
Which Bug Should I Fix: Helping New Developers
Onboard a New Project

Jianguo Wang and Anita Sarma
Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE – 68588-0115

{jianguow, asarma}@cse.unl.edu

ABSTRACT
A typical entry point for new developers in an open source project
is to contribute a bug fix. However, finding an appropriate bug
and an appropriate fix for that bug requires a good understanding
of the project, which is nontrivial. Here, we extend Tesseract – an
interactive project exploration environment – to allow new devel-
opers to search over bug descriptions in a project to quickly iden-
tify and explore bugs of interest and their related resources. More
specifically, we extended Tesseract with search capabilities that
enable synonyms and similar-bugs search over bug descriptions in
a bug repository. The goal is to enable users to identify bugs of
interest, resources related to that bug, (e.g., related files, contrib-
uting developers, communication records), and visually explore
the appropriate socio-technical dependencies for the selected bug
in an interactive manner. Here we present our search extension to
Tesseract.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques:
User Interfaces

General Terms
Management, Human Factors.

Keywords
Socio-technical dependency, bug search, new developer.

1. INTRODUCTION
A big challenge in software development is to get developers to
quickly become familiar with the project and its resources when
they are assigned to a new project. Gaining an understanding of
the relevant resources (e.g., project dependencies, technical
shortcuts, social cultures) in a new project is vital for a new com-
er’s successful integration into the project. However, this is often
nontrivial and it takes significant time and effort before develop-
ers become familiar with the project features and overcome tech-
nical and social obstacles [5]. This problem of getting new devel-
opers acclimatized to their new project exists in both commercial
[5] and open source projects [7].

A typical starting point for new developers in becoming familiar
is to start by exploring the bugs and issues logged in a project.
This is especially true for open source projects. In fact, Rhythm-

box[10], a popular Gnome [6] project has the following recom-
mendation for new developers: “If you don't know what to work
on, or you're looking for a small task to get started, take a look at
the list of 'gnome-love' bugs and the current GNOME goals. Oth-
erwise, there are enough bugs and feature requests in Bugzilla to
keep anyone busy.”

However, new developers have difficulty finding the bugs that are
of interest, that match their skill sets, are not duplicates, and are
important for their future community. Typically, this phase takes
significant time and effort since the developer has to manually
trawl through the bug lists in the project’s bug repository and/or
issue tracker. Further, after the developer has identified a set of
bugs that she wants to fix she has to then understand the different
resources that are related to the bug. For example, for the new
developer who is attempting to start on the bug fix it would be
beneficial for her to know: whether a similar bug had occurred in
the past, whether this bug could be related to a past feature fix,
which other files are dependent on the file that is causing the bug,
which other developers have worked on these files or features in
the past, and so on. As we can see fixing a bug often requires a
good understanding of both the social and technical dependencies
in a project and tool support in helping a new developer navigate
this complex project landscape will be beneficial.

In the recent past, enabling the efficient use of bug databases has
gained attention and a few ‘bug search’ engines have been devel-
oped. Linkster [3] allows a developer to manually link bugs to its
related bug-fix commits, which helps in overcoming some of the
missing context that is very common in open source projects.
However, this requires an experienced developer to post hoc cre-
ate the links. InfoZilla [4] automatically extracts structural infor-
mation from bug reports such as stack trace and source code,
which provides a richer context to users thereby helping them
with their bug fixes. DebugAdvisor [2] allows users to search
related information for a bug in variegated repositories by creating
a query that includes both structured and unstructured data de-
scribing the contextual information about the bug. Using probabil-
istic inferences it then recommends a ranked list of people, files,
and other resources related to the bug. This work is closest to
ours, but lacks the interactive exploration features we provide.
These tools largely focus on helping current developers find relat-
ed bugs in a repository by providing a better context for bugs.

Our focus, on the other hand, is in helping new developers to un-
derstand the complex socio-technical dependencies involved in
fixing a particular bug and in helping answer some of the ques-
tions that a developer has before beginning to fix a bug in a new
project. To do so, we enable users to search for a bug or feature
and identify related bugs, relevant resources, and their dependen-
cies in an interactive and graphical manner. We extended Tesser-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11(Chase), May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0576-1/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE’11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05 ...$10.00

76

act [11], an interactive project exploration environment, with bug
search capabilities by integrating a search engine that incorporates
synonym expansion and document similarity search.

The synonyms search helps identify a larger set of bugs that might
be of interest to developers by querying the search terms as well
as their synonyms. The similar-bugs search recommends relevant
bugs to a specific bug by searching for bugs that have similar bug
descriptions in the repository. Additionally, unlike other search
tools we support interactive visual exploration of the search re-
sults. More specifically, for each bug in the search result we pre-
sent the relations between bugs and other resources such as files,
developers, and communication records and allow the exploration
of these resources in an interactive and visual manner.

The rest of the paper is organized as follows. In Section 2 we
briefly introduce Tesseract followed by our approach in extending
Tesseract to include bug search. We provide the implementation
details in Section 3 and conclude in Section 4.

2. APPROACH
2.1 Tesseract
Tesseract is an interactive, visual project exploration environment
that focuses on socio-technical dependencies in software projects
[11]. It analyzes information from code archives, communication
records, and bug repositories to capture the relations between
code, developers, software bugs, and communication records. Key
features of Tesseract include: (1) cross-linked panes that allow
interactive exploration of technical relationships among files,
socio-technical relations between files and developers, and social
networks among developers; (2) highlighting of related files, de-
velopers and bugs; and (3) visualization of socio-technical con-
gruence, i.e., the match between developers who are supposed to
communicate because of underlying technical dependencies and
developers who are actually communicating.

Tesseract consists of four panes (see Fig. 1). The top pane is a
Project activity pane (Fig. 1-a), which displays the overall activi-
ties in the selected project – frequency of commits at the top and
frequency of communication at the bottom. Note that the time
period selected from this pane is reflected across all other panes.

The Files network pane (Fig. 1-b) displays relationships among
files or packages in the project. Files are represented as round
nodes and packages as square nodes. Files are considered interre-
lated and graphed as a network if they are committed together
(user can select a desired threshold). Further, users can explore a

package by drilling down (double clicking) on a package node,
which expands it to the file level. A textual listing of file names is
provided on the left for quick identification of artifacts.

The Developers network pane (Fig. 1-c) displays relationships
between developers. Developers are considered to have technical
dependencies if they either edited the same or interdependent
files. Social dependencies are deciphered based on communica-
tions among developers through mail messages or Bugzilla activi-
ties. User names are displayed to the left for easy identification.

The Issues pane (Fig. 1-d) displays bug information for a selected
time period. It consists of an area chart of open bugs and their
severities, and a textual description of bugs and a search UI.

Finally, all four panes are cross-linked based on the underlying
socio-technical relationships (e.g., developer who commits a file,
or is assigned to a bug, or communicated about a bug) to aid the
exploration of these relationships (see highlighted nodes in Fig. 1)

2.2 Integrating Search in Tesseract
A good entry point for developers into a project is to contribute a
bug fix on a topic in which they are interested. However, doing so
is nontrivial. When a developer chooses a bug from a bug reposi-
tory or is assigned one in a project with which she is unfamiliar,
she might spend significant effort and time searching (in an ad
hoc manner) for past instances of bugs and relevant resources for
that bug [2]. Automated support that helps developers find related
bugs to a particular bug (or a feature) along with relevant re-
sources for fixing that bug and their dependencies can help a new
developer to quickly become familiar with a project.

To achieve this goal, we extended Tesseract with a bug search
feature to help new developers identify appropriate bugs and re-
lated resources, which can help them in becoming familiar with a
project and get a jumpstart in making their contributions. In addi-
tion to regular query terms for bugs, our smart search incorporates
synonym expansion of keywords and document similarity search
on bug descriptions to recommend a larger set of relevant bugs,
which are then ordered based on their closeness to the original
query terms or a selected bug.

Synonyms Search: In addition to a regular keyword search query,
we provide a synonyms search function to identify other relevant
bugs that are similar, but do not contain the exact phrasing as the
current bug. For example, when a user searches for “playback
crashes”, the search results list all bugs with descriptions that
contain the words “crash” and “playback” as well as “freeze” and
“die”, which are synonyms to “crash” (see Fig. 2). The synonyms
search can thus provide a larger set of bugs that might be of inter-
est to the user than searching for only the exact words that the
user queried. This also allows users to explore bugs that are relat-

(a)

 (b)

(d)

(c)

Fig 1. Tesseract Screenshot.

Fig 2. ‘Find Bugs’ tab on querying "crash playback".

77

ed to a feature by searching for terms in the feature or its name.

Similarity Search: Another search feature that we include in Tes-
seract is a similar bugs search. That is, when given a specific bug,
the search engine identifies keywords from the bug description
and searches for bugs with similar descriptions. For example,
when a user is exploring a bug (bz_7859) in the repository and
wants to identify other similar bugs, the search feature provides a
list of bugs with descriptions that contain words that were in the
description of bz_7859. In our example, the key terms in bz_7859
description were: crash, delete, and song. The search includes
these keywords and their synonyms to retrieve the related bugs.
The resultant set is then ordered based on the closeness of the
results to the original bug (see Fig. 3). From this list, users can
determine which bug(s) is interesting and continue to explore
other similar bugs by drilling down on any of the results.

A key feature of our search is that the resultant bugs are reported
and visualized in Tesseract, which allows users to identify the
developers or files that were involved with a particular bug, de-
velopers who communicated regarding a particular bug, and so
on. Fig. 1 shows the related files and developers of a bug that has
been selected by a user.

3. IMPLEMENTATION
3.1 Background on Information Retrieval
Synonym expansion and document similarity search are two in-
formation retrieval techniques that we use. Synonym expansion is
the process of expanding a word to its variants at either query or
indexing time. In our case, we index a word in a document along
with it synonyms if the word exists in our dictionary of synonyms.
Document similarity uses different heuristics to retrieve a ranked
listing of documents that are similar to a query document [12]. In
our implementation, we follow the Cosine measure based on the
vector space model [9] to retrieve similar documents. Documents
and queries are modeled as n-dimensional elements of a vector
space (w1, w2 …wn), with n being the number of index terms and
wi reflecting the importance of each term i in document or query.
As noted in Equation 1, term weight wi is calculated as the prod-
uct of term frequency (tfi) and inverse document frequency (idfi).

idfi is calculated as in Equation 2 with D referring to the total
number of documents and dfi being the number of documents with
the occurrence of index term i.

Using the vector representation of documents and queries, the
Cosine similarity between a query and an indexed document is
calculated based on Equation 3.

3.2 Implementing Search in Tesseract
We built our search features using Solr – an open source search
platform [1]. The search feature comprises five phases: analyzing,
indexing, searching, querying, and reporting (see Fig. 4). In the
analyzing phase, the search engine retrieves bug data from the
Bugzilla database, analyzes and preprocesses the data by stem-
ming, filtering out stop words, and synonyms expansion. Stem-
ming is the process for reducing words to their root. For example,
“worked”, “working” can both be stemmed to “work”. Filtering
out stop words refers to filtering out words such as “and”, “a”,
“the”, etc that provide little lexical meaning to improve perfor-
mance. Synonyms expansion is explained later in this section. The
analysis phase consists of first parsing the descriptive text of a
bug into a bag of words (an unordered collection of words). In the
indexing phase, the bag of words corresponding to a specific bug
is indexed as a distinct document, which is then used in the search
phase. Note that synonyms for each term in the bag of words are
retrieved from our synonym thesaurus and indexed. In the query
phase users can either query by key terms of a software feature or
search for a similar bug by selecting a specific bug from the UI. In
the reporting phase, search results are displayed based on a rank-
ing of their closeness to the search query.

An important component of our search feature is the synonyms
search. The first step for synonyms search was to create a syno-
nyms thesaurus. We implemented it by manually analyzing bug
descriptions to determine synonyms, which were then added to the
thesaurus. Following are examples of synonyms in our thesaurus.
• mute, silent
• view, display
• crash, freeze, die, not working, doesn’t work
• delete, remove

Manually creating the thesaurus was time consuming, but it is a
resource that can be reused for other software engineering pro-
jects. It took one of the authors about 20 hours to analyze 2288
bug records in a project to create 100 synonym entries.

The next step in the process is synonym expansion, which is per-
formed during the indexing process. That is, when a term generat-

Fig 3. ‘Similar Bugs’ tab on searching bugs similar to bz 7589.

Figure 4. Steps in Search Engine

78

ed from a bug description is being indexed the analyzer first
checks whether the term has any synonyms in the thesaurus. If it
does then all its synonyms are also indexed as terms. Because of
this, when a search is performed all documents that contain the
query terms or their synonyms are retrieved. Once a set of query
results have been obtained they are ranked based on the closeness
of their (bug) descriptions to the original query. More specifically,
we use Cosine similarity (see Equation 3) to identify the similarity
between the bug description and the query and rank the resultant
bug reports accordingly.

The similar bugs search follows a comparable approach. The main
difference being that a user selects a specific bug from the bugs
pane list (see Fig. 1-d) instead of searching over specific query
terms. When a user selects a particular bug, the search engine
retrieves the description of the selected bug from the Bugzilla
database using the bug ID. It then parses the description and con-
verts it into a bag of words, which are considered as the key query
terms for the search. The rest of the process is exactly the same as
above. Once the search engine recommends the “similar” bugs,
users can investigate the resultant bugs as well as explore other
similar bugs from the result set.

Implementing the search feature required us to make modifica-
tions to the original Tesseract architecture. Fig. 5 shows the addi-
tions to the original architecture through the highlighted modules.
Specifically, the search application server and index was added at
the backend, new models on bug query and filters added, and two
new UI components implemented (bug query, bug report).

The interactive project exploration feature provided by Tesseract
sets us apart from other existing bug search tools. Using our
search feature new developers can visually explore a particular
feature, code component, or a bug. They can now easily explore
the vast project space to identify other related bugs or feature
fixes, the files and developers that were connected to a bug (or
related bugs), developers who discussed about a bug and have the
required expertise, and so on.

4. CONCLUSIONS
We extended Tesseract to incorporate search feature for bugs or
issues in a project so as to help new developers familiarize them-
selves with their new project. That is, new developers can search

for key terms of a feature or an existing bug and explore other
related bugs and artifacts associated with that bug to get a better
insight into the project. We incorporated synonyms expansion and
document similarity in our search feature by building on Solr, an
open source search platform [1]. The Tesseract search feature uses
a synonyms thesaurus to also include synonyms of queried terms,
which provides a larger set of related bugs to developers. Finally,
we use Cosine document similarity measures to rank the resulting
set of bugs. Users can now explore these bugs (and other similar
bugs) through the cross linked views of Tesseract to explore the
different dependencies in resources (files, developers, communi-
cation records) associated with the bugs.

Currently, we have created our own synonyms thesaurus. In the
future, we will explore integrating external synonym resources
like WordNet (a large lexical database of English) [8] or using
machine learning techniques to automatically identify synonyms.
We also plan to use natural language processing techniques like
latent semantic analysis for more refined searches. Finally, we
plan to conduct user studies to evaluate the usability and effec-
tiveness of Tesseract and its search feature.

5. ACKNOWLEDGMENTS
This research is supported by grants NSF CCF-1016134 and
AFSOR FA9550-09-1-0129.

6. REFERENCES
[1] Apache.org. Solr – an open source enterprise search plat-

form. Available: http://lucene.apache.org/solr/
[2] B. Ashok, et al., "DebugAdvisor: A Recommender System

for Debugging," in European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Founda-
tions of Software Engineering, 2009, pp. 373-382.

[3] A. Bachmann, et al., "The Missing Links: Bugs and Bug-fix
Commits," in Foundations of Software Engineering, 2010,
pp. 97-106.

[4] N. Bettenburg, et al., "Extracting Structural Information
from Bug Reports," International Working Conference on
Mining Software Repositories, 2008, pp. 27-30.

[5] B. Dagenais, et al., "Moving into a new software project
landscape," International Conference on Software Engineer-
ing, 2010, pp. 275-284.

[6] GNOME. The Free Software Desktop Project. Available:
http://www.gnome.org/

[7] G. v. Krogh, et al., "Community, Joining, and Specializa-
tion in Open Source Software Innovation: A Case Study,"
Elsevier - Research Policy, 32(7), 2003, pp. 1217-1241.

[8] Princeton. WordNet - a large lexical database of English
synonyms. Available: http://wordnet.princeton.edu/

[9] V. V. Raghavan and S. K. M. Wong, "A Critical Analysis
of Vector Space model for Information Retrieval," Journal
of the American Society for Information Science, 37(5),
1986, pp. 279-287.

[10] RhythmBox. Music Management Application for Gnome.
Available: http://projects.gnome.org/rhythmbox/

[11] A. Sarma, et al., "Tesseract: Interactive Visual Exploration
of Socio-Technical Relationships in Software Develop-
ment," in International Conference on Software Engineer-
ing, 2009, pp. 23-33.

[12] X. Wan, et al., "Towards a unified approach to document
similarity search using manifold-ranking of blocks," Infor-
mation Processing & Management, 44(3), 2008, pp. 1032-
1048

Figure 5. Integration of bug search in Tesseract.

79

