
TIPMerge: Recommending Developers
for Merging Branches

Catarina Costa1,2, Jair Figueiredo1 Anita Sarma3 Leonardo Murta2

1Federal University of Acre
Rio Branco - AC, Brazil

{catarina,jjcfigueiredo}@ufac.br

3Oregon State University
Corvallis, USA

anita.sarma@oregonstate.edu

2Fluminense Federal University
Niteroi – RJ, Brazil
leomurta@ic.uff.br

ABSTRACT

Development in large projects often involves branches, where
changes are performed in parallel and merged periodically. This
merge process often combines two independent and long sequenc-
es of commits that may have been performed by multiple, differ-
ent developers. It is nontrivial to identify the right developer to
perform the merge, as the developer must have enough under-
standing of changes in both branches to ensure that the merged

changes comply with the objective of both lines of work (branch-
es), which may have been active for several months. We designed
and developed TIPMerge, a novel tool that recommends develop-
ers who are best suited to perform the merge between two given
branches. TIPMerge does so by taking into consideration devel-
opers’ past experience in the project, their changes in the branch-
es, and the dependencies among modified files in the branches. In
this paper we demonstrate TIPMerge over a real merge case from

the Voldemort project.

CCS Concepts

Software and its engineering → Software configuration manage-
ment and version control systems.

Keywords

Version Control, Branch Merge, Expertise Recommendation.

1. INTRODUCTION
The use of branching strategies is a common practice in col-

laborative software development to isolate new features from bug
fixes, support customization, segregate development teams, etc.
The task of integrating branches with parallel changes can be
difficult [1], especially if multiple developers performed changes
on the branches that need to be merged and if these changes con-
flict, directly or indirectly. For instance, we observed a merge
case in the Rails project (https://goo.gl/7fP3fv), which included

commits made by 47 developers in one branch, and 52 developers
in the other branch [2, 3].

As branches can be active over long periods of time and in-
volve changes from multiple developers, a single developer may
not have the expertise necessary to merge all the changes in the
branches. This sets the stage for a collaborative merge session. A

collaborative merge can mitigate the missing expertise problem,
as it brings together the parties that have the knowledge necessary
to understand the reason behind the changes and resolve any

conflicts that can occur [5]. In a recent survey [2], 75% of the
developers said they need assistance to resolve conflicts. Ideally,
the developers who are performing the collaborative merge have
some knowledge about how to resolve conflicts during a merge.

Nevertheless, finding the right people to participate in a col-
laborative merge session is nontrivial. It requires knowledge about
developers’ contributions in each branch, understanding which
files from one branch depends on the files in the other branch, and

identifying who has expertise on the potentially conflicting files.
In this paper, we demonstrate TIPMerge1[4], a tool that identi-

fies the most appropriate developers to merge branches. For a
given pair of branch, TIPMerge first identifies “key” files and the
developers who have made changes to them in each branch. Key
files are files that were changed in parallel across the branches,
which may lead to direct conflicts; or files that have changed in
one branch, but have dependencies with other changed files in the

other branch, which may cause indirect conflicts. TIPMerge then
identifies the overall experience of developers with the key files
based on the branch and project history. After analyzing this
information, TIPMerge recommends a ranked list of developers
who are best suited to integrate a pair of branches.

We developed TIPMerge in java. Our current implementation
is able to analyze Git repositories, independently of their pro-
gramming language2. Our tool uses Git commands to extract the

repository information, and Dominoes [7–9] to identify logical
dependencies among files. After identifying the necessary infor-
mation, TIPMerge uses a medal counting system that checks
contributions in key files to rank the most appropriate developers
to perform the merge.

In our previous work [4], we have discussed the evaluation of
TIPMerge, which included a quantitative analysis of 28 real-world
projects, which included up to 15,584 merges with at least two
developers, and qualitative analysis of two projects to better un-

derstand TIPMerge recommendations. We found that in 85% of
the top-3 recommendations, we included the developer who actu-
ally performed the merge. In this paper, we demonstrate how
TIPMerge is designed to be used by an end-user. We use a real
merge case from the Voldemort project3 to show case TIPMerge.
We also provide complementary material (videos, virtual ma-
chines, etc.) in the wiki of the project website4.

1 TIPMerge is available at https://github.com/gems-uff/tipmerge as an

open sourced tool (MIT License).
2 TIPMerge is language agnostic when analyzing expertise at the file-level.

At the method-level, it currently analyzes Java projects only.
3 https://github.com/voldemort/voldemort.
4 https://github.com/gems-uff/tipmerge/wiki.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be hon-

ored. Abstracting with credit is permitted. To copy otherwise, or repub-

lish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permis-

sions@acm.org.

FSE'16, November 13-19, 2016, Seattle, WA, USA

 © 2016 ACM. ISBN 978-1-4503-4218-6/16/11…$15.00

DOI: http://dx.doi.org/10.1145/2950290.2983936

.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2983936

998

mailto:leomurta@ic.uff.br

2. SCENARIO
We first present a real world, albeit small, scenario to illus-

trate the use of branches. We selected a merge case in the Volde-
mort project with a reasonable number of commits to explain how
our tool works. This scenario is the merge that occurred on Au-
gust 9, 2014 between the two branches: coordinator_admin
(Branch1) and coadmin (Branch2). The last commit in coordina-

tor_admin was 5aabfbe and in coadmin was c5995a7. Two devel-
opers (Felix and Siddharth) performed seven commits over 12
files in the coordinator_admin branch. On the other hand, five

developers (Arunachalam, Felix, Siddharth, Xu, and Zhongjie)
performed 33 commits over 45 files in the coadmin branch. All
the 12 files changed in coordinator_admin branch were also
changed in the coadmin branch. It means that these files might
have generated direct conflicts if they involved overlapping
changes. Note, we consider a direct (merge) conflict to occur if
the git-merge command fails. Moreover, these 12 files may also
have dependencies with any of the 45 files, potentially leading to

indirect conflicts.
Finally, the previous history of the project consists of all the

commits from the beginning of the project until the moment when
these branches were forked. During this period, the following 27
developers worked over the 45 files: Alex, Abhinay, Arunacha-
lam ̧ Baepiff, Bhavani, Bhupesh, Chinmay, David, Elias, Felix,
Geir, Holden, Ismael, Jakob, James, Jay, Karthik, Kirk, Lei, Mi-
chael, Peter, Roshan, Siddharth, Vinoth, Xu, Yair, and Zhongjie.

We use this scenario to demonstrate how TIPMerge can an-
swer the question “Who are the most appropriate developers to
perform this merge?”

3. TIPMERGE IN ACTION
In this section, we demonstrate how TIPMerge can be used to

recommend the developer who is the most appropriate for merg-
ing two given branches. Figure 1 depicts the TIPMerge user inter-
face. Once the user has selected a project (Figure 1(a), volde-
mort), TIPMerge presents information about the project, along
with details about the merges and branches (Figure 1(b)), and a
histogram of the commits by developers, ordered from highest
number of commits to lowest (Figure 1(c)).

Figure 1. TIPMerge Interface

A user can request a recommendation about the most appro-
priate developers to merge branches by clicking the Recommenda-
tion - Get Ranking button (Figure 1 (d)), which takes them to the

Recommendation menu (Figure 2). Here the user selects the
branches that they are interested in merging. They can use the
drop down menu to select the branch name and the specific com-
mit (hash) in a branch that they desire to merge. Here we see that
the coordinator_admin and the coadmin branch are selected. Note
that if the hash is left empty, then the last commit at each branch
tip is automatically selected.

TIPMerge then executes the following steps to provide a rec-
ommendation (explained in the ensuing subsections):

1. Extract data from the repository until the branches tips. That
is, the two most recent commits of the two branches that will
be merged.

2. Detect dependencies among files by identifying files that
were frequently co-committed (logical coupling). We calcu-

late dependencies from the data before the branches forked.
3. Identify developers who edited key files. We collect this

information both for changes in the branches, and for chang-
es in the previous history.

4. Recommend a ranked list of suitable candidates to perform
the merge based on a medal counting system.

3.1 Data Extraction
The first step in the process is extracting the change data from

the branches. To do so, we first need the branches that will be
merged. The end user selects the branches by using the TIPMerge
UI, as shown in Figure 2. They first select the two branch names
(Figure 2(a)) and the two hashes to merge (Figure 2(b)). For
instance, in our guiding example, coordinator_admin (Branch1)

and coadmin (Branch2) are the two branches, and commits
5aabfbe… and c5995a7… are the commit at the tips of these
branches that are to be merged. From these commits it is possible
to identify all commits that belong to each branch, which com-
prises all commits between each of the branch tips to the common
ancestor (commit c07b777). Additionally, we extract information
from the first commit until the common ancestor to identify exper-
tise of developers in the previous history. We do not extract in-

formation of files changed in merge commits. This decision was
taken to prevent TIPMerge accounting merged files to the devel-
oper responsible for merging. In many cases, this developer just
automatically combines two versions, not in fact editing the files.
Furthermore, should we consider the previous merge commits, we
could bias our approach, since this could increase the changes of
indicating the same developer in the future.

A user can trigger the recommendation analysis by clicking on
the Run button (Figure 2(c)). Users can also filter file extensions

that they know are irrelevant to the recommendation. An obvious
example can be a Readme.txt file. Once TIPMerge analyzes the
project information, it presents the files that each developer has
edited, and the edit frequency in terms of commits (Figure 2(d)).
This information is provided for files changed individually in each
branch, together in both branches, and in the previous history.

Figure 2. Information about branches and previous history

999

3.2 Dependency Detection
Next, we identify dependencies among files that were edited

across branches by using the concept of logical coupling. Logical
coupling detects evolutionary dependencies by identifying files
that are frequently changed together [6, 10], and is programming
language agnostic. In open source projects, the use of logical
coupling is the most efficient as different projects use different
programming languages, and several projects use a combination
of different programming languages.

We adapted the Dominoes [7–9] tool to identify logical de-

pendencies among files. Dominoes is a library developed in java,
which processes information extracted from Git repositories and
stores them in a SQLite database. Dominoes organizes data ex-
tracted from software repositories into matrices to denote relation-
ships among software entities. For example, [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒] de-

notes the files that were changed by commits in the project. These
matrices are then combined using GPU, for performance efficien-
cy, to depict higher-order relationships, such as logical dependen-

cies among files: [𝑓𝑖𝑙𝑒|𝑓𝑖𝑙𝑒] = [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]𝑇×[𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒].
We extended the data extraction part of Dominoes to allow

the extraction and identification of information about commits
that are distributed across branches.

We use the edit history of the project (before the branching

occurred) to determine dependencies between pairs of files. The
past history provides us a baseline of these dependencies. Howev-
er, we only consider files changed across branches during this
analysis. This is vital, since only these files are subject to indirect
conflicts when the branches are merged.

Dominoes provides us with some basic (data mining) metrics,
such as confidence, when computing the logical dependencies
among files. Confidence values range from 0 to 1, where a value

of 1 means that every time a file is changed, the other file is also
changed. In this case, the use of a threshold is necessary because
low confidence implies low probability that changing a file causes
impact in the dependent file. As confidence is directional, de-
pendencies are not symmetric; that is file A may depend on file B,
without requiring file B dependency on file A. Development
teams have the freedom to decide the threshold above which a
dependency becomes relevant.

Figure 3. File Dependencies

The user can check the logical dependencies (Figure 2(e)) by
clicking on the Get Dependencies button, which open the De-
pendencies Analysis window (Figure 3). Here, the user can con-
figure the confidence threshold to visualize the logical dependen-

cies (Figure 3(a)). In our (simple) scenario, there are many de-

pendencies (19 dependency relationships) when we use a thresh-
old of 0.2. Note, since we explicitly chose a small example we
had to use a low threshold. Our quantitative evaluation in prior
work used a threshold of 0.6.

3.3 Key File Author Identification
The next step in our approach is to identify the developers

who have modified files that are relevant to the merging of the
selected branches. We term these files as key files. These are files
that have been changed in parallel in both branches, potentially
leading to direct conflicts; or that were changed in one branch, but

have dependencies with files that were changed in the other
branch, potentially leading to indirect conflicts. In the latter case,
both the dependent and dependency files are considered key files.
Only key files are relevant for us, as all other files can be automat-
ically merged safely. Files that were not changed in either branch
are irrelevant for the merge. A user can click on the Get Key Files
button (Figure 3(b)), to see who changed the key files (Figure 4).

In our scenario, 12 files were changed in both branches. Of

the 19 files that had dependencies across branches, only 3 were
not changed in both branches. So, 15 unique key files were identi-
fied (Figure 4). It is important to note that although 5 developers
had changed files in coadmin (Figure 2), only 3 developers
changed key files: Felix, Siddiharth, and Xu. On the other hand,
all developers that worked on coordinator_admin altered key files
(Felix and Siddharth). From the 27 developers that worked in the
previous history, 21 changed key files. All developers who have

knowledge about key files in the branches or history are consid-
ered by our approach.

Figure 4. Key Files

Once we have identified the key files and the developers that
have experience with them, we are able to calculate the developer
recommendations.

3.4 Developer Recommendation
After identifying key files and the developers that have

changed such files, TIPMerge applies an algorithm to quantify
their contributions by considering whether the files were changed
in a branch or in the previous history. We use a medal system to
determine the position of each developer in the final recommenda-
tion ranking. This is analogous to how countries are ranked in the
Olympic Games based on medal counts. The following rules

define when developers receive gold, silver, and bronze medals.
A gold medal is awarded when a developer changes a key file

in a branch. The rationale is that the developer who changed a key
file is the most knowledgeable about the change and its implica-
tions. They probably are also well versed with the file in general,
and, therefore, likely to be able to perform additional edits during

1000

a merge if necessary. In our scenario, all those developers who
edited any of the 12 files that were changed in both branches, or
any of the 19 files involved in a dependency relationship receive a
gold medal for each changed (key) file. Note, developers can
receive a maximum of two gold medals for a key file, if they

changed the same file in both branches.
A silver medal is awarded when a developer has changed a

key file in the past. Developers who created or edited files in the
past likely possess knowledge about the goals and requirements of
these files, which can be helpful when performing a merge. In our
scenario, the 21 developers who changed key files in the previous
history receive a silver medal for each edited (key) file.

A bronze medal is awarded when a developer changes a file

that depends on another file. Both the dependent and the depend-
ency are key files, but only who changed the dependent file re-
ceives a bronze medal. The logic is that developers who have
changed a dependent file, may have learned about the API of the
file that they are using. Consequently, they may know the goals
and expectations of such a file, which may help in determining the
impact of a change. In our example, Felix received a bronze med-
al because he changed RequestCounter.java in coadmin, and this

file depends on file CoordinatorService.java changed in coordina-

tor_admin.
We assign a medal for each file that was edited, irrespective

of the number of commits made to the file. In our approach, we
assume that when a developer edits a file, that developer has
knowledge about the entire file. While our approach can support a
finer-grained expertise calculation at the method level, we leave it
for future work.

Our algorithm prioritizes developers with gold medals, be-
cause: (1) they are the expert on the change that has been made,
and (2) they have the most recent knowledge about the file to
which a change has been made.

In the case of a tie in gold medals, we use the number of silver
medals to break the tie. This is because, everything being equal, a
developer who has more experience overall is likely to be more
suitable in merging changes. Similarly, in the case of a tie in silver
medals, we consider bronze medals. The notion is that if two

developers have equal number of changes that they have made,
and equal knowledge about the project history, then a developer
who has additional knowledge about another file is more appro-
priate.

Using this medal count system, TIPMerge generates a ranking
of suitable candidates to perform the merge between a pair of
branches. The user can access the recommendation ranking by
clicking on the Ranking button (Figure 3(c)), which leads them to

the developer recommendation page (Figure 5) For each develop-
er (Figure 5(a)) and each file ((Figure 5(b)), TIPMerge lists the
number of gold, silver, and bronze medals.

TIPMerge also shows the branch in which a change was made
((Figure 5(c)). In this case, we expand the changes made by
Felix. Changes are denoted by the black dot on the branch icon.
The straight “branch line” denotes branch one (here, coordina-

tor_admin) and the angular “branch line” denotes branch two

(here, coadmin). We see that Felix received three gold medals,
because of his changes to 3 of the 4 files listed in Figure 5(b).
Further, we note that he made changes to both braches, twice to
coordinator_admin and once to coadmin. Similarly, he received
three silver files on account of his changes to the previous history
(denoted by the dot on the line before the branches forked).

Felix received a bronze medal because he changed two files in
Branch2 - coadmin (RequestCounter.java and StoreStats.java) that

depends on file CoordinatorService.java, changed in Branch1-
coordinator_admin. This is denoted by the arrow extending from

the changes in Branch2 to the files in Branch1. Felix gets a bronze
medal as we assume that Felix knows about the file Coordina-

torService.java, because he has changed files that call this file.
We see that Siddarth is at the top of our recommendation on

account of the high number of gold medals that he received. We

note that Felix comes second in our recommendation, which we
explore further. He has changed 3 files in the branches (1 in coor-

dinator_admin and 2 in coadmin), 3 files in the history, and
changed a file in coadmin that depends on a file in coordina-

tor_admin. In fact, he was actually the developer in charge of
merging these two branches (commit 8358888).

Figure 5. Recommendation ranks for Voldemort project

We evaluated TIPMerge by running our analysis on 28 soft-
ware projects. On average, 85% of the top-3 recommendations by
TIPMerge correctly included the developer who actually per-
formed the merge. Moreover, in 82% of the merges, TIPMerge

obtained a higher accuracy than selecting the developer who
performed most of the previous merges (i.e., the majority class).
We further investigated the cases where TIPMerge recommenda-
tions were incorrect by interviewing developers from two pro-
jects. In many cases, interviewees agreed that the TIPMerge rec-
ommendations were accurate. And in some cases, we found that
the recommended developer had actually participated in a collabo-
rative merge. Details about the evaluation are in our prior work

[4].

4. CONCLUSIONS
In this paper, we demonstrate how TIPMerge can be used

through an example of a real merge case from the Voldemort
project. We explain how TIPMerge creates its recommendation by

analyzing the contributions of developers in branches, as well as
the previous history, and by taking into consideration both poten-
tial direct or indirect conflicts that might arise during the merge.

Our results indicate that TIPMerge is helpful in identifying the
developers who have the most knowledge about key files and
therefore, have the expertise to perform the merge. We also be-
lieve that our approach can be helpful to enable the lead integrator
find developers for collaborative merges or help in integration.

Further, we plan to run the analysis at a finer grain (method

level), as this would provide a detailed understanding of file de-
pendencies and developer knowledge about specific parts of the
code base. We also plan to verify developers with complementary
expertise to conduct collaborative merge sessions.

5. ACKNOWLEDGMENTS
This work is partially supported by CAPES (10614-14-1),

CNPq, FAPERJ, NSF CCF-1253786 and HCC- 1559657.

1001

6. REFERENCES
[1] Bird, C. and Zimmermann, T. 2012. Assessing the Value of

Branches with What-if Analysis. ACM SIGSOFT Int’l Symp.
Foundations of Software Eng (FSE) (New York, NY, USA,
2012), 45:1–45:11.

[2] Costa, C., Figueiredo, J.J.C., Ghiotto, G. and Murta, L. 2014.
Characterizing the Problem of Developers’ Assignment for
Merging Branches. International Journal of Software Engi-
neering and Knowledge Engineering (IJSEKE). 24, 10 (Dec.
2014), 1489–1508.

[3] Costa, C., Figueirêdo, J.J.C. and Murta, L. 2014. Collaborative
Merge in Distributed Software Development: Who Should
Participate? The International Conference on Software Engi-
neering and Knowledge Engineering (SEKE) (Vancouver,
Canada, 2014), 268–273.

[4] Costa, C., Figueiredo, J., Murta, L. and Sarma, A. 2016. TIP-
Merge: Recommending Experts for Integrating Changes
across Branches. ACM SIGSOFT Int’l Symp. Foundations of
Software Eng. (FSE) (Seattle, WA, USA, 2016).

[5] Nieminen, A. 2012. Real-time collaborative resolving of
merge conflicts. 2012 8th International Conference on Col-

laborative Computing: Networking, Applications and Work-
sharing (CollaborateCom) (2012), 540–543.

[6] Oliva, G.A. and Gerosa, M.A. 2011. On the Interplay between
Structural and Logical Dependencies in Open-Source Soft-
ware. 2011 25th Brazilian Symposium on Software Engineer-
ing (SBES) (Sep. 2011), 144–153.

[7] Da Silva, J.R., Clua, E., Murta, L. and Sarma, A. 2015. Multi-
Perspective Exploratory Analysis of Software Development
Data. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE). 25, 01 (Feb. 2015), 51–68.

[8] Da Silva, J.R., Clua, E., Murta, L. and Sarma, A. 2015. Niche
vs. breadth: Calculating expertise over time through a fine-

grained analysis. 2015 IEEE 22nd International Conference
on Software Analysis, Evolution and Reengineering (SANER)
(Mar. 2015), 409–418.

[9] Da Silva Junior, J.R., Clua, E., Murta, L. and Sarma, A. 2014.
Exploratory Data Analysis of Software Repositories via GPU
Processing. The International Conference on Software Engi-
neering and Knowledge Engineering (SEKE) (Vancouver,
Canada, 2014).

[10] Zimmermann, T., Weisgerber, P., Diehl, S. and Zeller, A.
2004. Mining Version Histories to Guide Software Changes.
Proceedings of the 26th International Conference on Software
Engineering (ICSE) (Washington, DC, USA, 2004), 563–572.

1002

