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ABSTRACT
Foraging among too many variants of the same artifact can 
be problematic when many of these variants are similar.  
This situation, which is largely overlooked in the literature, 
is commonplace in several types of creative tasks, one of 
which is exploratory programming. In this paper, we inves-
tigate how novice programmers forage through similar var-
iants. Based on our results, we propose a refinement to In-
formation Foraging Theory (IFT) to include constructs 
about variation foraging behavior, and propose refinements 
to computational models of IFT to better account for forag-
ing among variants.
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INTRODUCTION 
Computer-supported creative tasks—such as writing, graph-
ic design, creating presentations, and some forms of pro-
gramming—are often exploratory in nature. People often 
work on such tasks in an opportunistic manner: integrating 
bits and pieces from various sources, evaluating various 
alternatives, etc. During this process, they also save their 
intermediate steps, thereby creating several variants of the 
same artifact [2, 12, 43].

When performing creative tasks, in addition to reusing bits 
and pieces from a variety of sources, individuals may also 
revisit earlier variants of the same source. This especially 
occurs when things go wrong, they reach a dead-end, or 
when they want to use features from other (earlier) variants 
[2, 12, 17]. 

One example of such creative tasks is exploratory pro-
gramming, in which programmers experimentally blend 
creating new code with reusing bits and pieces of code from 
various sources, some of which may be earlier variants. 

Both novice and expert programmers engage in such ex-
ploratory programming [17].

In this paper, we focus on how programmers reuse variants 
in exploratory programming [1, 27]. Reuse in programming 
is generally difficult [14], and becomes even more difficult 
in the context of reusing earlier variants. This is because 
temporally close variants of the same code can be very sim-
ilar, requiring much cognitive effort to choose which vari-
ant to reuse.

This cognitive effort is especially high in programmers with 
little experience in systematic software reuse [29]—such as 
novice programmers. Novices do tend to engage in explora-
tory programming with numerous variants in the form of 
alternatives they’re trying. These factors can inhibit novic-
es’ explorations during programming [45]. Given these 
challenges, in this paper, we focus on novice programmers.

We believe that theories on information seeking behavior 
can help understand how novice programmers search for 
code among variants. Information Foraging Theory (IFT) is 
one such theory that has explained information-seeking 
behavior of people in general, and of programmers in par-
ticular [39]. IFT proposes that a person seeking information 
follows the “information scent” from sources (patches) that 
exist in an environment, similar to the way predatory ani-
mals in the wild follow the scent to their prey [38]. Models 
based on the theory have accurately predicted the links that 
people follow as they navigate through web sites and soft-
ware artifacts [24, 32, 38]. 

However, we posit that IFT is underexplored in the space of 
exploratory programming. Specifically, IFT has not yet 
dealt with foraging in the presence of variants over time—
where multiple artifacts have close similarities, but also 
some differences. We propose a refinement of IFT as a the-
ory of variation foraging, modified to account for how peo-
ple “forage” through variants. Abstracting how people 
search through variants via theory can provide a foundation 
that can help the design of environments for creative tasks, 
such as programming.  

In this paper, we take the first step towards a theory of vari-
ation foraging through a qualitative, empirical study inves-
tigating how novice programmers find and evaluate vari-
ants. We structured our study around the following research 
questions: 

RQ1: What are the types of information that help novice 
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programmers identify variants that can be reused?

RQ1a (Between-variant foraging): How do they forage 
between variants of an artifact to find and evaluate a po-
tential variant?

RQ1b (Within-variant foraging): How do they forage 
within a specific variant to find and evaluate a potential 
patch?

RQ2: How do novice programmers integrate parts of the 
program across variants?

BACKGROUND AND RELATED WORK

Variations

Background
To understand how novice programmers forage through 
variants, we first define program variants. From a given 
starting point, a program (which may be empty) can be 
modified into other programs through the addition, remov-
al, or other modification of code. Informally, we use the 
term variation with respect to software when multiple relat-
ed implementations exist, either serially or in parallel. We 
use the word variant to more specifically refer to a syntacti-
cally valid program that occurs together with similar, relat-
ed programs in a group. For example, if a user edits an ap-
plication to use a menu instead of buttons, this results in a 
new variant of the application. 

Related Work
Research has explored providing variation support in non-
programming domains, such as graphic design, documents 
and personal information management. Several tools sup-
port variations in graphics and interface design by allowing 
users to create multiple options, and providing ways to ma-
nipulate and compare them [12, 13, 43, 44]. For example, 
Kumar et al. [18] present Bricolage, which helps web inter-
face designers transfer the style and layout of one web page 
to another. Mechanisms to automatically support variations 
have also been proposed for personal information manage-
ment. Karlson et al. [16] introduce the concept of copy 
aware computing ecosystems that track user edits in a com-
puting environment. They show that such personal infor-
mation management systems can help users keep track of 
changes and semantics behind their copy operations.

In professional software engineering, product lines [6] refer 
to a family of customizable software products created 
through a rigorous configuration process. Research on ver-
sion control systems, in both academia and industry, has 
focused on supporting and managing variations to pro-
grams. There also exists research on providing variation 
support to end-user programmers [19, 21].

Our work differs from the above work by studying how 
novice programmers navigate, find, understand, and reuse 
code between different variations of the same set of pro-
grams, when performing exploratory programming.

Information Foraging Theory

Background
We use information foraging theory to inform our under-
standing of how and where novice programmers forage 
when reusing program variants. Information foraging theo-
ry (IFT), developed by Pirolli and Card [39] has been used 
to understand how humans search for information, and is 
based on optimal foraging theory.

Optimal foraging theory, rooted in the biological sciences, 
is a theory of how animals hunt for food. Pirolli and Card 
found similarities between users’ information search pat-
terns and animals’ food foraging strategies, and used these 
similarities to develop IFT. There are several constructs in 
IFT that relate to optimal foraging theory: humans are 
predators who search for their prey, which is information. 
To find their prey, the predators look through various in-
formation sources called patches, such as a file explorer 
window, source code file, or an output window – see Figure 
1 parts: A, B, C, respectively. Patches contain information 
features. Information features are elements of the patch, 
such as folder names or variable names (Figure 1 parts: D, 
E), which a predator can process to gain knowledge.

In each patch, predators make one of three choices: (1) to 
forage for information within the patch, (2) to forage to a 
new patch or (3) to engage in enrichment by modifying 
their environment. These choices are informed by the pred-
ator’s information scent, gathered from cues (signposts) in 
the environment, such as labels on links. Thus, the scent of 
a cue is the predator’s assessment of the value and cost of 
information obtained by following a link associated with 
that cue. The network of patches connected by links is 
called the topology. 

Related Work
Information foraging theory was introduced by Pirolli and 
colleagues to explain people’s foraging behavior in large 
document collections and web pages [3, 4, 11, 34, 35, 36, 
37]. To assess the theory empirically, Pirolli and his col-
leagues built several computational models.  For example, 

Figure 1: The cloud9 Interactive Development Environ-
ment. A, B, C are Patches; D, E are information features 

(see text). 
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Fu and Pirolli built a cognitive model called SNIF-ACT
[35] that modeled the links on a page and computed scent to 
predict users’ foraging and backtracking. Chi et al. built 
another model called WUFIS [5] that built a graph of all
pages and links on a website to predict foraging activity and 
identify the least accessible pages.

IFT has also been applied to software engineering, in areas 
like program maintenance, debugging, and requirements 
[10, 22, 23, 25, 26, 28]. For example, Lawrance et al. de-
veloped a model called PFIS [24] to predict programmer 
navigation during maintenance tasks, and then a reactive 
version, PFIS2, to account for evolving foraging goals [22, 
23, 26]. Piorkowski et al. used IFT as a lens to understand 
programmers’ foraging goals and strategies during debug-
ging [30] and introduced PFIS3 [32] and a PFIS-based tool 
that recommends the next navigation step a programmer 
should take [31]. 

Kuttal et al. applied IFT to understand end-user foraging 
behavior when debugging mashups [20], thereby refining
understanding of end users’ debugging behaviors. They also 
categorized different types of cues and strategies that users 
could use when debugging mashups.

All of these IFT works have focused on foraging in only 
one variant of an artifact (often the most recent one [26], 
even in reuse situations [10]). In contrast, this paper consid-
ers foraging in multiple variants of the same artifact that are 
all available at once. One important foraging impact of 
multiple variants is that these variants may be very similar.

METHODOLOGY
We conducted a think-aloud study to investigate how our 
target population would forage in an information space con-
taining a large number of program variants. 

We used Hextris [8], a web-based puzzle game inspired by 
Tetris, as our test environment. We obtained the game’s 
source from a public GitHub repository [9]. Hextris ful-
filled our criterion of containing a large number of variants 
(over 700 commits) that the participants could potentially 
use in order to complete their tasks.

We observed participants while they performed tasks. We 
used screen-capture software to capture and record their 
actions on screen, and a webcam to capture video and audio 
of the participants directly.

Task Context 
Participants were presented with a scenario in which a 
small non-profit company hosted the Hextris game on their 
website. In this scenario, volunteer programmers helped the 
company improve Hextris over its lifecycle and visitors to 
the site suggested some changes to the game. We asked 
participants to implement these changes. 

Tasks 
The first task was to move the game’s score indicator from 
the center of the hexagon (see Figure 2) to a location above 
the hexagon like it had been in earlier variants of the game 

(see Figure 3). We used the phrase “like it was before” 
when communicating this to the participants, both to phrase 
the statement as a comment from a site visitor and to avoid 
explicitly mentioning that a solution existed in an earlier 
variant. The second task was to return the game’s bonus 
score multiplier indicator (see Figure 2) to the location 
above the hexagon and put it in parentheses, “like it was 
before” (see Figure 3). The third task was to change the text 
color of the score and multiplier to black so it could be seen 
when placed above the hexagon. Full task descriptions are 
available on our supplementary website [42].

Several earlier variants of the game had the score and the 
multiplier above the hexagon; therefore, multiple solutions 
to the tasks were possible. Some of these earlier variants 
had score calculation logic similar to the current one while 
others had an entirely different logic. We asked participants 
to preserve the current score calculation logic.

Figure 2: Participants were asked to make the following 
changes to the latest variant of the game: i) move the 

score (boxed) above the hexagon, ii) move the bonus mul-
tiplier (circled) above the hexagon and iii) change the 

color of the score and multiplier to black so it could be 
seen when placed above the hexagon.

Figure 3: In some earlier variants of the game, the score 
indicator and bonus score multiplier appeared above the 

hexagon. This image was not provided to participants.
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Participants 
We were interested in how programmers navigate through 
variants during exploratory programming. Since novice 
programmers have been known to engage in exploratory 
programming [1], we recruited Computer Science students 
from our university. All participants had some experience 
with programming, but were relatively new to JavaScript 
programming (less than two years). There was one outlier 
who indicated that he had 6 years of JavaScript experience, 
but he mentioned that he’d only occasionally programmed 
with JavaScript. Participant ages ranged between 18 and 29. 
Table 1 shows the general demographics of the participants.

Study Design
The participants first filled out a background questionnaire, 
and then a researcher instructed them in the think-aloud 
method. Participants were then given a short tutorial on 
how to use Cloud9 [7], a web-based JavaScript IDE. The 
participants who lacked JavaScript or web development 
experience were also given a 15-minute tutorial on the ba-
sics of HTML, CSS, and JavaScript.  

After the initial instructions, participants spent 50 minutes 
working on the three programming tasks, talking aloud as 
they worked. Throughout the session, we collected audio of 
what the participant said, video of the participant while 
talking aloud, and screen-capture video.  Following a short 
break, we conducted a semi-structured retrospective inter-
view with each participant by playing back all of the 
screen-capture video. After each foraging decision we ob-
served, we stopped the video and asked the participant 
questions about their foraging decision. Interview questions 
were inspired by work by Piorkowski et al. regarding IFT in 
debugging [33], and are detailed in Figure 4.

Presentation of Variations
Over 700 program variants were available to the partici-
pant. We labeled each variant by the timestamp of the 
commit. We also included a file called changelog.txt within 

each variant folder that contained the GitHub commit mes-
sage and other information (e.g., commit ID, author name). 
Our participants had different levels of experience with 
GitHub. To control for this experience level, we presented 
variants in the Cloud9 environment, which none of our par-
ticipants had used. Figure 5 shows how variants were dis-
played in the explorer view in Cloud9. 

Limitations
Every study has limitations. In our study, the experimental 
setup and the presentation of variations as separate folders 
were different from full-fledged version control systems 
that professional programmers use. Similarly, the tasks and 
the Github repository used may not be representative. Pro-
grammers may also have different motivations for foraging 
than those used in our study. Limitations like these can only 
be addressed through further empirical studies.

Qualitative Analysis 
We qualitatively coded the data as follows: We used the 
baseline code set inspired by previous research [21, 33, 41]. 
We also added new codes (shaded items in Table 2) to rec-
ord phenomena that we observed specific to our variation-
foraging questions. 

We segmented the transcripts of participants’ think-aloud 
videos into 30-second segments and coded them, allowing 
multiple codes per segment. Two researchers independently 
coded 20% of the transcripts. We then calculated inter-rater 
reliability using the Jaccard measure [15], resulting in a rate 
of agreement of 85% on 20% of the data. Given this high 
rate of inter-rater reliability, the two researchers split up the 
coding of the remaining code set.

Each time a participant entered a new variant:Explain:      You chose to [do/go to] (Variant name) Ask:     What did you expect to (see/find) when you went to _____?     What did you see as your other possible choices?      Why did you choose to navigate to _____ as opposed to (other choices)?  
Figure 4: During the retrospective interview, we played
back a video of the participant’s programming task and 

asked these questions after every foraging decision.

Figure 5: Variants were presented in chronological order 
in the IDE.

Partici-
pant    
label Gender Level Age

Experience (years)

Java-
script

Progra-
mming

Web 
develop-

ment
P01 Male Sophomore 20s 1 1.5 Yes
P02 Male Freshman Teens 6* 6 Yes
P03 Female Junior 20s 0 9 No
P04 Male Sophomore 20s 2 1 Yes
P05 Male Freshman Teens 0 3 No
P06 Male Sophomore Teens 0 5 Yes
P07 Male Junior 20s 2 2 Yes
P08 Male Junior 20s 1 5 Yes

Table 1. General demographics. 
(*Participant P02 occasionally programmed in JavaScript) 
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We coded the data according to the cue types participants 
used, the type of operations they performed, and their navi-
gation behavior (see Table 2).

RESULTS
Rosson & Carroll [40] studied how Smalltalk programmers 
find and apply code from one “usage context” (containing 
reusable code) to accomplish a task in their “current con-
text” (containing the location to integrate the reusable 
code). They define three stages for reuse tasks:

1) Finding a usage context,
2) Evaluating a usage context,
3) Debugging a usage context

This model was for reuse for a single variant of source 
code, so we extended the model in two ways to accommo-
date multiple variants. First, we introduce a “Finding and 
evaluating a current context” stage, because in our case this 
stage influenced how participants found and evaluated the 
usage context. Second, participants integrated changes 
across variants to finish the task. Thus, we replace the de-

bugging stage with an “Integrating the variants” stage. The 
modified reuse model consists of the following stages: 

1) Finding and evaluating a current context,
2) Finding and evaluating a usage context,
3) Integrating the variants.

In IFT terminology, a current or usage context maps to the 
patches within a variant that are relevant to the user’s ongo-
ing task (see Figure 6). Here, we term the current context as 
destination variants and patches, and usage contexts as 
source variants and patches. Therefore, in order to find a 
context, one has to forage (find and evaluate) the right vari-

Code Description
Cue-Types

Create Time,
Update Time

Timestamp cues marking latest, first or 
intermediate variants, and navigation to 
corresponding variants.

Previous File, 
Previous Method

Reuse of information features (file and 
method names) from one variant as cues in 
other variant.

Output Cues based on how output looks or running 
a preview

Domain Game-related words, e.g., score, block, etc

Source Source Code-Inspired cues e.g., function 
name, variable name, etc.

Error, 
Correct

Cues based on error/correctness of 
patch/prey

File Name, 
File Type FileName-Inspired and file type cues

Document Documentation cues: change logs, readme 
files, tooltips, etc.

Comment Source code comments
Search Search inside IDE or the internet

Debug, Inspect Debugger or “element inspect” feature in 
browser

Operations

Edit
Edits made to source code, to verify the 
prey using Output-Inspired cues, or to im-
plement the task.

Reuse Explicit reuse of source code , i.e., copy 
and paste

Compare Compare two variants
Navigations

Between Variant 
Navigation

Between-variant navigation was coded 
along with the cues that guided these navi-
gations.

Table 2.  We coded participants’ operations, navigations 
and the cue-types they attended to. The highlighted items 

are the new codes we added pertinent to variations foraging 
that have not been reported in the IFT literature.

Figure 6: Finding and evaluating a context involves find-
ing the variant (between-variant foraging) and then the 

patches within the variant (within-variant foraging).

Figure 7: Modified reuse model: Participants were pro-
vided with the destination variant (greyed out).  They 

interleaved finding and evaluating the prey in both be-
tween-variant (blue) and within-variant (green) foraging.
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ant, and then forage (find and evaluate) the relevant patches 
inside that variant (see Figure 7). 

Note that we do not intend our modified reuse model to 
suggest that programmers followed any particular order. In 
fact, Figure 8 shows that Participant P06 foraged for the 
source variant and the source patches (usage context) before 
he foraged for the destination patches (current context). In 
summary, our results describe sets—not sequences—of 
behaviors.

Stage 1: Finding and evaluating a current context
Foraging for the current context, or where the fix needed to 
be made, involved finding the right destination variant, and 
then finding the relevant destination patches in that variant.

Destination Variant: Find and Evaluate
Participants didn’t need to forage for the destination vari-
ant: it was provided for them and labeled “Current”.

Destination patch: Find and Evaluate
Finding and evaluating patches were interleaved when par-
ticipants foraged for the destination patches. In conform-
ance with prior research on IFT for debugging, participants 
attended to various cues within the destination variant (e.g., 
file names, words in source code, source code comments, 
Output-Inspired, etc.) [33].

When participants found a patch that might contain the 
prey, they edited the code and used the resulting output to 
evaluate it. For example, all participants altered the x and y
parameters in the renderText() method in order to evaluate 
whether it really altered the score position. The dots inside 
the destination patch foraging segments show how partici-
pants edited the destination patches to evaluate them.

Stage 2: Finding and evaluating a usage context
For Stage 2, we investigated the types of information that 
participants used to identify reusable variants (RQ1), their 
between-variant foraging behavior (RQ1a), and their with-
in-variant foraging behavior (RQ1b). 

Source variant: Find
Participants first tried to find a variant of the game that had 
the score and multiplier above the hexagon. To do so, they 
foraged among several variants. We call this between-
variant foraging, similar to between-patch foraging [39].

Indeed, when foraging within any one variant (within-
variant foraging), participants performed both within-patch 
and between-patch foraging. However, their between-
variant foraging was not similar to between-patch foraging;
the latter refers to navigating between patches that have 
different information, e.g., between two different methods,
but the variants were more similar than different. 

The only cue type available to participants while foraging 
between variants was the update timestamp of the variant 
(specified as the folder label). Five out of eight participants 
attended to the timestamp cues by navigating to the oldest 
variant of the game. Participant P04 said: “I wanted to see 
what they were doing at the beginning, [to] see what they 
had implemented to start off with”. Participants then navi-
gated to a variant by either directly selecting a particular 
timestamp, or by using the chronological ordering to guess 
how far to scroll to a potentially more valuable variant.

Participants’ timestamp-based navigation mostly followed 
one or more of the following three patterns, shown in Fig-
ure 9. Note that regardless of the foraging pattern they fol-
lowed, all participants skipped over several variants since 
consecutive variants were too similar.

1) Unidirectional: Four out of eight participants (P01, P02, 
P03, P04) foraged in a single direction. They either foraged
from the oldest to the most recent variant or vice-versa (see 
Figure 9 (a)). Participant P03 explained: “… jumping down 
more … like a sorting algorithm, checking further and fur-
ther until there was a change.”

2) Bidirectional: Four out of eight participants (P03, P06, 
P07, P08) changed directions while foraging between can-

Figure 8: Participants foraged the Source Variant (SV), Source Patches (SP) and Destination Patches (DP) in different orders. Note 
that they used information features (shown as triangles) from one variant to forage in other variants and performed comparison 

during both source-patch foraging and destination-patch foraging.
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didate source variants. Initially, they started from either the 
oldest or the most recent variant, and foraged along one 
direction. However, when they found that they had gone too 
far in one direction, they reversed course and continued in 
the other direction, as shown in Figure 9 (b).

3) Systematic narrowing: Two of the eight participants 
(P02, P05) started from a variant in the middle and system-
atically narrowed down the search space using an approach
similar to a binary search. Participant P02 said: “… just 
split the list in half and then … do a binary search on it.”

Besides attending to the timestamp cues, all participants 
enriched the environment. Some participants kept variant 
folders expanded so they could quickly identify previously-
visited locations, such as Participant P03: “…having seen 
an open folder … I figured that is the one that I saw earli-
er.” Further, half of the participants collapsed variant fold-
ers that did not contain relevant prey before moving on to 
the next variant. 

Participants also kept track of variants by remembering
their timestamps. For example, P01 said, “So I'll just re-
member that on 2014-05-20, [it] had the right interface.”

Source variant: Evaluate
Participants went through several find-evaluate cycles while 
foraging for a source variant, to evaluate whether the vari-
ants contained relevant information features. If a participant 
found a variant to be relevant, they then foraged more with-
in the same variant; we call this type of foraging within-
variant foraging. Otherwise, they looked for another source 
variant; we call this between-variant foraging. 

Figure 7 shows how the evaluation of a variant either led to
foraging for the patches within the variant (if it was the 
right variant), or finding another variant (if the variant was 
not suitable). Most participants also continued to forage for 

alternate source variants even after they found a suitable 
variant (with score and multiplier above the hexagon). For 
example, the first square above row P07 in Figure 8 shows 
the first source variant he found. After briefly foraging 
within that variant and finding it unsuitable, he foraged for 
another variant (the second square above row P07). One 
goal of participants during such foraging was to find a clos-
er match to the destination variant.

In order to evaluate whether a variant might contain the 
prey that the participant was looking for, they attended to 
several cue types within the variant. Table 3 shows the cue 
types that participants used to evaluate variants, along with 
the frequencies of their usage. When evaluating, partici-
pants often used these cues as signposts away from the 
prey, inferring a negative scent from these cues and then
navigating directly away from the variant.

1) Output-Inspired: Output-Inspired cues were the most 
frequently used cue types, accounting for 68.3% of all eval-
uation cues. Participants’ attention to this cue type is unsur-
prising because the task required the game to be “like it was 
before”, and the easiest way to determine the appearance of 
a game was by previewing it. Participants focused on the 
game’s features and easily rejected variants of the game 
where the score and multiplier features did not appear 
above the hexagon. They also looked at the game’s correct-
ness. Most participants rejected variants of the game that 
had errors or did not work. The only exception to this was 
Participant P07 who continued foraging inside a “broken” 
variant because he found the source code to be still useful: 
“This drawing code, that's not actually running, still has 
basically the same drawScoreboard”.

2) Change Log-Inspired: Each variant folder included a 
change log in a file named changes.txt, as described in the 
methodology. Participants frequently used these cues to 
understand what changes were made in the variant. Partici-
pant P01 said: “I expected to see something along the lines 
of ‘changing the position of score’”. Change Log-Inspired 
cues were the second most popular cue type, accounting for 
15.8% of all the cues that participants used to evaluate vari-

Figure 9: (a) Participant P01 was a unidirectional forager. 
(b) Participant P06 was a bidirectional forager. (c) Partici-

pant P05 was a systematic narrowing forager. Note that 
they all skipped a few variants at a time

Cue Types
Output-
Inspired

Change Log-
Inspired

Source Code-
Inspired

FileName-
Inspired

P01 29 12
P02 15 8
P03 44 3
P04 6 15 2
P05 9 2
P06 22 1
P07 12 22 3
P08 14 2

Total Occur-
rences

151
(68.3%)

35
(15.8%)

32
(14.5%)

3
(1.4%)

Table 3. Participants used some cue types more frequently 
than others to evaluate variants.
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ants. However, change logs were sometimes unhelpful be-
cause they were non-descriptive (e.g. one log contained 
only the text “asdf”). When one participant (P03) found the 
change logs non-descriptive, she abandoned this cue type
for the rest of the session: “Their document isn't that good 
for people changing things.”

3) Source Code-Inspired: The third most frequently used 
cues were Source Code-Inspired (14.5%). Participants like 
P07 used similarities and differences in source code as cues 
to evaluate a variant: “[source code] this still looks like the 
center to me”. When he saw that the source code between 
two variants were similar, he perceived a negative scent, 
and navigated to a different variant. Some participants read 
the source-code to determine the game features in that vari-
ant, such as P03: “… looking at the lines of code and de-
termining if it had the things I needed or not.” Some partic-
ipants also perceived errors in the source code (e.g., compi-
lation errors) as a negative scent, and did not forage further 
in those variants.

4) FileName-Inspired: One participant (P07) used File-
Name-Inspired cues for evaluating variants and rejected 
variants where certain files were absent. He remarked about 
one variant: “… at some point, [filename] did not even ex-
ist” and did not forage further within that variant. 

Source patch: Find
Once participants found a source variant, they proceeded to 
forage for the source patches within that variant. They 
looked for the exact patches relevant to their tasks, similar 
to how they foraged earlier in the destination variant.  Alt-
hough the participants’ foraging goals in the two cases were 
similar (e.g., find code that rendered the score), their forag-
ing behaviors were different.

Earlier, when participants foraged within the destination 
variant, they did not know where relevant patches might be. 
They relied on cues in the environment to forage the desti-
nation patches. However, when foraging in the source vari-
ant (which was similar to destination variant), participants 
had formed expectations about where the source patches 
might be located. These expectations provided a starting 
point for participants’ foraging within the source variant. 

More specifically, participants used information features 
from the destination variant to directly navigate to appro-
priate patches in the source variant. For example, P03 found 
calls to the method renderText in a file named view.js in the 
destination variant. When she later foraged in the source 
variant, she said, “renderText is still something I can look 
for” and searched for “render” in the view.js file. Six out of 
seven participants who foraged for patches in both source 
and destination variants used such similarities to guide their 
foraging (P1, P3-P7: the blue triangles in Figure 8).

Looking for identical patches or information features across 
similar variants was an easy way for participants to navi-
gate to the patches that they thought might contain relevant 
information. However, there were cases where this strategy 

failed.  Participants sometimes did not find the same patch-
es or information features that they expected to find be-
cause those patches had changed over time. In such cases, 
participants proceeded in one of the following two ways:

1) Participants continued to rely on the similarities be-
tween the variants, hoping that other similar information 
features might lead them to the right patches. For example, 
when Participant P03 did not find the renderText() method 
in the source variant, she said: “what are some other key 
phrases I can look for... I guess go back and check for 
score.” In Figure 8, row P03, the two consecutive triangles 
denote how she looked for renderText and then immediate-
ly looked for score. 

2) Participants changed their strategy without further reli-
ance on the similarities between the variants. They looked 
for other cues within the source variant based on cues that 
they had found in their earlier foraging within the destina-
tion variant. For example, Participant P03 searched 
for renderText and score in the source variant, but when 
these searches did not lead her to the right patches, she
started reading the source code within that variant, as 
shown by the absence of triangles following the two con-
secutive triangles in row P03 of Figure 8.

Source patch: Evaluate
Participants interleaved finding the source patches with 
evaluating them, mainly performing two kinds of evaluation 
on the source patches.

First, some participants wanted to ensure that the behavior 
of the source-code was what they expected. They made 
edits to the code and checked the effect on the output, just 
like they evaluated the destination patches. Two out of eight 
participants performed this kind of evaluation (see the edits 
during source-patch foraging in Figure 8). If participants 
found that the patch they were on was not the right patch 
(e.g. their edits didn’t change the location of the score), 
participants undid their changes and continued foraging for 
patches within the same variant. 

The other kind of source-patch evaluation was geared to-
wards participants’ eventual goal of reuse: they evaluated 
whether a source patch was suitable for integration with the 
destination patch. In order to evaluate whether a certain 
source patch was suitable for reuse, participants compared
the information features between the source and destination 
patches. While similar patches led the participants to the 
integration phase, differences between the source and desti-
nation patches often acted as a negative scent, causing the 
participant to start over by looking for another source vari-
ant. This is because participants expected that the cost of 
integrating similar patches would be lower than integrating 
dissimilar patches. Participant P01 commented: “I am go-
ing to try and find any styles that apply to score … and 
copy that and put it down into here”. All seven participants 
who foraged for source patches within a source variant ex-
hibited this behavior. 
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While participants mostly used a drill-down approach of 
foraging for the variant, and then the patches within the 
variant, one participant (P07) evaluated source variants by 
evaluating the patches. In Figure 8, row P07’s sequence of 
triangles shows how he used destination patches to evaluate 
source variants.  This also explains his heavy usage of 
Source Code-Inspired and FileName-Inspired cues to eval-
uate variants (see Table 3).

Evolution Stories: Guiding Variation Foraging
As participants foraged between and within variants, some 
built a story of how the game had evolved. When partici-
pants could not build a complete story, they created a par-
tial outline. Participants then used the evolution story to
guide their foraging.

These stories were largely based on the information features 
that participants collected in the various patches that they 
had already foraged. Some used Output- and Change Log-
Inspired cues to understand how the game had evolved. For 
example, Participant P08, who followed Output-Inspired 
cues, commented: “seems that the game had the zero in the 
middle and then before that never worked. That could've 
gotten broken at some point though”. Other participants 
used Source Code-Inspired cues to understand how the code 
had evolved over time, such as when Participant P07 exam-
ined a method across variants and said: “At some point, this 
[method] was [re]factored into its own function, then it was 
[re]factored back out of its own function”. We think that 
this behavior is unique to foraging among variants.

More specifically, in the retrospective interview, P07 ex-
plained how he built, refined and used a story to guide his 
foraging. He first used information features in the output to
build a story: “…early in development there's no score la-
bel. At some point the original score label is introduced. 
And then, after that, the 2nd score label's introduced”. 

As he processed more information features from the output 
of more variants, he refined his story: “… after dealing with 
this for a while, there might have been like no score label, 
then the original score label, then no score label, and then 
the second score label for a while”.

He then used his story to guide his foraging: “... that's basi-
cally why, when I hit this version that had no score label, I 
just decided to start searching in a more recent direction”. 

Stage 3: Integrating the variants
Once participants found and evaluated the current and us-
age context, they proceeded to the third stage of reuse, inte-
grating the variants, to complete their task. Participants 
used the following strategies in integrating the changes:

1) Copy and paste: When two variants were similar, par-
ticipants attempted to copy and paste the code from the
source variant into the destination variant, and made mini-
mal modifications to match the task requirement. Only one 
participant (P06) was able to find such a similar patch for 
reuse, and only for one of the tasks. In other cases, when 

the two variants were dissimilar, participants copied and 
pasted code from the source patches into destination patch-
es, and then fixed all the dependencies and errors. Three out 
of eight participants (P01, P07, P06) followed this strategy. 

2) Re-implement: Two participants (P07, P03) implement-
ed the task from scratch (without reuse) when they found 
source and destination variants to be dissimilar. Further, 
one participant (P08) could not locate the right source vari-
ant; therefore, he directly implemented the fix only based 
on the (textual) task descriptions. 

These two strategies have been reported in reuse literature 
as “cut-and-stanch-the-bleeding” and “analyze-then-act” 
strategies, respectively [14]. How participants integrated the 
code depended on the variant and the patches that they had 
foraged, and the perceived cost of integrating the changes. 

DISCUSSION

Implications for Theory and its Models
Traditionally, IFT models work with collections of dissimi-
lar but connected patches. For example, IFT models have 
predicted foraging behavior in web sites (groups of dissimi-
lar but linked pages) [39] and in software source code 
(groups of dissimilar files that refer to each other) [24, 28].

In contrast, modeling foraging through variants must pre-
dict how people will forage through collections of similar,
but disconnected patches. Our results indicated that users 
navigated across these disconnected collections using two 
main strategies.  First, they focused on the differences be-
tween patches across similar variants (6 out of 8 partici-
pants). Second, they foraged across variants by following 
their evolution history (5 out of 8 participants). In particu-
lar, these participants generated temporal stories about how 
the program (and its variants) evolved over time. These 
stories guided their navigations and were fundamental to 
some participants’ foraging.

These two foraging behaviors are interesting, because they 
may be uniquely important to variation foraging; IFT mod-
els in more traditional settings do not normally come across 
so much similarity. Therefore, IFT computational models in 
variation settings may need to be extended to accurately 
describe such behaviors.

Four implications for IFT go beyond computational models, 
and directly impact the theory itself.  First, there is no con-
struct in IFT that could be instantiated as a story: stories are 
not cues, not patches, not prey, and so on. Thus, an open 
research question is whether new IFT construct(s) are need-
ed to capture this phenomenon. 

Recent IFT research [33] has begun to explore the concept 
of cue types based on their provenance—a perspective on 
cues beyond their content. Our results suggest our second 
implication for theory: another new perspective, that of 
cues that signal differences versus those that signal similari-
ties. In our results, 7 out of 8 participant verbalizations re-
ferred to looking for differences between variants. On the 
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other hand, cues that highlighted similarities between vari-
ants were also important: to ease integration of code be-
tween variants, participants compared the code structure to 
try to find the source variant that was the most similar to the 
destination variant. 

Recognizing the differences and similarities between vari-
ants inherently implies that the forager is doing some kind 
of comparison, leading to our third implication for theory. 
Current IFT models treat foraging-within, foraging-
between, and enrichment as operations that humans per-
form; however, there is no comparison operation.

Finally, a frequent cost-benefit analysis that participants 
performed while evaluating source patches seemed unique 
to variation foraging. Participants looked for source patches 
that were similar to the destination patch to minimize the 
cost of integration. This suggests that IFT models could 
benefit by including such analysis.

What makes a good variant?
Currently, the creation of variants in the environment is 
subjective; a programmer may or may not decide to save a 
particular variant of their code. The intermediate variants 
are important when programmers adopt exploratory pro-
gramming, yet saving every single change would create too 
many variants for a person to use effectively. Understand-
ing the points at which intermediate variants have the most 
significance can improve tool support for exploratory tasks.

Implications for Tools
Our results, although formative, have initial implications 
for tool design.

Organizing variants
Recall that participants’ goals centered on understanding 
and comparing variants along different dimensions (e.g. 
game appearance, source code content, and chronology). 
The environment had limited support for these types of 
comparisons; participants managed to compare variants by 
opening only two files at a time, side-by-side, which was 
inefficient in the presence of hundreds of variants. Tools 
could support such comparisons between variants by high-
lighting similarities and differences along different dimen-
sions. They could also support grouping and filtering vari-
ants along different dimensions. Finally, since variants were 
not linked, participants had to forage between variants by 
navigating out of a variant and into another by using the 
folder structure. Tools could ease navigation by linking 
variants through some of these dimensions.

Supporting effective navigation among variants 
Tools to support variation exploration can improve user 
navigation. Such tools could include features such as:

1) Identify and highlight cues that reveal what makes var-
iants different from or similar to one another. 

2) Leverage automated techniques that analyze and 
summarize program changes to create descriptive 
change logs that highlight evolution history.

3) Extract major events and milestones in program evolu-

tion, and present a timeline of major landmarks in the
history of the software.

CONCLUSION
This study is the first to investigate how novice program-
mers forage through past and present variants. Analyzing 
their foraging behavior through an information foraging 
theory lens produced the following insights: 

RQ1 (types of information used): Our results revealed 
new cue types signaling differences (e.g., update dates)
and similarities (e.g., previous names) among variants;
these cue types were extensively used by participants. 
We also found that participants reused cues to reduce 
the cost of searching for cues in the environment—a
new finding that can inform tool development.

RQ1a (foraging between variants): Participants created 
stories about the evolution of the program, and then 
used these stories to guide their subsequent foraging be-
tween variants. Their foraging behavior fell into three 
distinct navigation patterns: unidirectional, bidirectional, 
and divide and conquer.

RQ1b (foraging within variants): Participants exploited 
structural similarities between source and destination 
variants’ code structures to enhance their within-variant 
foraging in the source variant, by spotting patches with-
in the source variant that would be easy to integrate into 
the destination. Differences between the source and des-
tination patches acted as a negative scent, leading partic-
ipants to abandon their within-variant foraging and re-
turn to between-variant foraging.

RQ2 (integration): Participants satisficed when integrat-
ing code between variants: they tried to find an appro-
priate patch that was similar to the destination patch, but 
if the cost of finding such a patch was too great, they 
modified some patch that seemed “good enough” or re-
implemented the functionality from scratch.

Most important, this paper presents the first empirical evi-
dence that IFT has gaps when applied as a theory of varia-
tion foraging. For example, IFT does not account for the 
temporal aspect of how participants developed stories, or 
how participants exploited structural similarities between 
different variants to locate patches of interest, or the signifi-
cance to the participants of finding differences among simi-
lar variants. We believe that extending IFT to incorporate 
variation-specific constructs will enable us to extend and 
benefit from a theoretical foundation of how people forage 
in the presence of variants. 
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