
Empirical Evidence of the Benefits of Workspace

Awareness in Software Configuration Management
Anita Sarma

Institute for Software Research
Carnegie Mellon University,

Pittsburgh, PA 15213
asarma@cmu.edu

David Redmiles and André van der Hoek

Department of Informatics
University of California, Irvine

Irvine, CA 92697-3440
{redmiles,andre }@ics.uci.edu

ABSTRACT
In this paper, we present results from our empirical evaluations of

a workspace awareness tool that we designed and implemented to

augment the functionality of software configuration management

systems. Particularly, we performed two user experiments directed

at understanding the effectiveness of a workspace awareness tool

in improving coordination and reducing conflicts. In the first ex-

periment, we evaluated the tool through text-based assignments to

avoid interference from the well-documented impact of individual

differences among participants, as these differences are known to

lessen the observable effect of proposed tools or to lead to them

having no observable effect at all. This strategy of evaluating an

application in a domain that is known to have less individual dif-

ferences is novel and in our case particularly helpful in providing

baseline quantifiable results. Upon this baseline, we performed a

second experiment, with code-based assignments, to validate that

the tool’s beneficial effects also occur in the case of programming.

Together, our results provide quantitative evidence of the benefits

of workspace awareness in software configuration management, as

we demonstrate that it improves coordination and conflict resolu-

tion without inducing significant overhead in monitoring aware-

ness cues.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
Programmer workbench. D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement – version control. D.2.9

[Software Engineering]: Management – software configuration
management

General Terms
Management, Experimentation, Human Factors

Keywords
User experiments, evaluation, conflicts, parallel work, workspace

awareness, software configuration management

1. INTRODUCTION
The concept of awareness, characterized as “an understanding of

the activities of others to provide a context for one’s own activi-

ties” [1], has been researched in the field of Computer-Supported

Cooperative Work to facilitate coordination in group activities [2,

3]. Specifically, in being aware of the activities of team members,

an individual can relate their own activities to those of their col-

leagues, enabling them to identify and address a variety of coordi-

nation problems [1, 4].

Recently, the software configuration management (SCM) commu-

nity has recognized the potential of awareness, and there is a

growing body of research that builds tools centered on awareness

concepts to manage coordination in software development. SCM

tools in particular are exploring the notion of workspace aware-

ness (as it first emerged in groupware systems [5]) to support

coordination across multiple developers working in parallel on the

same code base [6-8]. The intention is for developers to be con-

tinuously informed of ongoing changes in other workspaces, as

well as the anticipated effects of those changes, so they can detect

potentially conflicting changes and respond proactively. Example

responses may include contacting the other party for discussion,

holding off on one’s changes until another developer has checked

in theirs, using the SCM system to look at another developer’s

workspace to determine the extent of a conflict, and other like-

minded actions. Conflicting changes can thus be addressed before

they become too severe. They may even be avoided altogether,

when developers reconsider whether to edit an artifact that they

know someone else is modifying at that time.

Numerous instances of observational case studies exist that articu-

late the presence and nature of coordination problems in software

development and have guided the design and implementation of a

host of different coordination tools [8-10]. Few resulting tools,

however, have been empirically evaluated (exceptions include,

e.g., Hipikat [11], Celine [12], O’Reilly’s command console

[13]). Of the tools that provide workspace awareness in software

configuration management, in fact, just two provide any evidence

of their benefits: FASTDash [14] and CollabVS [15]. FASTDash

was evaluated through observations of actual use; CollabVS was

evaluated in a laboratory experiment. Both evaluations provide

initial, relatively coarse-grained evidence (see Table 1, Section 2).

This paper reports the results of an extensive empirical evaluation

of Palantír [16], our own workspace awareness tool for SCM. Our

results complement the results of FASTDash and CollabVS with a

detailed and quantitative analysis that sheds light on how devel-

opers coordinate their parallel efforts, when they detect conflicts,

how and when they resolve them, and whether there exists signifi-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGSOFT 2008/FSE-16, November 9--15, 2008. Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-59593-995-1...$5.00.

cant overhead in using the overall approach of workspace aware-

ness. We are able to achieve these very detailed results through a

novel evaluation methodology, which uses a two-stage experiment

to address individual differences in programming aptitude. By

evaluating the tool with text assignments first and only then con-

firming the results with programming assignments, we are able to

provide clearer and more precise evidence of how workspace

awareness supports developers in detecting and resolving con-

flicts.

The first experiment was designed to evaluate Palantír through

cognitively neutral, text-based assignments – non-coding assign-

ments involving text that, to avoid bias, was neither too complex

nor too interesting. Individual differences arising from variances

in technical skills have been reported to drastically impact ex-

periments of the kind we use here (when conducted in program-

ming domain), to the point where either limited or no observable

conclusions can be drawn from the data that is collected [17, 18].

To address this problem, this first experiment takes place in a

domain where variance due to individual differences is minimal.

This experiment evaluates Palantír’s basic behavior as well as its

user interface and how its design and the information it presents

help the person involved in coordinating parallel work. We found

that participants showed significant improvement in detecting and

resolving conflicts when using Palantír, compared to without it.

We further observed minimal overhead in monitoring awareness

cues, but noticed clearly extra effort in resolution of indirect con-

flicts, extra effort that paid of with code checked in to the SCM

repository that has fewer remaining inconsistencies.

The second experiment evaluated Palantír in the software domain

by using programming (Java) assignments. The results were com-

parable to the text experiment: participants using Palantír showed

significantly improved conflict detection and resolution rates over

those without Palantír, monitoring awareness cues involved mini-

mal overhead, and resolution of indirect conflicts required extra

effort that paid of with code in the SCM repository that was free

of indirect conflicts.

The results presented in this paper build upon results presented in

a previous, short paper [19]. The previous paper reported some of

the findings of the programming-oriented experiment. In this pa-

per, new material includes the text-based experiment, additional

findings and detail on the programming experiment, and the quan-

titative conclusions that we now can draw regarding the value of

workspace awareness in SCM.

The rest of the paper is structured as follows. Section 2 presents

background work on coordination in software development along

with examples of existing SCM workspace awareness tools. Sec-

tion 3 briefly describes Palantír, the awareness tool that we evalu-

ated. It is followed by a description of our experimental setup and

results in Section 4. Section 5 discusses the implications of our

findings for coordination tools and their design in software devel-

opment. We discuss the threats to validity for our experiment in

Section 7 and conclude in Section 8.

2. BACKGROUND
A typical software development team consists of multiple devel-

opers who work together on closely related sets of common arti-

facts, a scenario that requires constant and complex coordination

efforts. Particularly when change activities that involve multiple

developers and interdependent artifacts are not carefully planned,

conflicts are bound to occur. Even when the change activities are

planned, however, it is well-known that conflicts occur, even with

the use of sophisticated SCM systems [9, 20].

Conflicts occur in two cases: (1) when multiple developers con-

currently edit the same artifact, and (2) when changes to one arti-

fact affect concurrent changes to another artifact [9, 10]. In the

first case, two developers edit the same artifact in separate work-

spaces, so their respective changes need to be combined to create

a consistent version (merge tools help, but cannot always guaran-

tee a semantically consistent and desired outcome [9, 21], as a

result of which merging is still a bothersome and often manual

process). We term this kind of conflict a Direct Conflict. As an

example of the second case, it may happen that a developer work-

ing in his or her private workspace modifies a library interface

that another developer just imported and started referring to as

part of a change in his or her private workspace. This kind of

conflict is usually more difficult to detect, as it tends to reveal

itself at a later stage in the development process (e.g., as a build

failure, test case failure, or, worse, bug after deployment). We

term this kind of conflict an Indirect Conflict.

A number of factors contribute to why these kinds of conflicts

occur and why they are difficult to deal with:

• Software development is inherently multi-synchronous. De-
velopers check out artifacts from SCM repositories into their

workspaces and thereafter essentially work in isolation, mak-

ing changes to the artifacts in their own, private workspaces.

Only after changes are complete do developers interact with

the SCM repository to check in the artifacts that they modi-

fied. Between the time a developer checks out an artifact and

the time they check it back in, they have no knowledge of the

ongoing changes in other workspaces and how these changes

relate to their own work (and vice versa) [8, 22].

• Software involves intricate code dependencies, which evolve
continually [3, 10]. This means that any mental picture a de-

veloper has of the code’s modularization and that may assist

him or her in relating their own code changes to those of oth-

ers, can become out of date and miss important elements.

• Changes to artifacts are not instantaneous, but occur at the
pace of human coding. Between the time when a developer

checks out an artifact and the time they check it back in, a

significant window of time exists in which conflicts may be

introduced and grow from small and innocuous at the begin-

ning to large and complex as time passes and code changes

continue to be made [10, 20].

• Conflict resolution after the fact is a complicated activity. In
particular, once a conflict has been identified, a developer

must go back in time, understand both conflicting changes in

full, and find ways to meaningfully combine them. Evidence

shows that this is not an easy task, and often will need to in-

volve other team members to resolve issues that arise [16].

Various ethnographic studies have confirmed these observations

and documented how developers have to work outside of the cur-

rent coordination functionalities offered by SCM systems to ad-

dress coordination problems that arise. Frequently, indeed, ad hoc

coordination conventions emerge [8, 23, 24] For example, Grinter

observed that developers in a software firm used the SCM reposi-

tory to pace their development efforts to avoid having to resolve

conflicts, specifically by periodically querying who checked out

what artifacts [25]. If they thought a conflict might be imminent,

developers would try to complete their work before others, as the

developer who checks in first would generally not be responsible

for reconciling any future conflicts. It is the developers who

checks in later who must integrate their changes with the current

version in the repository [26]. As a second, related example, de

Souza et al. found that developers frequently checked in incom-

plete changes to reduce the probability of having to resolve con-

flicts themselves [23]. As a final example, Perry et al. found that

developers used Web posts to warn colleagues about changes that

they were about to commit as well as their anticipated effects on

other artifacts, so those developers who were editing or otherwise

using those other artifacts were at least forewarned [9]. In all of

these cases, we note that state-of-the-art SCM systems were in use

and that the support provided by the SCM system was found criti-

cal and was used all the time. At the same time, however, these

and other studies are highlight that modern SCM systems provide

insufficient capability in enabling coordination styles that rely on

a more direct and informal basis of communication.

Workspace awareness is a relatively new approach in the field of

SCM, aiming to improve the coordination functionalities provided

by SCM systems, primarily by overcoming the workspace isola-

tion “enforced” by SCM systems [13, 16, 27]. Workspace aware-

ness tools are based on the third observation above, namely that

human coding takes time and that therefore conflicts emerge

slowly. They particularly operate in the resulting window between

check out of the original artifact and check in of the final modified

artifact by transmitting information about ongoing changes across

workspaces. The intended goal is to enable developers to build an

understanding of which changes in which other workspaces might

interfere or otherwise relate to their own. With this understanding,

they can proactively coordinate their work with that of other de-

velopers, particularly if they note that a (direct or indirect) conflict

is emerging. They may contact the other developer, use the SCM

system to inspect an ongoing change in another workspace, abort

their current change until the other person’s work is done, or em-

ploy other such responses. The cost of these kinds of responses,

since the conflict emerges slowly and is generally small in size

when it is first detected, is anticipated to be much cheaper than

when the conflict is fully developed and must be addressed later.

A number of design guidelines have emerged for the construction

of workspace awareness tools for SCM: (1) provision of relevant

information, (2) timeliness of when the information is shared, (3)

unobtrusive presentation of the information, and (4) peripherally

embedding awareness cues in existing development environments

to avoid context switches [5, 28]. Following these guidelines, a

number of different types of workspace awareness tools have been

researched and built. Some tools provide basic information about

the presence of direct conflicts stemming from concurrent changes

to the same artifact (e.g., BSCW [29], Jazz [27], FASTDash [14]).

Other tools provide additional information regarding direct con-

flicts, such as the nature and size of the conflict (e.g., Celine [12],

State Treemap [30]). A final set of tools performs code analyses to

identify potential indirect conflicts that arise because of dependent

artifacts that are modified in parallel (e.g., TUKAN [31], Palantír

[16], CollabVS [15]).

To the best of our knowledge only two of these workspace aware-

ness tools have been empirically evaluated. FASTDash [14] is a

workspace awareness tool that presents information of ongoing

project activities and uses both a large wall display and personal

visualizations to highlight concurrent edits to the same artifact. It

was evaluated through observing the coordination patterns in an

agile team, both before and after deployment of the tool. The au-

thors found the developers to communicate more with the use of

FASTDash and found a reduction in the amount of overlapping

work. CollabVS [15] is close in functionality to Palantír and was

evaluated through a user experiment. Surveys were used to deter-

mine how participants valued different features of CollabVS.

Complementing these two evaluations, this paper contributes

detailed and quantitative evidence of the benefits of workspace

awareness in SCM, both in case of direct and indirect conflicts.

Through our novel evaluation methodology, we provide statistical

evidence of an increased number of conflicts that are detected, an

increased number of conflicts that are resolved, and a low over-

head in monitoring awareness cues for both types of conflicts. We

also find a correlation between the increased number of indirect

conflicts detected and the need to communicate about these con-

flicts to resolve them. A summary of how our work enhances and

details the previous results is provided in Table 1.

Table 1. Comparison of FASTDash, CollabVS, and Palantír.

Feature FASTDash CollabVS Palantír

focus of the

study

impact of

awareness on a

team’s work

practices

(broadly)

impact of

awareness on

conflict resolu-

tion and asso-

ciated coordi-

nation actions

(specifically)

impact of

awareness on

conflict detec-

tion, resolution,

and associated

coordination

actions (spe-

cifically)

study type observational

in actual devel-

opment setting

laboratory ex-

periment

comparative

laboratory ex-

periment

conflict type any conflict

detected from

awareness of

actual concur-

rent edits

one seeded

conflict, in-

volving both

direct and indi-

rect aspects

three seeded

direct conflicts,

three seeded

indirect con-

flicts

method survey, obser-

vation

survey, video

recording

observation,

video recording

team size 6 2 3

experiment

sets

2(pre), 2 (post) 8 26 (text), 14

(Java)

result type quantitative qualitative quantitative

granularity

of results

coarse-grained coarse-grained fine-grained

observed

results

increase in

communica-

tion, reduction

in overlap of

work

improved abil-

ity to detect

and resolve

conflicts

improved abil-

ity to detect

and resolve

conflicts, mini-

mal overhead

in monitoring

awareness cues,

increased com-

munication for

resolving indi-

rect conflicts

3. PALANTÍR
We performed our experiments with Palantír, a workspace aware-

ness tool for SCM that we have described elsewhere in detail [16,

22]. Here, to contextualize the following discussion, we briefly

highlight the relevant functionality of Palantír.

Palantír informs developers of the two types of potential conflicts

mentioned previously: (1) direct conflicts, which arise when the

same artifact is concurrently modified in multiple workspaces, and

(2) indirect conflicts, which arise when changes to one artifact in

one workspace are incompatible with parallel changes to another

artifact in another workspace. Unsurprisingly, a broad set of indi-

rect conflicts exists, both syntactic and semantic in nature and of

various degrees of difficulty to detect and handle [15, 16]. Out of

these, Palantír currently addresses those indirect conflicts arising

from changes to public methods and variables (see [16] for details

on the kinds of conflicts supported by Palantír).

To provide workspace awareness, Palantír intercepts all edits that

a developer performs in the local workspace as well as all of the

configuration management operations that the developer issues. It

translates these intercepted actions into a series of standard events

that it subsequently shares with other workspaces for which these

events are deemed relevant, that is, those workspaces in which the

artifact(s) to which the events pertain is (are) checked out. Events

that are received are communicated to a developer via awareness

cues that are peripherally and visually embedded in Eclipse. These

cues are designed to summarize what is happening in other work-

spaces and draw a developer’s attention when it is appropriate to

do so. This avoids presenting developers with too much informa-

tion, which would result in unproductive distractions or an ignor-

ing of the information altogether.

Figure 1 presents Palantír and its user interface as we evaluated it

in the experiments reported in this paper. We integrated Palantír

in the Eclipse development environment by making enhancements

in two distinct places. Annotations in the package explorer view

inform developers of activities in other workspaces (see top inset

in Figure 1) and a new Eclipse view, the impact view, is available

for developers to use to obtain further detail of changes that cause

indirect conflicts (see bottom inset in Figure 1). Both extensions

are briefly discussed in the following.

Palantír annotates resources in the package explorer view graphi-

cally and textually. Graphically, it uses small triangles to indicate

parallel changes to artifacts. A blue triangle may appear in the top

left corner of a resource (see Address.java). This triangle indicates

the presence of ongoing parallel changes to that artifact, signify-

ing that a direct conflict exists. A red triangle may appear in the

top right corner of a resource (see both Address.java and Credit-

Card.java). It highlights the presence of an indirect conflict. For

both the blue and red triangles, the larger the triangle appears, the

larger the conflict that may be present. The typical pattern, then, is

that a small triangle appears first, signifying the emergence of a

conflict. Over time, this triangle may grow and shrink to reflect

the current state of the changes. This pattern is what is important:

by building an understanding of which patterns indicate conflicts

that are to be considered seriously, developers are able to monitor

at a glance how their work relates to and possibly interferes with

that of others.

Textual annotations, to the right of a resource’s filename, provide

additional detail. For direct conflicts, it shows the size of a change

in a remote workspace, as based on the relative lines of code that

have changed. In the example, Address.java has been changed by

24%. Should multiple direct conflicts occur on the same resource,

the percentages are added to indicate a more severe situation. The

symbols [I>>] and [I<<] are used to indicate whether an artifact

causes an indirect conflict or is affected by one, respectively (or

both, if both [I>>] and [I<<] are present).

Figure 1. Palantír user interface.

These extensions to the package explorer view are designed to be

unobtrusive and not notably distract from the day-to-day work of

a developer. They only provide the information necessary to draw

the user’s attention when needed. More information can then be

obtained in the Palantír impact view, where various kinds of icons

provide additional information about the state of an indirect con-

flict. For instance, the red “bomb” icon on Address.java indicates

an indirect conflict with changes that are already committed to the

SCM repository, whereas the yellow “bomb” on Customer.java

indicates an indirect conflict with changes that are still ongoing in

another workspace. Payment.java is marked with an exclamation

mark, representing that it has undergone changes in another work-

space that may be indicative of an indirect conflict, but cannot be

proven to be so based on dependency analysis alone (for instance,

the addition of multiple methods to a class may be reason for con-

cern, but in and of itself is not a conflict until the addition of those

methods starts resulting in changes in the rest of the class).

4. USER EXPERIMENTS
User evaluations of software tools have primarily been qualitative

in nature. A key reason for this is that, in qualitative experiments

involving software tools, individual differences among study par-

ticipants often dominate the effect the tool is intended to have. As

a consequence, statistically significant results cannot be achieved,

because they would require inordinate numbers of participants to

compensate for the dominating effect of individual differences

[18, 32]. In our case, the ideal experiment of comparing partici-

pants with Palantír versus participants without Palantír on a team-

based collaborative programming task would require an estimated

60 or more participants, and then still run a significant risk of not

yielding statistically significant results in all of the variables [17].

The particular individual differences that concern our study are a

programmer’s technical skills [17] and the anticipated variance in

how individuals in a team respond to their team mates’ activities

(the latter being both something we want to study and something

we want to control for, as explained shortly). We explicitly de-

signed our experiments to address these two individual differ-

ences.

With respect to individual differences in a programmer’s technical

skills, we benchmark the evaluation with non-programming tasks

first, where variances stemming from individual differences are

minimal [17], and then use these benchmarks to validate evalua-

tion results from an analogous experiment with programming

tasks.

In the first experiment (hereafter referred to as text experiment),

we used text-based assignments that relied on a cognitively neu-

tral text. Specifically, we tested a set of sample texts on a sample

population, and chose from those a geology text after concluding

that it was neither too complicated nor too interesting. That is, the

text was of sufficient complexity to take time to work with, but

not so complicated that it significantly differentiated the ability of

sample participants to complete their given tasks. Similarly, it was

sufficiently interesting for participants to stay engaged, but at the

same time not too interesting (or familiar) to some subset of the

participants, thus avoiding a bias resulting from overly eager per-

formance by those who truly liked the subject of the text.

The text itself mimics some key properties of software, most spe-

cifically “modularity”, as the text consists of several separate arti-

facts, and “dependencies”, as the text contains references that link

text across modules and must be kept consistent. This experiment,

then, has participants perform a series of change tasks to the geol-

ogy text to emulate software changes and in the process evaluates

Palantír’s basic behavior as well as its user interface. It particu-

larly sheds light on how Palantír’s design and the information it

presents help the person involved in coordinating parallel work.

The second experiment (hereafter referred to as Java experiment)

evaluated Palantír in the programming domain with an analogous

study, but now involving participants making parallel changes to a

shared code base. This experiment sought to confirm results from

the first experiment, but takes into account the limitation of the

programmer’s individual differences becoming visible, especially

in the time it takes for them to complete change tasks.

With respect to the second type of individual differences influenc-

ing the experiment results (the anticipated variance in how indi-

viduals in a team respond to team mates’ activities), we note that

the issue here is that we want to understand and draw conclusions

about individual behaviors, but must do so in a team setting. Un-

desirable or wildly varying actions by one team member, however,

may influence the conclusions we can draw regarding the behav-

ior of other team members. To mitigate this risk, we designed both

the text experiment and the Java experiment to use confederates,

research personnel acting as virtual team members. This enabled

us to precisely control and keep constant the change behavior of

the “other team members”, particularly in terms of when conflicts

were introduced. Participants in the study were unaware of the set

of tasks assigned to the confederates, the order in which the con-

federates would attempt their tasks, or even that the other partici-

pants were confederates (facts verified in a post experiment ques-

tionnaire). Participants, thus, believed they were in a genuine

collaborative development setting.

The experiments were conducted at the University of California,

Irvine. All experiment participants were students, at the graduate

and undergraduate level, in the Donald Bren School of Informa-

tion and Computer Sciences. Twenty-six participants participated

in the text experiment and fourteen in the Java experiment. Par-

ticipants volunteering for the experiment completed an online

background survey documenting their experience in programming

(including industry experience), using SCM tools, and using the

Eclipse development environment, as well as providing additional

demographic information. This information was used to carry out

a stratified random assignment of participants [33]. Based on the

spread of experience of the subject pool, participants with four or

more years of experience in using SCM systems and Eclipse (for

the Java experiment) or more than 1 year of such experience (for

the text experiment) were assigned to stratum 1, while the remain-

ing participants were assigned to stratum 2. Participants from each

group were then randomly selected for treatment groups, that is, in

the remainder of the paper all results are cumulative across strata

but rely on comparisons within strata.

4.1 Experiment Setup
The goal of the experiments was to mimic team software devel-

opment settings in which conflicts arise, and to observe how indi-

viduals note conflicts and take action to resolve them, both with

and without the Palantír workspace awareness tool. The distrib-

uted nature of the activity allowed the experiment design to test

one participant at a time, that is, because collaborating individuals

each operate in their own workspace, we could simulate a team by

observing one participant as they interact with the other, virtual

team members who are under our control. All such interaction

took place through IM. Specifically, our experimental setup con-

sisted of one participant collaboratively solving a given set of

tasks in a three-person team in which the other two team members

were confederates. These confederates were responsible for intro-

ducing a given number of conflicts with the participant’s tasks at

given times into the participant’s tasks, so the timing and nature

of the various conflicts remained constant across the participants.

Each experiment took about 90 minutes. Participants first com-

pleted a set of tutorial tasks to ensure that they could use the tool

functionalities required in the experiment. The CONTROL group

was given tutorials on Eclipse and CVS. The EXPERIMENT group

was given tutorials on Palantír, Eclipse, and CVS. The tutorials

were designed to ensure that participants were not biased to ex-

pect conflicts in the experiment, and merely focused on explaining

the functionality of the various tools. Participants were then given

the set of tasks to be completed. At the end of the session, partici-

pants were compensated $30 and they were briefly interviewed by

the experimenter, who was present throughout the experiment as

an observer. Screen capturing software was used to record all of

the keyboard and mouse interactions as well as the screen content

throughout each entire session for analysis.

We introduced two kinds of conflicts for each experiment: direct

conflicts and indirect conflicts. These two are typical in software

development, with direct conflicts representing conflicts that lead

to merge problems and indirect conflicts representing conflicts

that lead to build, integration, and test problems. We closely con-

trolled when each type of conflict was introduced (generally ten to

fifteen seconds after a participant began or completed a particular

task). Tasks were presented to participants in the same order and

the times when conflicts were introduced in the tasks were consis-

tent across experiments. Our goal was to observe the effects of the

tool on the way in which participants handled both different kinds

of conflicts. Therefore, we treated the data for direct and indirect

conflicts separately. We did not investigate any interaction effects

with respect to the order in which conflicts were introduced. For

instance, whether conflicts that are introduced later in the experi-

ment are resolved faster is an interesting question, but a topic for

future study.

Experiment Tasks: For the text-based experiment, the participant

was given the role of the editor for a textbook on geology, as col-

laboratively written. Each chapter of the book was treated as a

separate text file in the project, and the overall project consisted

of thirty artifacts. Participants were given a set of nine tasks, six

of which had conflicts: three direct and three indirect. Direct con-

flicts were introduced when a confederate changed the same file

that the participant was editing. Such conflicts were introduced in

Tasks 2, 4, and 8. Indirect conflicts were introduced when a con-

federate changed an artifact that affected an artifact the participant

was using and for which they were responsible. For example, the

confederate deleted a chapter or changed a chapter heading with-

out changing the Table of Contents. Such conflicts were intro-

duced in Tasks 3, 5, and 7. The final task in the experiment (Task

9) required the participant to ensure the consistency of all chap-

ters, particularly the Table of Contents and the List of Figures.

The remaining tasks (Tasks 1 and 6) were benign (did not contain

any conflicts).

For the Java experiment, participants were given a list of func-

tionality to implement in an existing Java project. The project

contained nineteen Java classes and approximately 500 lines of

code. Participants were given a set of six tasks, four of which had

conflicts: two direct and two indirect. Direct conflicts were intro-

duced when a confederate modified the same Java file. Such con-

flicts were introduced in Tasks 1 and 2. Indirect conflicts were

introduced when a method on which the participant’s task de-

pended was deleted or modified. These conflicts were introduced

in Tasks 4 and 6. Tasks 3 and 5 were benign tasks. Participants

were provided with a Unified Modeling Language design diagram

of the project to help them understand code dependencies. Unlike

the text experiment, the Java experiment did not require partici-

pants in either group to integrate all the code at the end of the

experiment. To be realistic, such would have additionally required

an extensive set of build and test scripts, as well as the seeding of

several indirect conflicts not caused by those scripts. This would

have seriously complicated the experiment, and introduced several

other potential design variables that we did not want to introduce.

Dependent variables: The primary variables of interest were the

number of seeded conflicts that participants: (1) identified and (2)

resolved. Different participant responses were grouped into four

categories, namely conflicts that were (1) Detected and correctly

Resolved [D:R]; (2) Not Detected by the participant until notified

by the SCM system of a check-in (merge) problem, after which

they were forced to Resolve it [ND:R]; (3) Detected by the par-

ticipant but Not Resolved [D:NR]; and (4) Not Detected and Not

Resolved by the participant [ND:NR]. Conflicts that were incor-

rectly resolved are treated here as Not Resolved.

We also measured the time that participants took to complete a

task. Task completion times include the time to implement a task

and, when applicable, the time to coordinate with team members

and the time to resolve a conflict. When participants in the CON-

TROL group did not identify or resolve a conflict, we did not pe-

nalize them with extra minutes or “infinity” time. We chose not to

do so since we wanted to investigate the overhead that is involved

in using an awareness tool. Specifically, in the case of conflicts, a

participant in the EXPERIMENT group who detected and resolved a

conflict expended extra effort. Not including a penalty allowed us

to precisely measure this extra effort as compared to participants

in the CONTROL group.

Finally, we recorded the coordination actions that the participants

performed to resolve a conflict, including SCM operations, chat

conversation with confederates, and other miscellaneous actions.

5. EXPERIMENT RESULTS
We present and analyze our experiment results by addressing

three questions. For each question, we first summarize the results,

then motivate the question, and conclude with a more detailed

discussion of the results for the text experiment and the Java ex-

periment. This section concentrates on presenting raw results;

implications are discussed in the next section.

1. Does workspace awareness help users in their ability to
identify and resolve a larger number of conflicts?

Results: Table 2 shows the conflict detection and resolution ob-

servations for both the text and the Java experiment. Participants

in the EXPERIMENT group (using Palantír) detected and resolved a

larger number of conflicts for both conflict types (direct and indi-

rect) and did so in both experiments. Further, in both experiments,

the results are found to be statistically significant (p<.05 for the χ2

test; Fisher’s exact test confirms the p values). Of note is that the

results for direct conflicts for the Java experiment are categorized

somewhat differently into Detected (D) versus Not Detected (ND)

to address low expected cell counts in the χ2 test (see below). Of

the twelve conflicts detected by the EXPERIMENT group, nine were

detected early and resolved and three were detected later, but not

resolved (these were for the conflict that was introduced after the

participant had already finished their task). Of the seven conflicts

detected by the CONTROL group, all seven were detected during a

check in (which resulted in a merge conflict) and resolved.

Discussion: Conflicts in software development that occur due to

coordination problems frequently lead to a delay in project com-

pletion and/or an increase in defects in the code [9, 10]. We inves-

tigate the hypothesis that workspace awareness helps developers

to identify and resolve potential conflicts while their changes are

still in progress, which should lead to fewer delays and a reduc-

tion in defects. As a first step towards this goal, we compare dif-

ferences between the treatment groups (CONTROL vs. EXPERIMENT)

in their ability to identify and resolve seeded conflicts in the ex-

periment.

Text Experiment: Participants in the EXPERIMENT group detected

and resolved a much larger number of direct conflicts (DC) while

they were still working on their tasks (row 1, Table 2). These

conflicts were resolved either immediately upon noticing them or

after the participant had finished his or her edits. We do note that,

in two cases, participants ignored the notifications provided by the

tool about a potential conflict. They continued working until their

changes were complete and they attempted to check in their arti-

facts, subsequently facing a merge conflict1.

The results of participants in the CONTROL group are significantly

different. None of the participants detected a single conflict be-

forehand. This is not surprising as the SCM system shields them

entirely from parallel work and they would have to continuously

1 Participants were required to successfully commit their changes

before they could move on to their next task

poll the SCM repository for updates and potential conflicts. Such

a manual process is too cumbersome, as evidenced by some par-

ticipants who indeed had an early practice of updating their work-

spaces before each next task, but discontinued this practice over

time. Participants therefore discovered direct conflicts only when

they attempted to check in the changes and the SCM system gen-

erated a merge conflict.

In the case of indirect conflicts (IC), we again find that a majority

of participants in the EXPERIMENT group identified and resolved a

much larger number of conflicts (row 2, Table 2). The difference

here is more important than for direct conflicts, since in the case

of direct conflicts, the conflicts were at least detected due to the

merge conflict warnings from the available SCM system. In the

case of indirect conflicts, however, participants in the CONTROL

group identified only five indirect conflicts; the other thirty-four

remained undetected and entered the SCM repository, even

though participants were explicitly encouraged in the last step of

the experiment to look for inconsistencies in the text. By compari-

son, participants in the EXPERIMENT group detected and resolved

thirty-one conflicts early.

In both the EXPERIMENT and CONTROL group, several participants

identified conflicts early, but could not resolve them. We attribute

these situations to conditions in which the participants updated

their workspaces, but could not correctly understand the depend-

encies among the artifacts. For instance, some participants could

not detect when the confederate slightly modified the caption of a

particular figure in a file, and that it affected the List of Figures

file that they were supposed to update accordingly (recall partici-

pants had the role of “editor” of the document and were responsi-

ble for the table of contents and list of figures).

Java Experiment: For direct conflicts, the outcomes regarding

detection and resolution rates resulted in low expected cell counts

in the χ2 test. These low counts can be attributed to two factors:

(1) the experiment had a relatively small sample size (14) for a χ2

test, and (2) one of the conflicts was seeded after the participant

had already completed the task. With respect to this second point,

we observed that even when participants in the EXPERIMENT group

did notice the conflict, they did not go back to the task to resolve

it (explaining the three conflicts detected later but not resolved, as

reported in Results at the beginning of this section). Instead, they

either made a note to themselves or informed their team members

of a potential conflict and then continued on with their current

task. This is an expected behavior in the way SCM systems im-

plement conflict resolution. A developer who checks in first gen-

erally is not responsible for conflict resolution. It is the responsi-

bility of any developer who next checks in their changes to ensure

that those changes do not conflict with the version in the reposi-

tory. For purposes of the experiment, this meant that, instead of

the standard four-category breakdown we used otherwise, we had

to group the results into Detected (D) versus Not Detected (ND).

We found that the EXPERIMENT group detected a larger number of

direct conflicts (DC) early, differing significantly from the CON-

TROL group (row 3, Table 2). In the case of indirect conflicts (IC),

we notice that all participants in the EXPERIMENT group identified

and resolved conflicts, whereas none in the CONTROL group even

detected a single conflict (row 4, Table 2). Particularly in the case

of indirect conflicts, this is again critically important. Our results

confirm the findings of the text experiment, demonstrating that

incompatible changes entered the SCM repository unnoticed. One

Table 2. Conflict detection and resolution data; text experi-
ment concerns a total of 39 direct and 39 indirect conflicts
(13 participants in each group, 3 seeded conflicts of each
type per participant); Java experiment concerns a total of
14 direct and 14 indirect conflicts (7 participants in each
group, 2 seeded conflicts of each type per participant).

 detect EXP CNTRL
Pearson

χχχχ
2

df p*

Text

DC

D:R

ND:R

37

2

0

39
70.39 1 .001

Text

IC

D:R

D:NR

ND:NR

31

7

1

2

3

34

58.20 2 .001

Java

DC

D

ND

12

2

7

7
4.09 1 .04

Java

IC

D:R

ND:NR

14

0

0

14
28.00 1 .001

can only hope that build or test failures quickly find these incom-

patible changes, though the literature suggests that they do so only

to some degree [9, 34].

2. Does workspace awareness affect the time–to-completion for
tasks with conflicts?

Results: Table 3 presents the average time-to-completion of tasks

as organized per kind of conflict (DC and IC) and per experiment

type (text and Java). The time-to-completion includes the time to

detect, investigate, coordinate, and resolve a conflict, as applica-

ble per task. We do not penalize participants who did not detect or

resolve a conflict, choosing to simply report the time they took to

complete the task (for reasons we explained in Section 4.1). In the

text experiment, participants in the EXPERIMENT group took less

time for direct conflicts, but longer for indirect conflicts (rows 1

and 2, Table 3). However, in the Java experiment, the EXPERI-

MENT group took more time for both conflict types (rows 3 and 4,

Table 3). All results are statistically significant (Mann-Whitney

test, p<.05), with the exception of direct conflicts in the Java ex-

periment, where p=0.26.

Discussion: An obvious effect of workspace awareness tools is the

fact that they incur some extra overhead “early”, that is, a devel-

oper must spend time and effort to monitor the information that is

provided to them and, if they suspect a conflict, spend time and

effort to investigate and resolve it. We examine this overhead by

comparing the average time that participants in each of the treat-

ment groups took to complete tasks.

Text experiment: We found that participants in the EXPERIMENT

group took less time (on average, three minutes shorter) to com-

plete tasks with direct conflicts. However, we see a reverse trend

for indirect conflicts (the EXPERIMENT group took a little longer).

This difference can be explained because the SCM system forced

participants in the CONTROL group to resolve each direct conflict

during a check in, while no such forcing factor existed for indirect

conflicts. This forcing factor resulted in participants in both the

CONTROL and EXPERIMENT group to resolve the same number of

direct conflicts. Because participants in the CONTROL group, how-

ever, detected these conflicts later, they incurred extra time and

effort in facing a merge conflict and investigating it, leading to an

overall longer time-to-completion. Participants in the EXPERIMENT

group, on the other hand, coordinated with the confederate upon

noticing a conflict was emerging, and rescheduled tasks or already

took into account anticipated changes by the confederate in their

own changes, thereby saving time as compared to the future prob-

lem that is now avoided.

As stated, in the case of indirect conflicts, no forcing factor exists,

as a result of which the CONTROL group detected only a few con-

flicts. In contrast, the EXPERIMENT group detected and resolved

the majority of the conflicts, causing them to incur extra coordina-

tion effort (primarily communications through instant messaging)

in investigating conflicts and resolving them with the team mates

(confederates). As a result, the average time per task was higher.

The tradeoff, of course, is that the code delivered by the EXPERI-

MENT group had all of the conflicts resolved, which means that it

would incur no further future effort to resolve these conflicts. Our

experimental setup attempted to quantify this future effort by ask-

ing participants in the CONTROL group to examine the text after all

change tasks were completed. Participants, however, could rarely

find any inconsistencies. Therefore, no usable data was obtained

regarding how much time and effort might have been saved.

Nonetheless, a critical observation arises: at the expense of extra

effort, the quality of the text that was delivered was significantly

higher because it included far fewer unaddressed conflicts.

Java experiment: The data for the Java experiment showed a lar-

ger variance in average time-to-completion. In case of direct con-

flicts, the groups did not differ significantly (p=0.26), even though

it is interesting to note that – unlike in the text experiment – the

EXPERIMENT group did take longer than the CONTROL group. In

closely examining our data, we did not find any factors other than

a probable cause of individual differences in programming skills

outweighing any differences the use of Palantír made. Particularly

given that both treatment groups detected and resolved about the

same number of conflicts, seven versus nine (Table 2 and accom-

panying text), this factor seems to be the likely explanation.

In the case of indirect conflicts, however, we noted a pattern simi-

lar to the text experiment, with statistical significance (p<.05). In

particular, the EXPERIMENT group took notably more time than the

CONTROL group (row 4, Table 3), as they became aware of and

had to resolve more conflicts. The extra effort in time, however, is

again offset by the improved quality of the code that is delivered,

as the final code contained zero indirect conflicts.

The Java experiment did not attempt to force the CONTROL group

to reexamine the code base at the end of the experiment in order

to quantify the time that may have been saved (as we attempted in

the text experiment). The research literature, however, shows that

conflict resolution at later stages is expensive and can take signifi-

cant amounts of time (sometimes on the order of days). Any indi-

rect conflict saved from entering the SCM repository, thus, consti-

tutes one fewer and possibly major future concern [35, 36].

3. Does workspace awareness promote coordination?

Results: When participants detected a conflict, they generally took

one of the following actions: synchronize, update, chat, skip the

particular task, or implement the task by using a placeholder. Ta-

ble 4 presents results about the specific coordination actions that

participants undertook, summed per conflict type for both text and

Java experiments. The table groups coordination actions into three

categories: (1) SCM operations – update or synchronize; (2) chat,

and (3) others – skip or implement the task with placeholders. In

general, we see a comparable number of coordination actions for

direct conflicts, but a sharp increase in the number of coordination

actions for indirect conflicts. No discernable shift in the types of

Table 3. Time-to-completion of tasks.

 group minutes sd z
M-W
U

p

Text

DC

EXP

CNTRL

9:12

12:30

2:14

1:43
-3.1 24 .001

Text

IC

EXP

CNTRL

7:57

6:30

1:55

1:14
-2.1 42.5 .03

Java

DC

EXP

CNTRL

8:57

7:09

2:44

0:48
-1.2 15 .26

Java

IC

EXP

CNTRL

9:09

5:33

3:59

1:14
-2.1 8 .04

coordination actions was seen. We found a statistically significant

correlation (bivariate correlation, p<0.01) between the number of

conflicts resolved and the number of coordination actions – both

in the text experiment and the Java experiment.

Discussion: Coordination is a critical factor in team development,

especially when conflicting changes are being made. Instituting an

awareness solution is bound to influence how individuals coordi-

nate their efforts, since knowledge of direct conflicts is available

at an earlier point in time and additional information is provided

regarding indirect conflicts. We examine this influence in terms of

the number of coordination actions that participants undertake and

in terms of the kinds of coordination actions they employ.

We observe that in both of our experiments, participants did not

know the confederates (and so were not colleagues attempting to

go to lunch or friends chatting) and they entirely focused on com-

pleting the task at hand. Therefore, they did not communicate with

their team members unless required to do so by the task, making

our data “clean” with respect to the phenomena we studied (i.e., in

real-life situations, we can expect communication to also include

personal conversation and/or coordination actions for other tasks

and purposes).

Text experiment: Results for the text experiment were straightfor-

ward. Direct conflicts, whether detected through Palantír or via a

warning from the SCM system upon check in, incurred about the

same number of coordination actions in either case. The majority

of these actions were SCM actions, synchronizing the workspace

with the latest version in the repository. Some of the actions in-

volved chat, often requesting what the other developer had done

in their workspace and why.

For indirect conflicts, we observe a distinct spike in the number of

coordination actions, both in terms of SCM actions and chat. This

is no surprise, since participants in the EXPERIMENT group found

more conflicts and thus needed to resolve more of them. This lead

to both more SCM actions to bring changes from other developers

in the workspace and integrate them, as well as more chat actions

to briefly converse with the other developers about what they did

(though this certainly was not done for every conflict).

Java experiment: Results were very similar to the text experiment.

Direct conflicts resulted in about the same number and same type

of coordination actions and indirect conflicts lead to a significant

increase in coordination actions. In many ways, this is not surpris-

ing, and the results are in line with those presented in Question 2

of this section: extra time is spend, and some of that time is spend

coordination one’s actions with that of others. The tradeoff, how-

ever, is once again that a greater number of indirect conflicts are

resolved before they enter the code base in the SCM repository.

6. BROADER IMPLICATIONS
Our findings have several broad implications, which are discussed

in this section. First, our work presents an evaluation design that

paves the way for future evaluations of software tools. It is well-

known that individual differences tend to dominate the effects of a

software tool, sometimes by exaggerating and other times by con-

cealing the intended effects, thereby preventing useful empirical

evaluations [18, 32], or at least makes it considerably more diffi-

cult by requiring large numbers of participants for disambigua-

tion. To overcome this problem, we specifically conducted a user

experiment with a cognitively “neutral” text first to benchmark

results of a second user experiment involving a programming task.

We believe such two-staged experiments can have promise in

evaluations of other tools as well, as long as sufficient similarity

can be achieved between the properties to be studied in the do-

main of interest (Java, in our case) and how those properties

manifest themselves in the simulated domain (text, in our case).

Second, our results have implications for the design of software

development tools and environments, especially those that rely on

SCM systems for coordination. Even though our work evaluates a

particular workspace awareness tool, Palantír, the results are much

in line with other more coarse-grained evaluations to date. There-

fore, we believe the lessons learned can be generalized to the class

of SCM workspace awareness tools that use visualization to pro-

vide awareness of parallel development conflicts. Our experiments

provide quantitative evidence that workspace awareness can sig-

nificantly facilitate users in detecting and resolving both direct

and indirect conflicts at a reasonable cost in terms of time and

effort. These findings suggest that SCM tools should incorporate

awareness features and that software development environments

should provide facilities for external tools to easily and peripher-

ally integrate awareness notifications.

Third, our work has implications for the design of workspace

awareness tools in the domain of SCM. Our experiments provide

quantitative proof of the need for automated detection of indirect

conflicts. Even though we used simple, syntactic indirect conflicts

in the Java experiment and additionally provided participants with

a UML design diagram of the code structure and relationships, we

found that participants without the tool had difficulty in identify-

ing and resolving indirect conflicts. In fact, none of the partici-

pants in the CONTROL group detected or resolved a single indirect

conflict, which all remained in the code that was checked in to the

SCM repository. While a certain portion of those conflicts will be

caught by build and test practices in real life, indirect conflicts can

at the same time be of a much more complex nature in real devel-

Table 5. Time-to-resolution of DC.

 group task_time res_time remainder

EXP 9:12 2:23 6:49 Text

DC CNTRL 12:30 5:04 7:26

EXP 8:57 4:00 4:57 Java

DC CNTRL 7:09 4:06 3:03

EXP 9:09 7:01 2:08 Java

IC CNTRL 5:33 -

Table 4. Coordination actions.

 group resolved SCM chat others total

Text

DC

EXP

CNTRL

39

39

71

78

12

17

2

0

85

95

Text

IC

EXP

CNTRL

38

5

30

7

11

4

9

0

50

11

Java

DC

EXP

CNTRL

9

7

13

12

6

3

0

3

19

18

Java

IC

EXP

CNTRL

14

0

17

2

11

1

7

3

35

6

opment efforts and have been shown to lead to serious problems

[20, 37]. The automated identification of emerging indirect con-

flicts would be an invaluable tool.

7. THREATS TO VALIDITY
Generalizing results: As is the case with any controlled experi-

ment, our experiment was performed in semi-realistic settings,

where students served as experiment participants, worked with a

relatively small project, and were asked to complete a given set of

tasks in a limited time. We agree that the ideal way to test a soft-

ware tool is a thorough longitudinal study set in a real-life soft-

ware project, but at the same time observe that it is important to

first evaluate the effectiveness of a tool in a controlled environ-

ment. Such an environment provides the opportunity, as we have

shown, of drawing more detailed conclusions and controlling for

individual differences (in our case for technical skills via stratified

random assignment and for fluctuating team interactions via con-

federates). Because students were used as participants, our results

are possibly conservative. Software developers may be more will-

ing to invest time and effort up-front in order to avoid the difficul-

ties they themselves have experienced in resolving conflicts.

Issues about scalability of the user interface were not tested in our

experiment, since we used relatively small projects. We did not

test the Palantír interface in a large project that comprised numer-

ous artifacts, lots of parallel work, and therefore a possible prolif-

eration of awareness cues. Although we used a small project, our

experiment included benign tasks that produced extra awareness

icons. In our exit interviews, participants responded that once they

got used to them, the icons did not bother them. Further, they paid

attention to an icon only if it concerned an artifact that the partici-

pant was editing or had previously edited. This highlights that the

awareness cues used by the tool were unobtrusive, yet effective

when they needed to be. Finally, we note that Palantír is explicitly

constructed to reduce the number of notifications presented to the

user by grouping them per artifact and providing additional filters

on artifacts or developers.

Experiment design. Our experiment, specifically the Java experi-

ment, did not force participants to carry out integration testing at

the end of the experiment. Therefore, participants in the CONTROL

group did not detect any indirect conflicts and thus did not spend

any time in coordination attempts. This difference in resolution

rates effectively penalized the EXPERIMENT group in their time-to-

completion of tasks and precluded us from comparing the time-to-

resolution data across the treatment groups (as we discussed). It,

thus, may be possible that the extra time and effort that the devel-

oper is asked to invest is actually more costly than the resolution

of full-blown conflicts at a later time. Given what we know from

empirical studies of development projects and the role and impact

of conflicts, however, this is highly unlikely [20, 37].

Another design choice that may represent a threat to validity is the

introduction of a conflict ten to fifteen seconds after a participant

began or completed a task. In real life, conflicts occur at any time.

We used specific times to maintain consistency across the partici-

pants, and because of the limited time window of the experiment.

Results may be different if conflicts arise closer to completion of a

task, although we believe developers still would contact the other

party, or be contacted by that other party.

A potential issue also exists with respect to the validity of drawing

conclusions regarding the influence of awareness on programming

tasks from the lessons learned from the text experiment. Working

with text can be different than working with code, and participants

may have an affinity with code that influences their behavior with

respect to conflicts as compared to when dealing with conflicts in

a text assignment. We structured the text assignments as much as

possible to resemble the activity of coding, especially in terms of

the conflicts we seeded into the experiment and the structure and

relationships that the overarching text exhibited. Our results seem

to indicate that the Java experiment confirms the lessons learned

from the text experiment, building confidence that we should be

able to rely on the text experiment to draw the conclusions we did.

Finally, all tasks were presented to participants in the same order.

Although the lack of counterbalancing leads to learning effects,

these effects are the same for all participants. The primary objec-

tive of our experiments was to investigate the effect of the two

between-participant factors (treatment and strata) and not the

effects of the within-subject factor, namely the kinds of conflicts

and sequence, which are a subject for future study. Moreover, we

observe that learning effects also will take place in real life and in

fact are a desirable effect in awareness tools – users must calibrate

the information that is provided in order to best leverage the tools.

The short duration of our experiment undervalues this factor.

8. CONCLUSIONS AND FUTURE WORK
We have presented an empirical evaluation of the value of work-

space awareness as a technique to enhance SCM systems and their

ability to assist developers in detecting and resolving both direct

and indirect conflicts. We used a novel experimental design con-

sisting of a text-based experiment to obtain baseline data followed

by a Java-based experiment that confirmed many of the findings

we obtained in the text experiment. This allowed us to address the

effects of individual differences in technical aptitudes, which

traditionally is a serious hurdle in these kinds of experiments. In

addition, our use of confederates allowed us to control for vari-

ances in how team members interact in multi-person settings.

Results from our experiments provide quantitative evidence that

use of the workspace awareness tool improves the conflict detec-

tion and resolution capabilities of users. Further, while for indirect

conflicts the time to completion of tasks increased, this time was

well spent in removing these indirect conflicts from the code base

that is inserted in the SCM repository. Finally, it appears that the

overhead in monitoring the awareness cues is minimal – the extra

time that participants in the EXPERIMENT group spent in tasks was

primarily for conflict resolution, not monitoring. Our results have

been obtained with relatively straightforward indirect conflicts. In

future, we anticipate supporting more complicated indirect con-

flicts in Palantír and thereby gain even stronger benefits.

9. ACKNOWLEDGMENTS
Effort partially funded by the National Science Foundation under

grant numbers IIS-0205724 and IIS-0534775. Effort also sup-

ported by an IBM Eclipse Innovation grant and an IBM Technol-

ogy Fellowship.

10. REFERENCES
[1] Dourish, P. and V. Bellotti. 1992. Awareness and Coordina-

tion in Shared Workspaces. Computer-Supported Coopera-

tive Work. p. 107-114.

[2] Heath, C., et al.,1994. Unpacking Collaboration: The Interac-
tional Organisation of trading in a city dealing room. Com-

puter Supported Cooperative Work 3(2): p. 147-165.

[3] Grinter, R.E., J.D. Herbsleb, and D.E. Perry. 1999. The Ge-
ography of Coordination: Dealing with Distance in R&D

Work. Conference on Supporting Group Work. p. 306-315.

[4] Gutwin, C., R. Penner, and K. Schneider. 2004. Group
Awareness in Distributed Software Development. Computer

Supported Cooperative Work.p. 72-81.

[5] Gutwin, C. and S. Greenberg. 1996. Workspace Awareness
for Groupware. Companion on Human Factors in Computing

Systems. p. 208-209.

[6] Cataldo, M., et al. 2006. Identification of Coordination Re-
quirements: Implications for the Design of Collaboration and

Awareness Tools. Computer Supported Cooperative Work.

p. 353-362.

[7] Herbsleb, J.D. and R.E. Grinter,1999. Architectures, Coordi-
nation, and Distance: Conway's Law and Beyond. IEEE

Software: p. 63-70.

[8] Grinter, R.E. 1996. Supporting Articulation Work Using
Software Configuration Management Systems. Computer

Supported Cooperative Work. p. 447-465.

[9] Perry, D.E., H.P. Siy, and L.G. Votta,2001. Parallel Changes
in Large-Scale Software Development: An Observational

Case Study. ACM Transactions on Software Engineering and

Methodology, 10(3): p. 308-337.

[10] de Souza, C.R.B., et al. 2004. Sometimes You Need to See
Through Walls - A Field Study of Application Programming

Interfaces. Computer-Supported Cooperative Work. p. 63-

71.

[11] Cubranic, D., et al.,2005. Hipikat: A Project Memory for
Software Development. IEEE Transactions on Software En-

gineering, 31(6): p. 446-465.

[12] Estublier, J. and S. Garcia. 2005. Process Model and Aware-
ness in SCM. Twelfth International Workshop on Software

Configuration Management. p. 69-84.

[13] O'Reilly, C., D. Bustard, and P. Morrow. 2005. The War
Room Command Console: Shared Visualizations for Inclu-

sive Team Coordination. ACM symposium on Software

visualization. p. 57-65.

[14] Biehl, J., et al. 2007. FASTDash: A Visual Dashboard for
Fostering Awareness in Software Teams. SIGCHI conference

on Human Factors in computing systems p. 1313-1322.

[15] Dewan, P. and R. Hegde. 2007. Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software Devel-

opment. European Computer Supported Cooperative Work.

p. 159-178.

[16] Sarma, A., G. Bortis, and A. van der Hoek. 2007. Towards
Supporting Awareness of Indirect Conflicts across Software

Configuration Management Workspaces. Automated Soft-

ware Engineering. p. 94-103.

[17] Mayer, R.E., 1988. From Novice to Expert, in Handbook of
Human-Computer Interaction, M.G. Helander, T.K. Lan-

dauer, and P. Prabhu, Editors. p. 781-795.

[18] Redmiles, D.F. 1993. Reducing the Variability of Program-
mers' Performance through Explained Examples. Human

Factors in Computing Systems. Amsterdam, p. 67-73

[19] Sarma, A., D. Redmiles, and A. van der Hoek. 2007. A
Comprehensive Evaluation of Workspace Awareness in

Software Configuration Management Systems. IEEE Sympo-

sium on Visual Languages and Human-Centric Computing.

p. 23-26.

[20] Grinter, R.E. 1998. Recomposition: Putting It All Back To-
gether Again. Computer supported cooperative work. p. 393-

402.

[21] Mens, T.,2002. A State-of-the-Art Survey on Software Merg-
ing. IEEE Transactions on Software Engineering, 28(5): p.

449-462.

[22] Sarma, A., Z. Noroozi, and A. van der Hoek. 2003. Palantír:
Raising Awareness among Configuration Management

Workspaces. Twenty-fifth International Conference on Soft-

ware Engineering. p. 444-454.

[23] de Souza, C.R.B., D. Redmiles, and P. Dourish. 2003.
"Breaking the Code", Moving between Private and Public

Work in Collaborative Software Development. International

Conference on Supporting Group Work. p. 105-114.

[24] Olson, G.M. and J.S. Olson,2000. Distance Matters. Human-
Computer Interaction, 15(2&3): p. 139-178.

[25] Grinter, R.E. 1995. Using a Configuration Management Tool
to Coordinate Software Development. Conference on Organ-

izational Computing Systems. p. 168-177.

[26] Berliner, B. 1990. CVS II: Parallelizing Software Develop-
ment. USENIX Winter 1990 Tech. Conference. p. 341-352.

[27] Cheng, L.-T., et al. 2003. Jazzing up Eclipse with Collabora-
tive Tools. Conference on Object-Oriented Programming,

Systems, Languages, and Applications / Eclipse Technology

Exchange Workshop. p. 102-103.

[28] Storey, M.-A., D. Cubranic, and D.M. German. 2005. On the
Use of Visualization to Support Awareness of Human Activi-

ties in Software Development: A Survey and a Framework.

ACM Symposium on Software Visualization. p. 193-202

[29] Appelt, W. 1999. WWW Based Collaboration with the
BSCW System. Conference on Current Trends in Theory and

Informatics. p. 66-78.

[30] Molli, P., H. Skaf-Molli, and C. Bouthier. 2001. State Tree-
map: an Awareness Widget for Multi-Synchronous Group-

ware. Seventh International Workshop on Groupware. p.

106-114.

[31] Schümmer, T. and J.M. Haake. 2001. Supporting Distributed
Software Development by Modes of Collaboration. Seventh

European Conference on Computer Supported Cooperative

Work. p. 79-98.

[32] de Alwis, B., G.C. Murphy, and M. Robillard. 2007. A Com-
parative Study of Three Program Exploration Tools. Interna-

tional Conference on Program Comprehension. p. 103-112.

[33] Shadish, W.R., T.D. Cook, and D.T. Campbell, 2001. Ex-
perimental and Quasi-Experimental Designs for Generalized

Causal Inference. 1 ed: Houghton Mifflin Company. pp.623.

[34] Brooks Jr., F.P,1974. The Mythical Man-Month. Datama-
tion, 20(12): p. 44-52.

[35] Herbsleb, J.D., et al. 2000. Distance, dependencies, and de-
lay in a global collaboration. Proceedings of the 2000 ACM

conference on Computer supported cooperative work. p.

319-328.

[36] Curtis, B., H. Krasner., and N. Iscoe.1988. A Field Study of
the Software Design Process for Large Systems. Communi-

cations of the ACM, 31(11): p. 1268-1287.

[37] de Souza, C.R.B., et al. 2004. How a good software practice
thwarts collaboration: the multiple roles of APIs in software

development. International Symposium on Foundations of

Software Engineering. p. 22-230.

