523–534.

[4] M. Koegel, H. Naughton, J. Helming, and M. Herrmannsdoerfer, “Col-
laborative model merging,” in ACM international conference companion
on Object oriented programming systems languages and applications com-
panion, New York, NY, USA, 2010, pp. 27–34.

[5] A. Nieminen, “Real-time collaborative resolving of merge conflicts,”
in 2012 8th International Conference on Collaborative Computing: Network-
ing, Applications and Worksharing (CollaborateCom), 2012, pp. 540–543.

[6] C. Costa, J. J. C. Figueiredo, G. Ghiotto, and L. Murta, “Characterizing

the Problem of Developers’ Assignment for Merging Branches,” Int. J.
Softw. Eng. Knowl. Eng. IJSEKE, vol. 24, no. 10, pp. 1489–1508, 2014.

[7] P. Brosch et al., “Towards semantics-aware merge support in optimis-
tic model versioning,” in Models in Software Engineering, Berlin, Hei-
delberg, 2012, pp. 246–256.

[8] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and M.
Englund, “CoRED: browser-based Collaborative Real-time Editor for
Java web applications,” in ACM 2012 conference on Computer Supported
Cooperative Work, New York, NY, USA, 2012, pp. 1307–1316.

[9] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans.
Softw. Eng. Methodol., vol. 20, no. 3, pp. 1–35, 2011.

[10] J. Anvik and G. C. Murphy, “Determining implementation expertise
from bug reports,” in 4th International Workshop on Mining Software Re-
positories (MSR’07: ICSE Workshops 2007), 2007, pp. 2–2.

[11] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?,” in
International Conference on Software Engineering (ICSE), New York, NY,
USA, 2006, pp. 361–370.

[12] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, I. do C. Machado, T. F.
Vale, E. S. de Almeida, and S. R. de L. Meira, “Challenges and oppor-
tunities for software change request repositories: a systematic map-
ping study,” J. Softw. Evol. Process, vol. 26, no. 7, pp. 620–653, 2014.

[13] H. Kagdi and D. Poshyvanyk, “Who can help me with this change re-
quest?,” in IEEE 17th International Conference on Program Comprehen-
sion, 2009. ICPC ’09, 2009, pp. 273–277.

[14] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?,” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, 2012, pp. 451–460.

[15] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” in IEEE Interna-
tional Working Conference on Mining Software Repositories, Vancouver,
BC, 2009, pp. 131–140.

[16] T. Zhang and B. Lee, “How to Recommend Appropriate Developers
for Bug Fixing?,” in IEEE 36th Annual Computer Software and Applica-
tions Conference, Izmir, 2012, pp. 170–175.

[17] M. L. de Lima Júnior, D. M. Soares, A. Plastino, and L. Murta, “Auto-
matic assignment of integrators to pull requests: The importance of
selecting appropriate attributes,” J. Syst. Softw., vol. 144, pp. 181–196,
Oct. 2018.

[18] M. L. de Lima Júnior, D. M. Soares, A. Plastino, and L. Murta, “Devel-
opers Assignment for Analyzing Pull Requests,” in 30th Annual ACM
Symposium on Applied Computing, New York, NY, USA, 2015, pp. 1567–
1572.

[19] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?,” Inf. Softw. Technol., vol. 74, pp. 204–218, Jun. 2016.

[20] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer Recommender of
Pull-Requests in GitHub,” in IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, 2015, pp. 609–612.

[21] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Who Should Review this Pull-
Request: Reviewer Recommendation to Expedite Crowd Collabora-
tion,” in Software Engineering Conference (APSEC), 2014 21st Asia-Pa-
cific, Jeju, 2014, vol. 1, pp. 335–342.

[22] J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang, “Who should comment
on this pull request? Analyzing attributes for more accurate com-
menter recommendation in pull-based development,” Inf. Softw. Tech-
nol., vol. 84, pp. 48–62, Apr. 2017.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2917191,
IEEE Transactions on Software Engineering

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[23] J. Jiang, J.-H. He, and X.-Y. Chen, “CoreDevRec: Automatic Core
Member Recommendation for Contribution Evaluation,” J. Comput.
Sci. Technol., vol. 30, no. 5, pp. 998–1016, Sep. 2015.

[24] J. R. da Silva, E. Clua, L. Murta, and A. Sarma, “Niche vs. breadth:
Calculating expertise over time through a fine-grained analysis,” in
2015 IEEE 22nd International Conference on Software Analysis, Evolution
and Reengineering (SANER), Montréal, Québec, Canada, 2015, pp. 409–
418.

[25] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining Ver-
sion Histories to Guide Software Changes,” in Proceedings of the 26th
International Conference on Software Engineering (ICSE), Washington,
DC, USA, 2004, pp. 563–572.

[26] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Syst. J., vol. 13, no. 2, pp. 115–139, 1974.

[27] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proceedings of the 20th International Con-
ference on Very Large Data Bases, San Francisco, CA, USA, 1994, pp. 487–
499.

[28] G. A. Oliva and M. A. Gerosa, “On the Interplay between Structural
and Logical Dependencies in Open-Source Software,” in 2011 25th Bra-
zilian Symposium on Software Engineering (SBES), Sao Paulo, Brazil,
2011, pp. 144–153.

[29] L. P. Hattori and M. Lanza, “On the nature of commits,” in Automated
Software Engineering - Workshops, 2008. ASE Workshops 2008. 23rd
IEEE/ACM International Conference on, L’Aquila, Italy, 2008, pp. 63–71.

[30] F. Glover, “Tabu search—part I,” ORSA J. Comput., vol. 1, no. 3, pp.
190–206, 1989.

[31] J. R. da Silva Junior, E. Clua, L. Murta, and A. Sarma, “Exploratory
Data Analysis of Software Repositories via GPU Processing,” in The
International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE), Vancouver, Canada, 2014, pp. 495–500.

[32] G. G. L. Menezes, L. G. P. Murta, M. O. Barros, and A. V. D. Hoek, “On
the Nature of Merge Conflicts: a Study of 2,731 Open Source Java Pro-
jects Hosted by GitHub,” IEEE Trans. Softw. Eng., pp. 1–1, 2018.

[33] G. L. Pappa and A. A. Freitas, “Automatically evolving rule induction
algorithms,” in Machine Learning: ECML 2006, Springer, 2006, pp. 341–
352.

[34] J. Cohen, “A power primer,” Psychol. Bull., vol. 112, no. 1, pp. 155–159,
1992.

[35] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropri-
ate statistics for ordinal level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE and other sur-
veys,” in annual meeting of the Florida Association of Institutional Re-
search, 2006, pp. 1–33.

[36] S. Minto and G. C. Murphy, “Recommending Emergent Teams,” in
Fourth International Workshop on Mining Software Repositories (MSR),
Washington, DC, USA, 2007, p. 5–.

[37] A. Mockus and J. D. Herbsleb, “Expertise Browser: A Quantitative Ap-
proach to Identifying Expertise,” in 24th International Conference on
Software Engineering (ICSE), New York, NY, USA, 2002, pp. 503–512.

[38] D. Schuler and T. Zimmermann, “Mining Usage Expertise from Ver-
sion Archives,” in International working conference on Mining software
repositories (MSR), New York, NY, USA, 2008, pp. 121–124.

[39] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical Congru-
ence: A Framework for Assessing the Impact of Technical and Work
Dependencies on Software Development Productivity,” in Proceedings
of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, New York, NY, USA, 2008, pp. 2–11.

[40] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley, “Iden-
tification of coordination requirements: implications for the Design of
collaboration and awareness tools,” in 20th anniversary conference on
Computer supported cooperative work (CSCW), 2006, pp. 353–362.

[41] D. M. Soares, M. L. de Lima Júnior, A. Plastino, and L. Murta, “What
factors influence the reviewer assignment to pull requests?,” Inf. Softw.
Technol., vol. 98, pp. 32–43, Jun. 2018.

[42] G. Gousios, M. Pinzger, and A. van Deursen, “An Exploratory Study
of the Pull-based Software Development Model,” in 36th International
Conference on Software Engineering (ICSE), Hyderabad, India, 2014, pp.
345–355.

Catarina Costa is a Professor at Universidade Fe-
deral do Acre (UFAC). She holds a Ph.D. (2017) de-
gree in Computer Science from Universidade Fed-
eral Fluminense (UFF), a M.S. (2010) degree also in
Computer Science from Universidade Federal de
Pernambuco (UFPE), and a B.S. (2007) degree in In-
formatics from UFAC. Her research area is soft-

ware engineering, and her current research interests include configu-
ration management, software evolution, and global software develop-
ment.

Jair Figueiredo is a Software Engineer at Federal
Institute of Acre (IFAC). He holds a M.S. (2011) de-
gree in Computer Science from Universidade Fed-
eral de Pernambuco (UFPE) and a B.S. (2007) de-
gree in Informatics from Universidade Federal do
Acre (UFAC). His research area is software engi-
neering and performance evaluation and his cur-

rent research interests include configuration management and data
engineering.

João Felipe Pimentel is a PhD student at Univer-
sidade Federal Fluminense (UFF). He graduated
with Honors from UFF with a degree in Computer
Science (2014). He was an undergraduate research
student (CNPq), acting on automatic refactoring of
source code. Currently, he is working with prove-
nance from scripts and interactive notebooks.

Anita Sarma is an Associate Professor in the School
of Electrical Engineering and Computer Science, at
Oregon State University. She holds a Ph.D. degree
in Computer Science from the University of Cali-
fornia, Irvine. Her research interests lie primarily
in the intersection of software engineering and
computer-supported cooperative work, focusing

on understanding and supporting coordination as an interplay of peo-
ple and technology. She has over 100 papers in journals and confer-
ences. Her work has been recognized by an NSF CAREER award as
well as several best paper awards.

Leonardo Gresta Paulino Murta is an Associate
Professor at the Computing Institute of Univer-
sidade Federal Fluminense (UFF). He holds a Ph.D.
(2006) and a M.S. (2002) degree in Systems Engi-
neering and Computer Science from
COPPE/UFRJ, and a B.S. (1999) degree in Infor-
matics from IM/UFRJ. He has published over 150

papers in journals and conferences and received an ACM SIGSOFT
Distinguished Paper Award at ASE 2006 and three best paper awards
at SBES, in 2009, 2014, and 2016. His current research interests include
configuration management, software evolution, software architec-
ture, and provenance.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:17:54 UTC from IEEE Xplore. Restrictions apply.

