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ABSTRACT 
Distributed Constraint Satisfaction Problem (DSCP) has been 
proposed as a methodology to frame and analyze coordination in 
software development. Here, we propose concrete ways to cast 
rich social and product dependence graphs of software projects 
into the DSCP framework, suggest how the lack of congruence 
among these graphs may affect primary software engineering 
outcomes, and discuss the DSCP machinery that is most likely to 
provide necessary tools to test these hypotheses.   

1. INTRODUCTION 
Coordination is a critical factor for the success or failure of a 
software project. Studies have shown that a lack of appropriate 
coordination is responsible for delays in project and cost overruns 
[3, 4]. Coordination in software development arise because of a 
number of reasons (e.g., interdependencies among artifacts, 
shared resources, and non uniform skill set among developers). 
Teams have to consider these issues to be able to coordinate 
among each other. 

We have argued in prior work that coordination in software 
engineering is a distributed constraint satisfaction problem 
(DCSP) [5] in which engineering decisions form a constraint 
network.  In this position paper, we argue that DCSP can be used 
to form a theoretical basis for congruence that lends clarity to the 
idea and generates specific, testable hypotheses.   

2. CONSTRAINT SATISFACTION 
The need for coordination arises from the core technical activity 
of making engineering decisions where the alternative chosen for 
any given decision potentially influences how one evaluates the 
choices for a number of other decisions.   The full extent of these 
influences is often quite difficult to determine, hence decision-
making is generally performed with some degree of uncertainty 
and with imperfect information.   

We claim that the irreducible interdependence among tasks in 
software engineering is a distributed constraint satisfaction 
problem (DCSP), and consequently coordination in a 
development organization is the execution of an “algorithm” that 
solves the DCSP.  In a DCSP, decisions are embedded in a 
network of constraints, and are potentially owned by many 
agents.  Finding a solution then generally requires coordination 
among the agents.  Given the boundedly rational nature of such 
decision-making, solutions will generally be satisficing rather 
than optimal [6].  As with many coordination problems, 
coordination in software engineering can be carried out in a great 

many ways, involving a variety of design methods, social 
processes, communication regimens, communication tools, and so 
forth.  Yet the problem has an irreducible core – if incompatible 
decisions are made and constraints not satisfied, then either the 
software will not work properly or expensive rework will be 
required. 

More specifically, we define DCSP by applying Yokoo’s [7] 
formulation to the software engineering domain.  A software 
project consists of a large set of engineering decisions that must 
be taken in order to complete the project. Decisions are 
represented as n variables x1, x2, . . . , xn whose values are taken 
from finite, discrete domains M1, M2, . . . , Mn. Assigning a value 
to a variable represents taking the decision represented by that 
variable.  

A project has a set of constraints that operate over the variables 
that represent the engineering decisions. Given an assignment of 
a value for some variable, the constraints serve to limit possible 
values that can be assigned to other variables. Formally, 
constraints pk(xk1, xk2, . . . , xkn) can be represented as predicates 
defined on the Cartesian product Mk1 x Mk2 x . . . x Mkj. 
Successfully completing a project is equivalent to finding an 
assignment for all variables that satisfies all constraints.  In order 
to represent which decisions participate in which constraints, we 
can construct a matrix C of dimension n decisions by k 
constraints, where a non-zero value Cnk means decision n 
participates in constraint k.   

The product CCT, where CT is the transpose of C, is a square 
matrix D of dimension n, where a nonzero value Dab indicates 
that decision a participates in at least one constraint with 
decision b.  We call this matrix the dependency matrix. D can 
often be estimated directly from data, e.g., dependencies in code 
as measured by call graphs or logical dependencies, or 
dependencies in design as represented, e.g., by design structure 
matrices.  Any of these can potentially be used to estimate the D 
matrix.   

In development organizations, decisions are made by multiple 
agents.  Let B be a matrix of dimension n by a, where n is the 
number of decisions and a is the number of agents.  A nonzero 
entry Bna indicates that decision n belongs to agent a.  B can be 
thought of as representing task assignments – which agents take 
which decisions. 

Finally, a square interpersonal dependency matrix R of 
dimension a, the number of people involved in the project, can 
be constructed.  A non-zero entry Rab indicates that developer a is 



performing work that shares dependencies with the work 
performed by b.  R can be computed as BDBT, where BT is the 
transpose of B.  R shows which agents own decisions that need to 
be coordinated for the particular task or tasks represented by B. 

This section has argued that coordination in software 
development is a DCSP, and successful coordination is 
equivalent to finding a solution.  In the next section, we describe 
some coordination networks representing mechanisms that 
organizations use for solving coordination DCSPs.  R is 
particularly important in this theory, since coordination networks 
often represent coordination as person by person networks, which 
can be compared to R, in order to see if coordination behaviors, 
organizational structure, or other mechanisms are a good match 
for the coordination problem.   

3.  COORDINATION NETWORKS 
In general, research on organizations claims that coordination can 
be achieved in three basic ways: “programming,” communication, 
and shared representations.  Coordination by “programming” 
refers to imposing rules, practices, or agreements than ensure 
that subsequent behavior is coordinated in certain respects.  
Included in this category would be things like plans, interfaces, 
and development processes.  Coordination by shared 
representations means that agents construct and refer to things 
like documents and displays to coordinate work.  In software, this 
could be things like project status data or test results.  While we 
think the theory developed in this paper could readily be 
extended to these forms of coordination, we focus here on 
coordination by communication. 

Agents attempt to solve a DCSP by making decisions, which we 
represent as assigning values to variables, and communicating 
with other agents.  Communication behaviors differ in many 
ways, including what the agents communicate, when they 
communicate, and with whom they communicate.  Patterns of 
communication emerge over time, and these patterns can lead to 
familiarity and enhanced ability to coordinate among frequently-
communicating agents.  These varieties of communication can be 
represented as social networks with different edge types. 

Coordination networks that we have used in prior research [2] 
include communication over various channels, team membership, 
and geographic location.  Each coordination network has people 
as nodes, and edges (possibly weighted) represent the type of 
coordination activity of interest, such as communication or 
communication proxy such as team membership.  For 
computational purposes, each network can be represented as a 
square matrix Q of dimension a, where a is the number of people 
involved.  This, of course, is the same dimension as interpersonal 
dependency matrix R in the previous section. 

We have now described a way of representing the interpersonal 
dependency network that represents a fundamental property of 
the DCSP, and various coordination networks that impact how 
and how well organizations will solve the DCSP.  In the next 
section, we describe the concept of congruence that brings R and 
Q together.   

4.  CONGRUENCE AND 
CONSTRAINTS 
Congruence implies some form of correspondence of the 
interpersonal dependency network R and various coordination 
networks Qm.  There can obviously be many flavors of 
congruence, and such correspondences can be computed in a 
variety of ways.  The underlying idea is simply that the various 
Qm represent features of the development organization that will 
profoundly impact its ability to solve various DCSPs. The 
important relationships between R and Qm may sometimes be 
simple, e.g., isomorphism or homomorphism, or they may be 
complex.  The nature of the relations presents key research 
questions.  

The fundamental propositions of this theory are: 

P1: Higher levels of congruence predict more effective 
project coordination. 

P2: As a consequence of P1, higher levels of congruence lead 
to better project outcomes. 

P3: Decisions, particularly those made early in a project, can 
substantially alter the structure of D and R, thereby 
changing the nature of the coordination problem. 

5.  RESEARCH PROGRAM 
Progress is needed along several fronts in order to complete the 
theory, test it empirically, and exploit the new knowledge to 
improve software development practice.  Roughly we can divide 
the activities into two distinct groups: (1) the discovery phase, 
which would generate a variety of concepts and measures related 
to common coordination situations and relevant ways to measure 
congruence among them and (2) the application phase, which 
would use insights from case studies to propose practices and 
tools to improve software development.  

5.1  Discovery 
Connection of coordination networks and DCSP.  It seems 
intuitively clear that various kinds of coordination networks, 
which represent key aspects of how an organization coordinates 
its work, will strongly influence the organization’s ability to 
solve a DCSP of a particular form.  Yet much theoretical and 
empirical work needs to be done to achieve a more precise 
understanding of this relationship.  What is important, 
ultimately, is how the coordination networks shape the problem-
solving behavior of the organization, and how effectively this 
problem-solving behavior addresses the particular DCSP 
representing the coordination problem. 

Good measures of interpersonal dependency networks for a 
variety of tasks.  One approach is to derive these networks from 
technical dependencies in code and other development artifacts.  
In code, for example, dependencies can be measured in terms of 
syntactic dependencies such as function calls or reading or 
writing data.  It is not clear which of these measures can be used 
to produce the best estimates of dependency networks.  Design 
structure matrices provide an appropriate example of a 
representation for decision-constraint networks for designs and 
architectures.  It might also be possible to augment architecture 
design environments such as ArchE [1] to build the decision 



constraint network from the properties of an architecture and a 
set of rules associated with quality attributes. 

Identifying and measuring various kinds of coordination 
networks.  There are potentially a large number of ways to 
coordinate engineering decisions, and finding appropriate 
measures for them is a challenge.  Many can be computed from 
data often found in software archives, such as Bugzilla logs (e.g., 
who has communicated with whom about a bug) and version 
control systems (e.g., who has worked with whom in the past).  
Other potential coordination networks, such as knowledge 
networks and trust networks, that may impact coordination, may 
need to be measured by surveys or other means.  Given the 
number and diversity of coordination networks, it may often be 
desirable to combine them, e.g., by means of matrix operations, 
to generate more precise or more general measures of 
coordination. Alternatively, selecting a subset of networks most 
salient to the phenomena under study may help solve more 
specific problems. 

Computing congruence and its effects.  As mentioned in the 
previous section, there are many degrees of freedom in the 
computation of congruence, including selection of decision-
constraint network, selection of coordination network, and 
selection of how to compare them.  Even more challenging is the 
development of theoretical refinements and performing empirical 
research to understand the various effects of different levels of 
congruence for development tasks.  [2] provides an example of 
empirical analysis of Modification Request archives and 
communication archives to compute congruence measurements. 

5.2  Applications 
Collaborative and awareness tools based on congruence.  
Achieving an understanding of what kinds of coordination 
networks are important for resolving a particular type of 
decision-constraint network observed in actual projects will 
provide a basis for collaboration and awareness tools.  

Application of formal methods.  While we have no specific 
approach in mind, the formulation of coordination presented here 
allows graph-theoretic analysis of many aspects of coordination, 
which we hope will allow useful application of formal methods 
of evaluation.  The novelty of application would be the potential 
of making the social component of software development 
amenable to formal methods. 

Analysis of existing development methods.  Many existing 
software engineering techniques are implicitly or explicitly 
designed to support solving a DSCP. For example, the daily 
standup meetings advocated in some flavors of agile methods are 
explicitly designed, at least in part, to facilitate coordination 
through frequent communication.  Our theoretical framework 
may help highlight the exact role of each technique and to 
propose novel approaches that are not yet used.  

Structure based on coordination needs.  Given a better 
understanding of how architectural and design decisions impact 
coordination, work on congruence could provide a different way 
of thinking about task partitioning.  Rather than basing modules 
and components purely on technical considerations, better 
choices could potentially be made by also taking account of the 
impact of design decisions on coordination requirements.   

6. EXTENSIONS 
In order to be more complete, and to predict and describe a wider 
range of coordination issues, the theory will need several 
extensions, including at least the following: 

Time.  Software development is dynamic, and as decisions are 
made over time, the nature of the coordination problem changes.  
If m decisions have been taken, then the DCSP consists only of n-
m decisions and the constraints among them.  The network is not 
only smaller, but it may also have very different network 
properties, depending on the location of the executed decisions in 
the original network.  Removing the executed decisions may 
create a disconnected graph of more isolated components, for 
example.  The coordination networks most appropriate for 
solving this reduced problem may be quite different from the 
networks that best matched the original DCSP.  All of this 
assumes, of course, that decisions once made are never changed, 
which is an oversimplification.  Backtracking happens often, but 
is expensive, so decisions once made tend not to get changed 
unless no solution can be found.   

Path dependency analysis.  Another potentially interesting area is 
path dependency analysis. The dependency matrix D described 
earlier represents the space of technical decisions and their 
relationships. As technical decisions are made, specific sub-parts 
of the decision space and their relationships could become 
critical or irrelevant. Then the model proposed here would 
provide the machinery to evaluate how specific sets of decisions 
impact subsequent ones and how that particular sequence of 
events relates to the coordination activity required by the 
organization. 

What agents know.  The agents’ knowledge of decisions that have 
been made, the constraint predicates, and the ownership of 
decisions are highly likely to influence the effectiveness of 
various coordination networks to resolve DCSPs.  For example, if 
an agent knows who owns a decision, and knows about a 
constraint affecting both that decision and one of his own 
decisions, then the agent knows who to communicate with to 
negotiate how to address the constraint, or to find out if a 
decision has already been made by the other agent.  On the other 
hand, if the agent is not aware of the constraint, he may not know 
of any reason to communicate with that agent, suggesting that 
some other method such as unplanned communication or 
automated dependency detection may be required.  
Understanding what knowledge is needed in order to function 
effectively in the context of various coordination networks, and 
what kinds of communication and artifacts can provide that 
knowledge, are important research areas.   

Artifacts.  A more complete theory of coordination would include 
artifacts that agents use to coordinate.  For example, agents may 
coordinate by examining changes in the code, design documents, 
or project status reports.  Artifacts could perhaps be represented 
in bipartite graphs with agents and artifacts as nodes. Or they 
could be represented in additional matrices, e.g., agents by 
artifacts, or decisions by artifacts.  In either case, this is an area 
rich in possibilities, since coordination by shared representations 
is one of the primary modes of coordination in general. 



Prescribed behavior.  Another area that should be explored in 
order to create a more complete theory is what we’re calling 
prescribed behavior, and organizational theorists would call 
coordination by “programming.”  (For our field, we are using 
new terminology in order to avoid the obvious confusions.)  
When does it make sense to spend up front effort on a detailed 
architecture, defined process, plans, or requirements to 
coordinate the work, and when is a more agile approach 
superior?   

7. DISCUSSION 
Coordination is a fundamental issue in software engineering and 
in almost all kinds of group work.  Many ways to coordinate 
work exist, and there are many drivers for the need to coordinate, 
they have largely been viewed as individual, isolated problems 
and only point solutions to some of these problems were offered.  
Our proposed theory provides the framework to integrate these 
diverse approaches into a coherent problem from which testable 
hypotheses can be derived and future progress facilitated. 
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