
Towards Awareness in the Large

Anita Sarma and André van der Hoek

Department of Informatics

Donald Bren School of Information and Computer Sciences

University of California, Irvine

Irvine, CA 92697-3440, USA

{asarma, andre}@ics.uci.edu

Abstract

Management of shared artifacts is critical to ensure

the correct integration and behavior of code created

by multiple teams working in concert. Awareness of

inter-team development activities and their effects on

shared artifacts provides developers the opportunity to

detect potential integration problems earlier and take

proactive steps to avoid these conflicts. However, cur-

rent awareness tools do not provide such kinds of

awareness making them unsuitable for global software

development. In this paper, we discuss their draw-

backs, present three strategies to make them suitable

for global settings, and illustrate these strategies

through a new view for Palantír that better addresses

awareness in the large.

1. Introduction

Awareness is characterized as “an understanding of

the activities of others, which provides a context for

one’s own activities” [5]. The concept of awareness has

since long been socially employed at the workplace to

facilitate coordination. For example, employees gener-

ally use informal hallway chats and coffee-hour discus-

sions to keep abreast of the latest “happenings” in the

organization. Another example is the use of instant

messaging in the workplace, which enables distributed

developers to participate in informal conversations with

their colleagues, be aware of how active they are, and

when they can be approached [7, 11].

Lately, the concept of awareness has received sig-

nificant attention in coordination of (distributed) soft-

ware development. Numerous coordination technolo-

gies have evolved that enhance the coordination capa-

bilities of Configuration Management (CM) systems by

promoting awareness of development activities of the

team. The hypothesis behind these coordination tech-

nologies is that awareness of parallel activities allows

developers to place their work in the context of others’

changes, which enables them to identify potential prob-

lems earlier and gives them the opportunity to self-

coordinate their actions to avoid these problems.

While some of these tools (e.g., CVS-Watch [2],

COOP/Orm [10], BSCW [1]) provide awareness of

activities at the repository level, others take a step fur-

ther and provide real-time information of ongoing

changes in remote workspaces (e.g., Palantír [14],

JAZZ [3], NightWatch [12]). These coordination tech-

nologies typically provide information regarding

changes to artifacts along with some meta-information,

such as which artifact is being changed by which de-

veloper, whether an artifact is being changed in paral-

lel, and whether the changes would cause artifacts in

the local workspace to be out-of-sync. This information

is generally displayed either through separate contextu-

alized visualizations or through embedded awareness

widgets in the development environment.

Thus far, awareness tools have been typically de-

signed for the individual developer coordinating with

her immediate team. These tools generally portray in-

formation of changes to artifacts that are either present

in the developer’s local workspace or artifacts in which

she has specifically registered interest. While these

tools help in understanding individual changes to spe-

cific artifacts they fail to provide a global understand-

ing of interactions among teams, such as which artifacts

are shared among teams, which teams are tightly cou-

pled, what is the effect of a change to a shared artifact

on other teams. This drawback makes current aware-

ness-based coordination tools ill-suited to software

development that involves multi-team development.

A significant hurdle in adopting existing awareness-

based coordination technologies to, what we term,

awareness in the large is the scale of operations in

global software development. Current tools are not

designed to handle the large amounts of information

generated in operations of multiple teams and, there-

fore, cannot adequately manage its smooth transmis-

sion or, more importantly, the cognitive overload cre-

ated by it. In addition to scaling problems, awareness

technologies in global software engineering have to

contend with global development specific issues such

as inter-organizational cultural differences, privacy

concerns, and time-zone differences.

We draw upon our experience in building and using

Palantír (a workspace awareness tool for distributed

software development) and literature review of prob-

lems manifesting global software engineering to pre-

sent strategies for the collection, analysis, and visuali-

zation of information regarding inter-team development

activities to promote awareness in the large.

1. Information Abstraction: Information of develop-

ment activities needs to be abstracted to present a

high-level view of team interactions.

2. Impact Analysis: The impact of changes on shared

artifacts should be tracked to detect potential con-

flicts arising due to changes made by a team that

adversely affects other teams.

3. Specialized Visualizations: Visualizations that pre-

sent a comprehensive view of team dynamics such

as team locations and interdependencies among

teams.

We use the aforementioned strategies to design the

World View, a new view that we plan to build into

Palantír to enable it to handle coordination of multi-

team development.

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the need for awareness in global

software development and the drawbacks of current

awareness-based coordination technologies. Section 3

describes the strategies for awareness in the large fol-

lowed by illustration of these strategies through

Palantír in Section 4. We present our conclusions in

Section 5.

2. Motivation

In global software development, the management of

shared artifacts (artifacts common to multiple teams) is

critical to ensure the correct integration and behavior of

code written by different teams. Organizations strive to

minimize the interdependencies among teams by: (1)

explicitly structuring the software to ascertain loose

coupling among teams and (2) designing the interfaces

through which teams interact well in advance [8, 13].

In real life, however, it is seldom possible to avoid

dependencies among teams or to ensure the immutabil-

ity of interfaces. Empirical studies conducted at several

software development companies with global opera-

tions have observed that shared artifacts are frequently

changed and communication of these changes across

teams is not well-supported. For example, De Souza et

al. found that developers across teams depended on the

immutability of Application Programming Interfaces to

ensure that their work integrated with each other [4].

However, these interfaces were frequently modified

and the information of these changes was not always

communicated across teams. In another study [6],

Grinter observed that developers at a multinational

company identified other developers who were de-

pendent on their piece of code by broadcasting email

messages and by collecting responses to those mes-

sages. The weakness of this approach, apart from rely-

ing on an ad hoc communication mode, was that de-

pendency relationships were maintained by individuals

who owned each component and when that individual

left the team the connection was lost. Grinter observed

that organizations frequently created separate reposito-

ries and organizational units to specifically manage

shared code, such that modifications to shared code

was governed by strict access protocols, sequential

development, and formal modification requests ap-

proved by the special organizational unit [6].

Awareness-based coordination tools have gained

significant attention in the recent past. However, the

technical solutions that exist today are primarily geared

towards small teams [6, 13]. These technologies typi-

cally promote awareness by presenting fine-grained

information of development activities and the status of

individual artifacts in specific projects. For example,

such tools usually notify developers of when an artifact

has changed, whether the artifact has been concurrently

modified, or whether the changes cause artifacts in the

local workspace to be out-of-sync. While such informa-

tion is invaluable for placing one’s work in the context

of changes taking place within a team, it is significantly

less useful for inter-team interactions. In a well de-

signed project, members of a team rarely need detailed

information of changes to artifacts within another team,

unless those artifacts are shared; such detailed informa-

tion, in fact, leads to the cognitive overload of users.

Moreover, these technologies are designed such that

only information of activities regarding artifacts that

are either present in the developer’s local workspace or

those in which the developer has specifically registered

interest is tracked. In global settings, teams rarely

check-out code-based artifacts that belong to projects

of other teams; instead they work with binaries of the

components. Additionally, a significant problem in

coordination of multiple teams is the identification of

shared artifacts and teams that depend on those artifacts

[4, 9]. In global settings, it is unrealistic to assume that

developers would be able to identify a comprehensive

list of shared artifacts on which they depend in order to

register interest.

3. Strategies for Awareness in the Large

In global software development, the software under

construction is structured so as to minimize the inter-

dependencies among teams and programming inter-

faces are defined well in advance for cases where code

produced by different teams need to interface. Gener-

ally, multi-team projects design “shallow” interfaces –

test interfaces with only method signatures and no un-

derlying implementation – against which teams test

their code while the “real” interfaces are under imple-

mentation [4]. In such settings, teams are not aware of

changes to the “real” interfaces unless they are directly

notified or it is time for the final integration of the

software system.

Since the integration of code produced by a team

greatly depends on the immutability of the interfaces

and shared artifacts, it is critical that teams be aware of

modifications to these artifacts. Therefore, one of the

primary goals of tools for awareness in the large is to

identify shared artifacts that transcend team boundaries,

track changes to these artifacts, and notify teams that

are affected by these changes.

In the following sections, we discuss strategies for

collecting, analyzing, and visualizing information of

development activities, to promote awareness in global

settings, which we term “awareness in the large”.

3.1. Information Collection

Strategy 1: Abstract information to present a high-

level view of development activities.

Current awareness tools typically provide detailed

information of development activities. Traditional co-

ordination tools provide information at the level of

mouse-clicks and keyboard strokes; whereas CM-based

awareness tools provide information at the individual

file or method level. The level of detail required de-

pends largely on the type of collaborative effort; fine-

grained information of every user action is beneficial in

synchronous editing, while individual artifact-level

information is helpful in tracking modifications to arti-

facts that are present in the local workspace. In global

software development such detailed information is not

suitable since it leads to excessive amounts of informa-

tion that cognitively overloads the user.

Moreover, in such settings, teams rarely check-out

code-based artifacts of other teams and generally work

with the binaries of components on which they depend.

Since, current awareness tools typically provide infor-

mation of changes pertaining to artifacts present in the

local workspace they may fail to capture information of

changes to other artifacts that may have an effect.

Awareness in the large, therefore, requires informa-

tion at a higher level of abstraction to identify those

development activities that affect other teams. A prin-

cipal step towards this goal is the identification of

shared artifacts. A note to consider is that such identifi-

cation should be based on the underlying code con-

structs and not just the design documentation to ensure

that all shared artifacts are accurately identified. Once

these artifacts are identified, changes to these artifacts

should be tracked and information regarding these

changes disseminated.

3.2. Information Analysis

Strategy 2: Analyze changes to determine the impact

of a change on other teams.

Existing awareness-based coordination tools gener-

ally provide information of which artifact is being

changed by which developer. This information is effec-

tive in informing developers of when an artifact has

been modified, whether an artifact is being concur-

rently modified, and which developer is responsible for

which change. Although this information is helpful in

allowing a developer to place their work in the context

of other changes in the project, it cannot help the de-

veloper identify indirect conflicts – conflicts that arise

due to a change in one artifact affecting another. For

instance, if an interface or a library item is modified

that change affects all those other artifacts that use the

interface or depend on the library item. Current aware-

ness tools are unable to detect such indirect conflicts.

Since multi-team development hinges on the immu-

tability of shared artifacts (e.g., interfaces, libraries,

modules for reuse) it is imperative to calculate the im-

pact of a change to a shared artifact and to notify af-

fected team(s). Additionally, metrics to denote the sig-

nificance of an indirect conflict (e.g., number of arti-

facts affected, number of teams affected, size of the

change) should be calculated. Advance warning of such

conflicts serves two purposes. First, it allows the de-

veloper who is making the change to understand its

significance and provides him the opportunity to com-

municate information of the change to teams that will

be affected. Second, it serves as a warning to the “af-

fected” team that they will have to resolve these con-

flicts before their code can be integrated.

3.3. Information Visualization

Strategy 3: Design specialized visualizations geared

towards awareness in the large.

In order to avoid excessive context switching or

cognitively overloading the user, most coordination

tools present awareness information as contextualized

icons (annotations on artifacts that have undergone

changes) within the development environment. In

multi-team development, developers rarely check-out

code from other teams into their workspaces making

these kinds of representation unsuitable. Moreover, the

lack of real estate available in such visualizations se-

verely limits the extent of information that can be dis-

played. Providing a comprehensive view of multi-team

interactions (e.g., inter-team interactions, interdepend-

encies on shared artifacts, effects of changes to these

artifacts) is extremely difficult via these displays.

Specialized visualizations that concisely display the

dynamics of the entire project (e.g., location of teams,

shared artifacts and dependencies of teams around

these artifacts, affected teams due to changes to a

shared artifact) are needed for awareness in the large.

We believe that such specialized visualizations com-

plement the regular development-environment centric

displays and that developers should be warned of po-

tential conflicts, both arising from within and outside of

the team, through the latter.

4. Illustration of Strategies

In this section, we present the design of a new view

(the World View) that we intend to build for our work-

space awareness tool, Palantír (see [14] for further de-

tails). The World View draws on our aforementioned

strategies and builds upon Palantír’s infrastructure of

tracking development activities through developer in-

teractions with CM systems.

The World View (see Figure 1a) provides a com-

prehensive view of the team dynamics of a project,

regarding the geographical location of teams, the time

zones of their operations, and the interdependencies

among teams. This view is intended to help developers

involved in global software development answer ques-

tions such as, who are my extended team members,

what is the interrelation between our teams, how should

I contact other team members?

In this view, teams are represented as “red stars” on

a world map and interdependencies among teams are

shown as “lines” connecting them. The size of the star

denotes the size of the team; larger teams are repre-

sented as larger stars. Interdependencies among teams

are determined based on the number of shared artifacts,

which are identified through program analysis of the

code base. The thickness of the lines represents the

extent of sharing: the thicker the lines, the larger the

number of shared artifacts. Through this view, devel-

opers can discern at-a-glance which teams are tightly-

coupled and through which artifacts (mouse-hovers

display the list of shared artifacts).

Right clicking on a team icon displays the organiza-

tional structure of that team (see inset in Figure 1a).

ConnectedEventProducer
(f rom Siena)

ReconnectedEventProducer
(f rom Siena)

DBEventReader

getInitEvents()

update()

getArtifactEvents()

getEvents()

getURL()

EventConsumer
(f rom Siena)

1

1

1

1

DBEventWriter

addEvent()

getURL()

PalantirParser

1

1

1

1

1

1

1

1

ConnectionManager

setConnectionState(URL : String, state : int) : void

getConnectionState(URL : String) : int

initialize() : void

connect(address : String) : void

handleConnectionException(e : Exception) : void

subscribe(CSS : IConnectionStateSubscriber) : void

unsubscribe(CSS : IConnectionStateSubscriber) : void

getConnection(String URL) : Connection

getConnections() : Iterator

(f rom Siena)

Connection
(f rom sql)

ConnectionRecord

initalized : boolean

_URL : String

_conn : Connection

_lastConn : Date

getURL()

getConnection()

isInitalized()

getLastConnectionTime()

1..*1 1..*1

1

1

1

1

DisconnectedEventProducer

ServerSetupPage

name

getEclipseProjects : ArrayList()

initalizeDefaultPluginPrefs()getURL()

getConnection()

isInitalized()

Kernel Team, Linux OS, OS Libraries

Project Leader

Tony Gonzalves

tgonzal@linkedit.com

IM: tonyG: # 949-897-5465

Thread Team

Mariah Carrey

mcarrey@linkedit.com

IM: maria: # 949-897-5465

IO Team Lead

Mollie Navarro

mnavo@linkedit.com

IM: mollie: # 949-897-3565

Printer Team

Drew Carrey

dcarrey@linkedit.com

IM: drewC: # 949-897-3565

Developer

Emily Oh

eoh@linkedit.com

IM: emilyO: # 949-897-5687

Developer

Ping Chen

pchen@linkedit.com

IM: Ping: # 949-897-8790

Developer

Mary Lou

mlou@linkedit.com

IM: LouMa: # 949-897-5985

Developer

Alex Baker

abaker@linkedit.com

IM: Alex: # 949-897-5435

Developer

Sue Schaefer

sks@linkedit.com

IM: Suess: # 949-897-4085

(a)

(b)

(c)

Figure 1. Alternative forms of the World View.

Each chart is annotated with project details of that spe-

cific team (e.g., the team name, the product feature

under development, the list of shared artifacts). Other

nodes of the chart display the names of developers in

the team, their contact information, and their preferred

mode of communication (via highlights in the chart).

Shaded areas of the map represent countries where

it is dark. Teams that are still active in the shaded area

of the view (based on development activities monitored

via CM workspaces) are shown as “white stars”. Iden-

tifcation of active teams (or active developer in the

organizational chart) helps a developer seeking assis-

tance choose the right mode of communication (e.g.,

email, instant messaging, telephone).

Coordination of changes to shared artifacts is essen-

tial to multi-team development, since these teams gen-

erally perform implementation tasks in relative isola-

tion. Due to this isolation, teams largely remain un-

aware of changes to shared artifacts unless they are

directly informed or their code fails to integrate. An

alternate form of the World View displays the impact

of a specific change on teams (see Figure 1b). In this

view, arrows represent the direction of conflicts

(changes performed by which team affects which team)

and the thickness of the lines denotes the extent of the

conflict: the thicker the line, the larger the significance

of the conflict. Here, significance is calculated as the

number of artifacts that are affected by the change.

Teams and their respective “arrows” are color coded to

differentiate conflicts arising from different teams. This

view can also be configured for the individual devel-

oper to show which changes by a specific developer

affects other teams (see Figure 1c). The artifacts re-

sponsible for the conflicts are highlighted in red (see

inset in Figure 1c).

5. Conclusions

Awareness of inter-team development activities is a

promising means of understanding and coordinating

changes to shared artifacts and is particularly useful for

global software development since one of the primary

problems faced by global development is the coordina-

tion of changes to shared artifacts and interfaces. Cur-

rent awareness-based coordination tools are geared

towards small distributed teams and cannot handle the

large scale of operations involved in global develop-

ment. In this paper, we present three strategies, namely

information abstraction, impact analysis, and special-

ized visualizations through which awareness tools can

handle coordination of multiple teams. We also present

a new view for Palantír that better addresses inter-team

awareness by using the aforementioned strategies.

6. References

1. Appelt, W. WWW Based Collaboration with the BSCW

System. Proceedings of Conference on Current Trends in

Theory and Informatics. 1999: p. 66-78.

2. Berliner, B. CVS II: Parallelizing Software Development.

Proceedings of USENIX Winter 1990 Technical Confer-

ence. 1990: p. 341-352.

3. Cheng, L.-T., et al., Building Collaboration into IDEs.

Edit -> Compile -> Run -> Debug -> Collaborate? ACM

Queue. 2003. p. 40-50.

4. De Souza, C.R.B., et al. Sometimes You Need to See

Through Walls - A Field Study of Application Program-

ming Interfaces. Proceedings of Computer-Supported

Cooperative Work. 2004. Chicago, IL: p.63-71

5. Dourish, P. and V. Bellotti. Awareness and Coordination

in Shared Workspaces. Proceedings of ACM Conference

on Computer-Supported Cooperative Work. 1992. Mon-

terey, CA, USA: p. 107-114.

6. Grinter, R.E. Recomposition: Putting It All Back To-

gether Again. Proceedings of ACM conference on Com-

puter supported cooperative work. 1998. Seattle, Wash-

ington, USA: p.393-402.

7. Herbsleb, J., et al. Introducing Instant Messaging and

Chat in the Workplace. Proceedings of Proceedings of

the SIGCHI conference on Human factors in computing

systems: Changing our world, changing ourselves. 2002.

Minneapolis, Minnesota, USA: p. 171-178.

8. Herbsleb, J. and R.E. Grinter. Splitting the Organization

and Integrating the Code: Conway's law revisited. Pro-

ceedings of the 21st international conference on Software

engineering. 1999. Los Angeles, CA, USA: p. 85-95.

9. Herbsleb, J.D. and R.E. Grinter, Architectures, Coordina-

tion, and Distance: Conway's Law and Beyond. IEEE

Software, 1999: p. 63-70.

10. Magnusson, B. and U. Asklund. Fine Grained Version

Control of Configurations in COOP/Orm. Proceedings of

Sixth International Workshop on Software Configuration

Management. 1996: p. 31-48.

11. Nardi, B., S. Whittaker, and E. Bradner. Interaction and

Outeraction: Instant Messaging in Action. Proceedings

of Computer Supported Cooperative Work. 2000. Phila-

delphia, PA: p.79-88.

12. O'Reilly, C., P. Morrow, and D. Bustard. Improving Con-

flict Detection in Optimistic Concurrency Control Mod-

els. Proceedings of the Eleventh International Workshop

on Software Configuration Management. 2003. Portland,

Oregon: p. 191-205.

13. Olson, G. and S. Teasley. Groupware in the Wild: Les-

sons Learned from a Year of Virtual Collocation. Pro-

ceedings of ACM conference on Computer Supported

Cooperative Work. 1996: p. 419-427. ACM Press.

14. Sarma, A., Z. Noroozi, and A. van der Hoek. Palantír:

Raising Awareness among Configuration Management

Workspaces. Proceedings of Twenty fifth International

Conference on Software Engineering. 2003. Portland,

Oregon, USA: p. 444-454.

