
What’s Wrong with Computational Notebooks?
Pain Points, Needs, and Design Opportunities

Souti Chattopadhyay1, Ishita Prasad2, Austin Z. Henley3, Anita Sarma1, Titus Barik2

Oregon State University1, Microsoft2, University of Tennessee-Knoxville3

{chattops, anita.sarma}@oregonstate.edu, {ishita.prasad, titus.barik}@microsoft.com, azh@utk.edu

ABSTRACT
Computational notebooks—such as Azure, Databricks, and
Jupyter—are a popular, interactive paradigm for data scien-
tists to author code, analyze data, and interleave visualiza-
tions, all within a single document. Nevertheless, as data
scientists incorporate more of their activities into notebooks,
they encounter unexpected difficulties, or pain points, that
impact their productivity and disrupt their workflow. Through
a systematic, mixed-methods study using semi-structured in-
terviews (n = 20) and survey (n = 156) with data scientists,
we catalog nine pain points when working with notebooks.
Our findings suggest that data scientists face numerous pain
points throughout the entire workflow—from setting up note-
books to deploying to production—across many notebook
environments. Our data scientists report essential notebook
requirements, such as supporting data exploration and visual-
ization. The results of our study inform and inspire the design
of computational notebooks.

Author Keywords
Computational notebooks; challenges; data science;
interviews; pain points; survey

CCS Concepts
•Human-centered computing → Interactive systems and
tools; Empirical studies in HCI; •Software and its engi-
neering → Development frameworks and environments;

INTRODUCTION
Computational notebooks are an interactive paradigm for com
bining code, data, visualizations, and other artifacts, all within
a single document [21, 36, 32, 30]. This interface, essentially,
is organized as a collection of input and output cells. For exam
ple, a data scientist might write Python code in an input code
cell, whose result renders a plot in an output cell. Although
these cells are linearly arranged, they can be reorganized or
executed in any order. The code executes in a kernel—the
computational engine behind the notebook.

his interactive paradigm has made notebooks an appealing
choice for data scientists, and this demand has sparked multi
ple open source and commercial implementations, including

-

-

T
-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.

 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
DOI: https://dx.doi.org/10.1145/10.1145/3313831.3376729

©

Azure,1 Databricks,2 Colab,3 Jupyter,4 and nteract.5 While
originally intended for exploring and constructing computa-
tional narratives [29, 31], data scientists are now increasingly
orchestrating more of their activities within this paradigm [33]:
through long-running statistical models, transforming data at
scale, collaborating with others, and executing notebooks di-
rectly in production pipelines. But as data scientists try to do
so, they encounter unexpected difficulties—pain points—from
limitations in affordances and features in the notebooks, which
impact their productivity and disrupt their workflow.

To investigate the pain points and needs of data scientists
who work in computational notebooks, across multiple note-
book environments, we conducted a systematic mixed-method
study using field observations, semi-structured interviews, and
a confirmation survey with data science practitioners. While
prior work has studied specific facets of difficulties in note-
books [24, 17], such as versioning [18, 19] or cleaning unused
code [13, 34], the central contribution of this paper is a taxon-
omy of validated pain points across data scientists’ notebook
activities.

Our findings identify that data scientists face considerable
pain points through the entire analytics workflow—from set-
ting up the notebook to deploying to production—across
many notebook environments. While our participants reported
workarounds, these were ad hoc, required manual interven-
tions, and were prone to errors. Our data scientist report their
key needs are support for deploying notebooks to production
and scheduling time-consuming batch executions as well as
under-the-hood software engineering support for managing
code and history. Our findings further our understanding of
requirements for supporting data scientists’ day-to-day ac-
tivities, and suggest design opportunities for researchers and
toolsmiths to improve computational notebooks and streamline
data science workflows.

STUDY DESIGN
Our investigation consisted of two studies. Study 1, a mix of
complementary field observations and interviews, investigates
the difficulties that data scientists face in their day-to-day
activities. Study 2 confirms our findings from Study 1 through
a survey of 156 data scientists.

1https://notebooks.azure.com/
2https://databricks.com/product/
3https://colab.research.google.com/
4https://jupyter.org/
5https://nteract.io/

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 1

https://notebooks.azure.com/
https://databricks.com/product/
https://colab.research.google.com/
https://jupyter.org/
https://nteract.io/
https://dx.doi.org/10.1145/10.1145/3313831.3376729
mailto:permissions@acm.org
mailto:azh@utk.edu
mailto:titus.barik}@microsoft.com
mailto:anita.sarma}@oregonstate.edu

Table 1: Field Study and Interview Participants

FIELD STUDY PARTICIPANTS
ID ROLE INDUSTRY EXP. (YRS) NOTEBOOKS LANGUAGES

FP1 Data Scientist Advertising 5 Jupyter, RStudio Python, R
FP2 Data Scientist Cloud Computing 3 Jupyter, VS Code Python
FP3 Data Scientist Machine Learning 15 Jupyter Python
FP4 Data Engineer Machine Learning 3 Jupyter Python
FP5 Data Engineer Data Services 2 Jupyter, AzureML Python

INTERVIEW PARTICIPANTS
ID ROLE INDUSTRY EXP. (YRS) NOTEBOOKS LANGUAGES

IP1 Cloud Soln. Architect Cloud Computing 4 Jupyter, Zeppelin Python
IP2 Data Scientist Business Analytics 3 Jupyter, Databricks Python
IP3 Data Scientist Cloud Computing 4 Jupyter, Databricks Python
IP4 Data Scientist Security 10 Jupyter Python
IP5 Data Scientist Cloud Computing 4 Jupyter Python
IP6 Soln. Architect Development Tools 4 Jupyter, Colab Python
IP7 Database Architect Environmental Consulting 6 Jupyter Python, Julia
IP8 Data Analyst Entertainment 7 Jupyter, iPython Python
IP9 Software Engineer Manufacturing 8 Mupad C#
IP10 Data Analyst Finance 5 Proprietary Python
IP11 Consultant Finance 9 Jupyter, Databricks Python
IP12 Consultant Finance 15 Jupyter Python
IP13 Data Scientist Security 10 Jupyter, Colab Python, R
IP14 Software Engineer Cloud Computing 9 Databricks Python
IP15 Data Scientist Development Tools 5 Jupyter, Databricks Python, R

Study 1: Field Observations and Exploratory Interviews
To understand when and why data scientists experience dif-
ficulties with notebooks, we conducted field observations to
observe data scientists in situ. We complemented these obser-
vations with interviews with professional data scientists to get
a broader picture.

Recruitment. For our field observations, we recruited five
professional data scientists from within Microsoft—a large,
multinational, data-driven organization—using our internal
address book to sample data scientists with the title of “Senior”
(or higher) and having at least two years of experience in
the organization. For our interviews, we recruited 15 data
scientists having at least two years of data science experience
from multiple companies and industries.

Participants. Participants reported working in a variety of
industries and roles, including Data Analyst, Data Scientist,
and Data Engineer (Table 1). Participants reported 6.6 years
of experience (sd = 3.7). Participants primarily reported using
Python with Jupyter notebooks.

Field study protocol. We observed data scientists who primar-
ily work in computational notebooks as they performed their
regular data science activities. All sessions were conducted
with a single observer and a single data scientist in the data
scientist’s office. Sessions were scheduled for one hour, with
45 minutes of observation and 15 minutes of retrospective
interviews. During the session, we recorded their screens and
audio through screen capture software and a hand-held audio
recorder. We asked participants to think-aloud as they worked,

and the observer took in-situ field notes as the data scientists
conducted their work. During the retrospective interview, the
observer used these notes to probe further about difficulties
observed or mentioned during the session.

Interview study protocol. We conducted semi-structured inter-
views remotely through online communication software, and
recorded these interviews. The questions roughly followed
this organization: brief questions regarding what they do as a
data scientist and what activities they conduct using notebooks,
followed by more detailed conversation about why they prefer
to use notebooks as well as any difficulties when using the
notebooks. Interviews were about 30-45 minutes long.

Informed consent. In both field observations and interviews,
participants signed a consent form prior to conducting the
study, in accordance with our institutional ethics board. Partic-
ipation in the study was voluntary and participants received
no compensation.

Analysis. We transcribed the audio for the field observa-
tions and interviews. The first and last author collaboratively
analyzed these transcripts through an inductive, open cod-
ing process using the ATLAS.ti qualitative analysis software.
First, we segmented the transcripts and applied descriptive
codes [35], that is, assigning short phrases or labels, to these
segments. We merged and split descriptive codes as neces-
sary, looking for similarity in challenging activities that data
scientists experienced when working in the notebook. Next,
we performed axial coding, grouping similar codes and ana-
lyzing them to identify higher-level and cross-cutting themes,

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 2

https://ATLAS.ti

which we termed pain points. The collaborators met frequently
over several weeks to discuss, examine, and refine codes and
themes.

Validity of qualitative coding. To support interpretive validity,
we recruited two external raters, both data scientists. We
randomly sampled five statements from each of the nine pain
points as identified in our inductive coding process. Using
Table 2, we asked the raters to independently categorize each
statement and assign it to a single pain point that best reflected
that statement. We achieved a Cohen’s Kappa just below 0.8,
with disagreement from our external raters primarily because
some statements concern multiple pain points.

Study 2: Confirmatory Surveys
To triangulate, validate, and increase the credibility of our
qualitative field observations and interviews, we conducted a
survey with a broader population of data scientists.

Survey protocol. Our survey consisted of demographic ques-
tions about the respondents’ number of years of data science
experience, the computational notebooks they use regularly,
the programming languages they use regularly within these
notebooks (multi-option question, with “other" as an answer
choice), and how frequently they use computational notebooks
for their data science activities (5-point Likert-type item fre-
quency scale, “More than 5 times a week,” “4-5 times a week,”
“2-3 times a week,” “once a week,” and “less than once a
week.”

Using the findings of our qualitative analysis of field observa-
tions and interviews, 20 activities were drawn and presented
as a series of questions using a 5-point Likert-type scale for
difficulty and importance. All questions in the survey were
optional.

To evaluate if our field observations and interviews reached
theoretical saturation, we asked respondents to indicate if there
were any other difficulties with using computational notebooks
that we missed.

Informed consent. Our survey included instructions for in-
formed consent, in accordance with our institutional policies.

Recruitment. We recruited participants by e-mail through in-
ternal address book contacts across multiple organizations,
through social media such as Twitter and LinkedIn, and
through data science mailing lists. We also asked respondents
to forward the survey to other data scientists. Respondents did
not receive compensation for completing the survey.

Respondents. 156 data scientists from various companies
responded to our survey, after discarding eight blank responses.
Respondents had an average of 5.3 years of experience (sd =
3.9). 53% of our respondents used notebooks “more than
5 times a week” while 16.6% of them used notebooks once
or less than once a week. 98% of our respondents primarily
used Python in notebooks, 30% used R, and 14.7% used Scala.
Respondents also reported using Java, JavaScript, Spark, and
SQL. 84% used Jupyter notebooks and 33% used Jupyter Labs.
36% reported using Databricks and 28% use Azure Notebooks.

Analysis. We computed descriptive statistics and plotted the
survey responses for difficulty and importance. We manually
inspected the responses for other challenging activities that
we missed. Respondents rarely populated this response. In all
cases, the answers were additional details for already-covered
activities (“restructuring the code” for the activity of “refactor-
ing” and “using loops to create multiple plots” for “visualizing
data and models”) or confirmational responses (“looks like
you’ve covered everything”).

PAIN POINTS OF USING NOTEBOOKS
We identified nine categories of pain points in computational
notebooks, across the data scientists’ workflow (Table 2).

Setup
Difficulties with notebooks happen as soon as the data scientist
creates a new notebook.

Loading data. To explore data, it first has to be pulled into
the notebook. That’s not always easy, especially when the
data needs to be shuffled back and forth between multiple
sources and platforms (IP10, IP11, IP14, IP15, FP1). This
process quickly becomes a tortuous, multi-step adventure that
requires repeatedly “going to separate cloud instances to bring
down the data locally, taking that to a local file, and uploading
it back to the cloud” (IP15). Although some data libraries
exist (for example, psycopg2)6, they are nontrivial to use,
and data scientists must be aware that they exist and remember
how to use them. Unsurprisingly, some of our data scientists
relied on others for help—IP10 had a developer build magic
commands in the notebook that “triggered functions behind the
notebook” on their behalf and provided them with an easier-to-
use interface to connect to their commonly-used data sources.

Sometimes, when working with large data sets, the “notebook
tends to crash a lot; the kernel dies and that causes frustration”
(IP13). In contrast to IDEs, the client/server nature of note-
books complicates setup, and the difficulties of working with
large data within a web browser are amplified. In such cases,
this often “requires getting a lot of data engineering resources
just to be able to run something that’s supposed to be a daily
job. The stack to do something pretty simple is pretty heavy”
(IP15). But not all data scientists have dedicated developers or
data engineers to help them.

Cleaning data. While clean data makes “a big difference in the
overall model output” (IP15), it’s seldom readily available. Ef-
forts to clean data are mostly clerical, and there’s “no mystery—
it’s just time consuming” (IP1). To avoid repetitive cleaning
data scientists create “a bunch of routines” (IP11). But these
routines still require modification and manual copying-and-
pasting across notebooks (IP4, IP9, IP15)—an error-prone
process.

Explore and Analyze
Although notebooks profess to allow “quick and dirty work
and exploration” (IP1, IP3, IP4, IP6, IP8, IP11 , IP12, IP13,
IP14), data scientists tell us that this isn’t always the case.

6http://initd.org/psycopg/

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 3

http://initd.org/psycopg/

Table 2: Summary of Pain Points in Computational Notebooks

PAIN POINT DESCRIPTION EXAMPLE

Setup Loading and cleaning data from multiple sources
and platforms is a tortuous, multi-step, manual

“If you do a lot of data loading and pre-processing
always re-loading the data is time consuming” (IP2).

process.

Explore and
Analyze

An unending cycle of copy-paste and tweaking bits
of code made worse by feedback latency and kernel
crashes.

“I need immediate feedback, like when I am testing
slight changes in the model. I don’t want to execute
everything again” (IP1).

Manage Code Managing code without software engineering sup-
port results in “dependency hell” with ad hoc
workarounds that only go so far.

“Debugging is a horrible experience, copying the
code over to do the debugging outside [in the IDE],
and copying it back” (IP8).

Reliability Scaling to large datasets is unsupported, causing
kernel crashes and inconsistent data.

“Disconnects between browser-server or server-
kernel introduce all sorts of lack-of-reliability prob-
lems” (IP6).

Archival Preserving the history of changes and states within
and between notebooks is unsupported, leading to
unnecessary rework.

“The thing is using any kind of versioning mechanism
for notebooks is just a complete and utter failure”
(IP2).

Security Maintaining data confidentiality and access control
is an ad hoc, manual process where errors can leak
private client data.

“We are missing a more private way of handling cre-
dentials. I don’t want client credentials be visible to
others” (IP13).

Share and
Collaborate

Sharing data or parts of the notebook interac-
tively and at different levels—demo/reports, re-
view/comment, collaborative editing—is generally
unsupported.

“There are cases where somebody is asking you to
review/comment, while other times to go collaborate”
(IP6).

Reproduce and
Reuse

Replicating results or reusing parts of code is infea-
sible because of high levels of customization and
environment dependencies.

“The fact that somebody could run a notebook on
organization A’s service but not on organization B’s
is a serious problem” (IP6).

Notebooks as
Products

Deploying to production requires significant
cleanup and packaging of libraries—DevOps skills
that are outside the core skill set of data scientists.

“Once the code gets a certain level of maturity, it’s
very difficult to transition that to production code.
Everything has to translate to functions and classes”
(IP15).

Modeling. Building models take time. Not only is “[having
the system] learn the model itself very time consuming” (IP7),
it also “involves a lot of complexity” just to build them (IP3).
Getting to the right models require many iterations, but data
scientists don’t get “immediate feedback” so that they can
quickly make adjustments (IP1, IP2). Instead, data scientists
like IP1 have to wait a long time to check if the execution
was successful, and they can’t interrupt the process to evaluate
alternatives in the meantime. Worse, if their model produces
an error, they have to “execute everything again” (IP1).

Visualizing. Data scientists use visualizations—primarily
plots—to quickly see how their code refinements modify their
data (IP1, IP7, IP8, IP6, IP12, IP13). But it’s hard to cus-
tomize the plots when the data scientist isn’t happy with the
result; these frustrations led our data scientists to continuously
copy-paste or tweak bits of code (IP4, IP12, IP15) to tailor
the visualizations to their needs. In some cases, the output
cells themselves are a hindrance—“there’s a lot of things just
limited by the footprint of the notebook. Everything is in a cell,
and the chart is limited by the boundaries and real estate of the

notebook” (IP15). In these situations, data scientists end up
manually exporting their code and data and redoing the work
in exploratory data analysis tools outside of the notebook—
“integration with tools like Tableau, or even API level access to
them, would reduce all this copying and pasting” (IP8). Since
notebooks are intended for facilitating data exploration, it is
unfortunate that visualization continues to be difficult within
some notebook environments.

Iterating. Having to iterate between modeling and visual-
ization, that is, “changing some methods slightly and trying
different things” (IP1), is the norm. Of course, supporting iter-
ation is one of the core purposes of computational notebooks.
Notebooks should be an ideal environment for iterating, but
like we saw in setup, churning through code introduces many
of the same difficulties when code assistance isn’t available:
the data scientist ends up “having to go through the same
ceremony to do even the most basic modeling task” (IP8),
finding relevant packages, and deleting now-unused code (IP2,
IP8, IP9, IP11, FP3). One option is to switch to an IDE, but

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 4

this requires constantly shuffling between the IDE and the
notebook.

Manage Code
Although managing and working with code is a fundamental
activity in the computational notebook paradigm, data sci-
entists told us about code-related activities they found to be
challenging.

Writing code. Having to write code—particularly due to lack
of code assistance—is something that IP7 “hated the most”
about working in notebooks. To be efficient, they had “to know
all the function names and class names correctly and have
another browser open to search for help and documentation”
(IP7, FP2). Coding in notebooks is even more difficult using
new libraries since it’s not possible “to explore the API and
functions” from within the notebook (IP8). Practically, IP8
argues, “anyone who tries to use notebooks has to start off
with an IDE and then graduate into a notebook.”

Managing dependencies. Having to manage packages and
library dependencies within the notebook is, to put it mildly,
a “dependency hell” (IP7). Notebooks provide little-to-no-
support for finding, removing, updating, or identifying depre-
cated packages (IP3, IP7, IP9, IP11, IP12, IP13, IP15). Often,
discovering what packages are even installed isn’t accessible
from the notebook environment, requiring data scientists to
plod over to their command-line terminal and use commands
like conda and pip to manage their environment (IP3).

Debugging. Feedback about debugging in notebook was
mixed. Some data scientists applauded the notebook’s abil-
ity to quickly diagnose errors (IP2, IP5, IP14), while others
maintained that it’s “a horrible experience” (IP6, IP8, IP15).

On one hand, the cell-oriented structures make debugging
“fairly instantaneous and straightforward” because it allows
“splitting up functions into different cells and then slowly stitch-
ing them together until you get something that works right”
(IP2). In the case of errors, notebooks at least usually retain the
output states of previously executed cells. On the other hand,
the only way to debug in most notebooks is through the use of
print statements—many computational notebook don’t let
data scientists “peek inside variables and change them” (IP7).
Due to out-of-order execution, typical IDE affordances like
breakpoints would make it difficult to “follow the code flow”
(IP2), and notebooks likely require different affordances to
support debugging in this exploratory context (for example,
data introspection).

Testing. Tests are another mechanism to troubleshoot issues
in notebooks, but because there’s no standard way to test
notebooks, different data scientists end up following different
approaches (IP1, IP3, IP4, IP5, IP6, IP9, IP13, FP1). For
example, while IP13 and FP1 wrote test cases within the same
notebook, IP3 and IP4 used dedicated test notebooks to vali-
date their functionality.

Reliability
One problem with computational notebooks is that executing
them “isn’t particularly reliable” (IP6). The other is that they
don’t scale to big data.

Executing notebooks. If the notebook kernel crashes dur-
ing the middle of an operation, or the data scientists gets
disconnected—this can result in putting the notebook or the
data in an inconsistent state. For example, when inserting
many records into a database, getting disconnected from the
notebook can result in only partial records being written to a
data store (IP10, FP4). Inconsistent state can be hard to detect
because there’s “no transparency in terms of understanding
how the process is being executed on the kernel” (IP2). And
some notebooks “get very large due to people abusing them;
as notebooks get larger, the reliability falls” (IP6). Sometimes
it’s easiest to just restart and run the whole notebook again
(IP8, IP10, IP15).

Scaling to big data. A limitation to iterating is that notebooks
“can only handle so much data in the notebooks” (IP8, IP10).
“Although notebooks could be used for lightweight extracting,
transforming, and loading data (ETL), for heavyweight ETL
we still have to rely on the Java pipelines. The data is way
too huge for notebooks to handle” (IP6). Notebooks introduce
a tension between balancing the needs of quick iteration and
working with large data (IP4).

A key reason was that reliable kernel connections were hard
to maintain and resulted in kernel crashes (IP1, IP2, IP6, IP10,
IP13). These crashes were often a result of the notebooks’
limited processing power, which can’t handle large notebooks
or big data loads.

Archival
While some exploratory notebooks have a relatively short shelf
life as “playgrounds” (IP5), other notebooks have longer life-
times. For the latter, data scientists need support for versioning
and searching notebooks.

Versioning. There’s “a lot of room for improvement when we
want to check notebooks into source control, such as being able
to visualize the differences between the last version and the
new version” (IP3). Using traditional versioning mechanisms
intended for source code are “just a complete and utter failure”
(IP2) when versioning notebooks. IP2 continues, “because
all the outputs are saved within the notebook, there’s a lot of
state that’s bundled in the file.” In traditional source control
systems, all of these changes appear as spurious differences,
making it difficult to identify the actual changes between the
notebooks—“there’s just a a lot of mess” (IP2, FP2). To be
effective, version control systems need special-handling for
computational notebooks. Moreover, since “the history and
execution order of the notebook cannot be tracked by version
control systems” (IP2, IP15), committing the notebook to
version control doesn’t mean that you’ll be able to successfully
run the notebook.

Searching. Data scientists create a lot of notebooks, and these
notebooks are “rarely maintained or given useful names, which
make it hard to know what’s saved in these notebooks” (IP9).
Since the “number of notebooks grows quickly” (IP7), fold-
ers and files names “become disorganized very fast. It’s hard
to remember what is saved in these things, so they’re all just
Untitled-1 or Untitled-2” (IP9). All of which make “find-
ing and navigating to the intended file difficult” (IP14).

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 5

Security
Securing notebook was difficult along two dimensions: avoid-
ing unintentional data leaks and managing access to the note-
books.

Securing sensitive data. Securing data required our data sci-
entists to perform “additional suppression and transformation
operations,” which is both time consuming and computation-
ally costly (IP11). Adding security into the mix “slows down
the whole [data science] process” (IP11). In some cases, it’s
the transformation code itself that needs to masked as it can
reveal patterns of the underlying suppression mechanisms. But
notebooks don’t provide a way to “lock the functionality of
a particular cell so that it’s not visible to others,” while still
allowing them to execute the code (IP13). For certain types
of analysis, the transformed data had to be again “unmasked,”
which introduced even more steps into the data science process.
Finally, copying or exporting desensitized data over to external
platforms can be “dangerous, because if you’re copying data
and screw up something,” this data can be inadvertently leaked
(IP8).

Controlling access. In some notebook environments, it’s not
possible to finely control access to the notebooks, and “the
only way to share notebooks securely is to upload notebooks
to secure team drives” (IP6, IP10, IP11, FP5). For example,
data scientists aren’t able to specify the types of activities that
others can perform within a notebook, such as making the
notebook “read-only or only allowing comments” (IP12) or
restricting notebook to “only run but not modify cells,” or
modify cells but not run (IP10, IP13).

Share and Collaborate
Sharing and collaboration is “messy” (IP5) and “not straight-
forward” (IP2) but “very often requested” (IP6).

Sharing supporting artifacts. “Sharing a notebook is kind
of useless without the underlying data” (IP9). But doing so
means that the recipient has to be able to have access to the
database, and the correct data within it (IP9, IP15). In ad-
dition, data scientists also need to “match the environment
settings” of the notebook (IP3, IP15), for example, by follow-
ing manually-written instructions. Alternatively, the sender
can create separate “requirements files” which can be read
by package installation programs to automatically install the
necessary dependencies (IP15). Unfortunately, this approach
breaks the “single file” metaphor of notebooks, because in-
formation needed to run the notebook is decoupled from the
notebook itself.

Sharing with non-data scientists. Data scientists need to
present their notebooks to customers and other non-data scien-
tists. They do so in three ways: interactively (where the data
scientists execute the notebook directly to explain the results
to the audience), statically (for the audience to look at the
analysis and results at a later time/offline), or as a read-only
notebook (for non-data scientists to leave comments or notes
on the notebook for the data scientist to review at a later time).

When interactively sharing notebooks through live demos, data
scientists desired to execute the notebook interactively without
exposing code, since the code isn’t meaningful for most of

the audience. Data scientists wanted the ability to temporarily
“collapse code and show only the visualizations and markdown”
(IP3, IP7, IP15).

Data scientists also shared their results by exporting the con-
tent of notebooks to other formats, such as presentations or
printable reports. But because visualizations and data in note-
books “spit out a lot of information, it’s hard to create nice
looking reports” (IP4).

Finally, some data scientists wanted stakeholders to be able to
leave comments on the notebooks without being able to run
the cells. “Giving the non-technical users an opportunity to
provide feedback on the notebook itself by leaving comments
can be extremely valuable” (IP3, IP6).

Editing collaboratively. “Collaborating in real-time with mul-
tiple users on a single notebook is super powerful” (IP6). How-
ever, collaboration is not possible in many notebook environ-
ments, which makes it challenging to “develop side-by-side
with somebody, especially remotely” (IP3).

Reproduce and Reuse
Data scientists reproduce notebooks to verify how a result was
computed or obtained. They also reuse and adapt code from
existing notebooks to save time.

Reproducing. “Reproducibility is really ensuring that the set
of software you used to produce a result is exactly the same
the next time you try to reproduce the same result” (IP6). “The
only way another person can run the notebook is if they’re
able to match all the environment settings” (IP15). Another
challenge to reproducibility is that data scientists customize
notebooks, for example, by using extensions that they install
on their local notebook environment. Depending on the exten-
sion, these notebooks can fail to run if they are not available in
the other notebook environment (IP2, FP5). Crucially, “there’s
no compatibility at all between extensions in different note-
book implementations. There’s absolutely no standard for how
these extensions work. So chances are it’s not gonna work.
That’s a serious problem” (IP6).

Reusing and adapting. Data scientists reuse notebooks, for ex-
ample, in situations where “the data source can change, but the
underlying logic would be the same” (IP11). Unfortunately,
even seemingly simple reuse can become more complicated
than expected, such as when the “earlier notebook uses abso-
lute paths” (IP5), when the “cells have no designated format
or function” (IP1) and can’t be easily isolated, and when there
are complex dependencies to bring into the new notebook (IP3,
IP11, FP4).

Notebooks as Products
Notebooks shine when performing quick, interactive, ex-
ploratory analysis, but these features also encourage sloppy
coding practices that make it difficult to transition notebooks
to production.

There are two common pathways to production. First, the
data scientist can run the notebook directly, but with larger
data and with longer-running computations. Second, they can
package the code in the notebook into a standalone artifact

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 6

that is decoupled from the original notebook. Neither option
is particularly pleasant.

Scheduling long-running computations through the notebook.
Running long-running computations in notebooks provides
no feedback on progress; while the computation is running,
data scientists lose all interactivity in their notebook (IP1, IP8).
Data scientists would prefer that, “when the process is done, it
automatically creates a notification” (IP15). At least this way,
the data scientist knows that they can go back to the notebook
(IP4, IP5, IP14). While this option is more convenient, data
scientists reported reliability issues when scaling to big data.

Packaging as a standalone artifact. Because “notebooks en-
courage coding in cells, it’s not software-engineering friendly”
(IP15). During exploration and analysis, we found that data
scientists often created quick and dirty code, but “code in pro-
duction software is very different from code in the notebook”
(IP15). To make matters worse, cells in the notebook don’t
have to execute linearly, and the desired execution order isn’t
stored explicitly with the notebook (IP6, IP15, FP2). For these
reasons, “it’s very difficult and painful to transition notebooks
to production code without doing a full rewrite” (IP4, IP14,
IP15).

SURVEY RESULTS
Our qualitative results from field observations and interviews
show that data scientists’ work is rife with pain points. But,
which of the activities within these pain points are critical and
obstruct notebook usage? Figure 1 and Figure 2 show a distri-
bution of responses for importance and difficulty, respectively.
The distribution of importance shows that all activities are at
least moderately important (that is, median of responses were
above 3) to data scientists.

Since all activities are challenging for some data scientists,
we focus on high-impact activities when discussing design
opportunities in the next section. These are activities that
respondents marked (by median) as at least “difficult” and
“important,” across multiple types of notebooks. The four
activities (and the associated pain points) under this criteria are:
viewing and exploring history (archival), refactoring code in
notebooks (manage code), scheduling long-running processes
for automatic execution (notebooks as products), and easily
deploying notebooks as products (notebooks as products).

Another lens through which we can prioritize activities is to
look at low-impact activities. These are activities that are at
least “important” and “easy” or “very easy.” In other words,
these activities are already well supported in computational
notebooks, so notebook developers should avoid impacting
these activities as they introduce new capabilities in their note-
books. These activities (and pain points) are: load (setup),
explore (explore and analyze), and visualize data (explore and
analyze), debug (manage). It’s also notable that data scientists
find both local and remote notebook environments important
to their day-to-day activities.

DESIGN OPPORTUNITIES
The pain points in our taxonomy suggest both understudied
research areas and design opportunities for improving compu-

tational notebooks for data scientists. We first discuss design
opportunities for high-impact activities, followed by design
opportunities in more niche data science scenarios. Encourag-
ingly, notebook developers are already targeting some of these
design opportunities—but support thus far is piecemeal, with
data scientists having to shuffle across different computational
notebook environments.

Refactoring
When compared with traditional integrated development en-
vironments, such as Visual Studio Code7 or PyCharm8, our
data scientists report that proper coding assistance within note-
books is almost non-existent. Familiar features like autocom-
pletion, refactoring tools, and live templates are often missing
or do not function properly. Consequently, data scientists
spend substantial time using online resources like Stack Over-
flow or documentation to help them code. Even when code
snippets were available online, data scientists had to manip-
ulate and wrangle these snippets to fit within their existing
code, introducing unnecessary clerical errors in the process. A
short-term pathway is for toolsmiths to incorporate the famil-
iar coding assistance features of the integrated development
environment and make them available within the notebook.
A longer-term pathway is to leverage affordances unique to
the computational notebook paradigm: the interplay between
input code cells and graphical output cells enable new mixed-
initiative experiences like programming-by-example [9, 25]
and programming-by-demonstration [4, 26, 11, 16, 8] within
the notebook environment. For example, consider a data sci-
entist who writes some initial plotting code in an input cell
that renders a plot in the output cell. With programming-by-
demonstration, the data scientist would be able to directly
manipulate the plot through graphical affordances, and these
manipulations could automatically update the corresponding
code.

In many ways, coding assistance is possibly even more im-
portant to data scientists than software engineers: for data
scientists, coding is primarily a means to answer questions
about their data, and not the core activity of interest. Lan-
guages such as R and Python are popular with data scientists
because of their “swiss-army knife’ capabilities, but the flexi-
bility of these languages—for example, dynamic typing and
reflection—make them difficult for static analysis tools to rea-
son about [6, 7]. For researchers, it’s important that we support
the languages data scientists actually use, not the languages
we wish they would use.

Deploying to Production
Deploying and adapting exploratory notebooks for production
environments, such as customer-facing applications, requires
data scientists to acquire expertise in a skill set that is well
outside of their core, day-to-day responsibilities. While larger
organizations have data engineering or software engineering
teams to assist data scientists in deployment, in smaller or-
ganizations data scientists must take on these responsibilities
themselves [1].
7https://code.visualstudio.com/
8https://www.jetbrains.com/pycharm/

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 7

https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/

How important is it to...
99%

Important (4)Moderately important (3)Not important (1) Slightly important (2)

98%
97%
93%
93%
85%
86%
70%
90%
76%
88%
83%
80%
93%
94%
59%
57%
75%
75%
52%

 1%
2%
3%
7%
7%

15%
14%
30%
10%
24%
12%
17%
20%
7%
6%

41%
43%
25%
25%
48%

 Load and process data (M=5)
Explore data (M=5)

Visualize data and models (M=5)
Debug issues (M=5)
Use on cloud (M=5)

Use locally (M=5)
Refactor code (M=4)

Deploy into production (M=4)
Explore history (M=4)

Long-running tasks (M=4)
Manage dependencies (M=4)
Securely share/deploy (M=4)

Use code assistance (M=4)
Share and collaborate (M=4)

Reuse existing (M=4)
Integrate with tools (M=3)

Customize with extension (M=3)
Trace execution paths (M=3)

Deal with sensitive data (M=3)
Multiple languages (M=3)

Very important (5)

Figure 1: Distribution of importance for activities, measured from 1 (Not important) to 5 (Very important). The median importance for each
activity is reported as M=median. Activities highlighted in red boxes are high-impact activities (median importance=4, median difficulty=4).

How difficult is it to...

16%

Very difficult (5)Neutral (3)Easy (2)Very easy (1) Difficult (4)

Neutral (3)

 21%
23%
22%
21%
39%
41%
18%
28%
42%
31%
36%
24%
32%
63%
74%
79%
72%
72%
91%

20%
19%
22%
25%
25%
25%
23%
26%
28%
24%
34%
23%
31%
30%
22%
18%
13%
18%
18%
5%

Deploy in production (M=4)
Explore history (M=4)

Long-running tasks (M=4)
Refactor code (M=4)

Integrate with tools (M=4)
Debug issues (M=3)

Manage dependencies (M=3)
Securely share/deploy (M=3)

Use code assistance (M=3)
Share and collaborate (M=3)

Customize with extension (M=3)
Trace execution paths (M=3)

Deal with sensitive data (M=3)
Multiple languages (M=3)

Use on cloud (M=2)
Load and process data (M=2)

Explore data (M=2)
Visualize data and models (M=2)

Reuse existing (M=2)
Use notebook locally (M=1)

64%
60%
55%
53%
54%
39%
34%
49%
44%
34%
35%
41%
45%
38%
15%
9%
9%
9%
9%
4%

Figure 2: Net stacked distribution of difficulty for activities, measured from 1 (Very easy) to 5 (Very difficult). The net stacked distribution
removes the neutral option, and shows the skew between Difficult (red bars) and Easy (green bars). The median difficulty for each activity is
reported as M=median. Activities highlighted in red boxes are high-impact activities (median importance=4, median difficulty=4).

There are several opportunities to improve the data scientists’
user experience and productivity. First, the programming lan-
guages for data science—such as Python or R—are not often
the same programming languages that are used in production
environments—such as C++ or C#. Automated translation
tools or runtime environments are one opportunity to help
mitigate these challenges. In circumstances when using the
data science programming language is suitable, the data scien-
tist must still clean up their notebook to remove unnecessary
dependencies, dead-ends, and unused code in their exploration
before exporting the notebook to a standalone script for exe-

cution in the production environments [14, 10]. Tools such
as Papermill [27] are a step in the right direction: Papermill
allows data scientists to directly deploy their notebook to a
production environment. The tool enables “parameters” in
the notebook; essentially, these parameters allow production
systems to pass configuration options to the notebook, for
example, the name of the data source to analyze. Still other
promising directions can be found in computational notebook
environments such as Databricks and Zeppelin. These envi-
ronments provide higher-level abstractions and make default
decisions about complex configuration options on behalf of

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 8

the data scientist, simplifying the user experience for them. In
short, data scientists desire push-button approaches to produc-
tionize their notebooks.

History
Due to the affordance of out-of-order execution in computa-
tional notebooks, it can quickly—both unintentionally and in-
tentionally—have an internal state that is different from the lin-
ear order of the notebook presented to the data scientist. This is
one form of history-related pain point within a notebook. With-
out history support within the notebook, data scientists must
painfully debug how their notebook entered the current state.
As data scientists conduct exploration, build models, and eval-
uate multiple design options, they also introduce multiple note-
books into their environment, which they often manage in an
ad-hoc way (for example, experiment_current.ipynb and
experiment_old.ipynb). This is the other form of history-
related pain point between notebooks. Without support for
easily finding the right information across notebooks, data
scientists end up reimplementing functionality or using stale
data because they lose track of their notebooks.

In contrast to version control typically found in software en-
gineering systems (git), preserving the history of artifacts
is also important to data scientists. Novel innovations in the
notebook space are required to support these unique require-
ments. For example, Head and colleagues [13] found that
data scientists do not want to spend up-front effort in man-
aging code versions or organizing their code, and that data
scientists prefer automated approaches to version control man-
agement. Some notebook environments, such as Nextjournal9,
attempt to address this need by automatically and periodically
versioning the notebook, data, and full runtime environment.

As computational notebooks use both text and visual medium,
advanced tools and techniques are required that can easily
differentiate changes (both text and visual) between different
versions of notebooks. For example, Kery and colleagues [18]
developed an experimental tool that complements existing ver-
sion control systems and allows the data scientist to visualize
the history of individual cells, code snippets, markdown, and
outputs.

Finally, supporting annotations and comments in computa-
tional notebooks allows data scientists to catalog their thoughts
and comments for decisions they’ve made in the notebook,
essentially, a form of inline journaling.

Long-running Computations
The scale of data and computation increases as data scien-
tists incorporate more demanding activities into their computa-
tional notebooks. Activities previously offloaded to standalone
scripts or jobs, like working with large datasets, are now rou-
tinely conducted within the notebook itself. These activities
are enabled by big data libraries that are directly accessible
in Python, such as tensorflow and keras, as well as through
data connectors that give data scientists access to large data
repositories from within the notebook.

9https://nextjournal.com/

But large scale data means long-running computations, which
often block operations in the underlying language kernel, cre-
ating tensions with the interactivity that data scientists expect
from notebooks. For example, many data science libraries are
synchronous, meaning that they block the data scientist from
any other operations. And with streaming data—that is, data
that is continuously generated by a data source—the program
runs forever.

To support these activities, notebook developers must support
scalable computations as a first-class design goal in notebooks.
In other words, computational notebooks should maintain the
benefits of exploration, interactivity, debugging, and visualiza-
tion, irrespective of the size of the data.

Potential opportunities include transaction support, which
allows the data scientist to abort long-running cells and re-
vert to a safe state prior to executing the problematic cell.
For streaming data, reactive notebooks such as BeakerX10

and Tempe11 automatically update computations as new data
becomes available in the notebook. However, enabling interac-
tivity and scaling requires careful design and introduces new
challenges—in particular, these notebook models can exagger-
ate confusion data scientists already have with out-of-order
execution.

RELATED WORK

How Data Scientists Use Notebooks
We found two studies categorizing how data scientists use note-
books. Kery and colleagues [20] studied coding behaviors in
computational notebooks, focusing on how data scientists kept
track of variations they explored. Rule and colleagues [34]
looked at notebook structure, findings tensions between explo-
ration and explanation in notebooks, and identifying reasons
academic data scientists use notebooks—tracking provenance,
reusing code, enabling replication, and presenting results. Our
study differs in that we focus on pain points that professional
data scientists have when working with computational note-
books.

The Jupyter organization conducted a survey to identify what
respondents liked about Jupyter notebooks, and what needs
remain unaddressed. Our study confirmed some of their find-
ings [15] but disconfirmed others. For example, we also found
that our respondents, for the most part, found it easy to explore
and visualize in notebooks. However, our respondents did not
find lack of debugging tools to be a substantial pain point.
Our data scientists also reported that traditional version con-
trol solutions (like git) are not appropriate for computational
notebooks, in contrast to the Jupyter survey. Moreover, our
study systematically focuses on why certain activities are chal-
lenging across multiple computational notebook environments,
using field observations and interviews.

Data Scientist Practices
Several studies investigated work practices of data scientists,
although not specifically in computational notebooks. Kandel

10http://beakerx.com/
11https://www.microsoft.com/en-us/research/project/tempe/

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 9

https://nextjournal.com/
http://beakerx.com/
https://www.microsoft.com/en-us/research/project/tempe/

and colleagues [17] described recurring pain points, outstand-
ing challenges, and barriers to adoption for visual analytic
tools. Muller and colleagues [24] described how scientists,
scholars, engineers, and others work with their data. Wilson
and colleagues [38] recommended several general practices
for working in computational notebooks, such as modulariz-
ing code, but the exploratory nature of computational note-
books disincentivize several of these practices. Hannay and
colleagues [12] found that most scientists learn to develop
and use software informally from their peers. Kery and col-
leagues [2] described exploratory programming—such as in
computational notebooks—as a key practice for data scientists;
they explored further the behaviors and characteristics of this
work. Wang and colleagues [37] proposed design implications
to better support collaborative editing, as current synchronous
editing features result in interference and imbalanced partici-
pation. And Kross and colleagues [22] studied how to teach
data science in industry and academia.

Tools for Computational Notebooks
Researchers have developed some tools to improve the experi-
ence of computational notebooks, mostly around version con-
trol and history [18, 23, 19], cleaning and annotating code [34,
13], working with streaming data [5], and extending the note-
book model to make visualizations more central [39]. Our
study finds several additional opportunities for improving the
user experience in notebooks, not yet addressed by existing
research.

LIMITATIONS
Any empirical study has its strengths and weaknesses. Field
studies excel in capturing how participants actually work, but
this data has to be collected opportunistically. Researchers
need to be present at the time a participant is engaging in the
relevant activity, in our case, working on computational note-
books. Interviews, by contrast, can be scheduled a priori and
are easier to perform. However, they depend on participants’
memory and (sometimes) what participants think they should
do and not necessarily what they actually do. Survey data is
the easiest to collect, but it doesn’t offer the richness of the
other two empirical methods. A mixed-method study, like
ours, helps balance the strengths and weaknesses of different
methods.

Our study focused primarily on professional data scientists
who use notebooks in their day-to-day work activities. Con-
sequently, our findings may not generalize to other types of
notebook users, such as machine learning enthusiasts, edu-
cators, end-user programmers, or infrequent notebook users.
In addition, most of our participants primarily used Jupyter
notebooks. Thus, some of the pain points may not apply to
other notebooks, such as R Notebooks and Spyder, which have
different architectures.

The importance and difficulty of our identified pain points are
dependent on job roles, data scientist experience, and types
of notebooks the data scientists primarily use. Our reported
findings aggregated these factors, and any individual data
scientist may have different priorities in how they perceive
the importance and difficulty of these activities. In our survey,

self-selection bias may have also influenced our results [3]:
our respondents may feel more strongly about pain points in
notebooks than the general population of data scientists.

Establishing validity in qualitative research is challenging due
to several potential biases, including researcher bias, confirma-
tion bias, and interpretive validity [28]. To reduce these issues,
we employed three techniques. First, we calculated IRR for
external raters who categorized participant statements to our
pain points. Second, we conducted a survey to triangulate
our interview and field study results. Within the survey, we
asked participants in a short text response if there were any
pain points we had missed: no new pain points were identified
through these responses. Third, at the conclusion of our study,
we conducted an informal focus group with both data scien-
tists (n = 3) and computational notebook developers (n = 2,
Jupyter and nteract) to identify any potential credibility issues.

The focus group identified some additional limitations in our
study. Participants suggested that our pain points may be
biased towards tabular ("rectangular") data, and that data sci-
entists who work with images, audio, or natural language text
may be underrepresented. For these domains, loading, pro-
cessing, and exploring data may be far more difficult than
our results suggest. Developers of notebooks identified that
accessibility issues did not appear as a pain point in our study,
although they routinely receive bug reports about these issues.
They suggested that lack of keyboard shortcuts, text-to-speech
support, and high-contrast themes, may impact productivity
for some data scientists. Overall, however, the pain points
identified in our study resonated with the focus group.

CONCLUSION
In this paper, we conducted a mixed-method study with data
scientists using field observations, interviews, and a survey.
In field studies and interviews, our data scientists reported a
variety of difficulties when working with notebooks, and we
synthesized these difficulties into a taxonomy of pain points.
We validated the challenging activities that contribute to these
pain points through a survey and found that supporting all
of the activities were at least moderately important to data
scientists, and that four activities—refactoring code, deploy-
ing to production, managing and working with history, and
executing long-running tasks—were both broadly difficult as
well as important to address, turning them into high-impact ac-
tivities. Our findings suggest several design opportunities for
researchers and computational notebook developers. Address-
ing these pain points can substantially improve the usefulness,
productivity, and user experience for data scientists who work
with computational notebooks.

Acknowledgements
We thank Audrey Au, Devesh Desai, Sumit Gulwani, John
Lam, Natalia Morales, and Adriana Moscatelli for their help
and feedback. This work is partially supported by the National
Science Foundation under Grant Nos. 1560526 and 1815486.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 10

REFERENCES
[1] Titus Barik, Robert DeLine, Steven Drucker, and Danyel

Fisher. 2016. The bones of the system: A case study of
logging and telemetry at Microsoft. In 2016 IEEE/ACM
38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 92–101.

[2] M. Beth Kery and B. A. Myers. 2017. Exploring
exploratory programming. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). 25–29. DOI:
http://dx.doi.org/10.1109/VLHCC.2017.8103446

[3] Jelke Bethlehem. 2010. Selection bias in web surveys.
International Statistical Review 78, 2 (2010), 161–188.

[4] Allen Cypher and Daniel Conrad Halbert. 1993. Watch
What I Do: Programming by Demonstration. MIT Press.

[5] Robert DeLine, Danyel Fisher, Badrish Chandramouli,
Jonathan Goldstein, Michael Barnett, James F
Terwilliger, and John Wernsing. 2015. Tempe: Live
scripting for live data. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). 137–141.

[6] Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho
Yee, Jakob Hain, and Jan Vitek. 2019. R melts brains:
An IR for first-class environments and lazy effectful
arguments. In Proceedings of the 15th ACM SIGPLAN
International Symposium on Dynamic Languages. ACM,
55–66. DOI:http://dx.doi.org/10.1145/3359619.3359744

[7] Aviral Goel and Jan Vitek. 2019. On the design,
implementation, and use of laziness in R. Proceedings of
the ACM on Programming Languages 3, OOPSLA
(2019), 1–27.

[8] Sumit Gulwani. 2011. Automating string processing in
spreadsheets using input-output examples. In ACM
SIGPLAN Notices, Vol. 46. ACM, 317–330.

[9] Sumit Gulwani. 2016. Programming by examples.
Dependable Software Systems Engineering 45, 137
(2016), 3–15.

[10] Philip J. Guo. 2012. BURRITO: Wrapping your lab
Notebook in computational infrastructure. In 4th
USENIX Workshop on the Theory and Practice of
Provenance (TaPP). USENIX.

[11] Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and
Jeffrey Heer. 2011. Proactive wrangling:
Mixed-initiative end-user programming of data
transformation scripts. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software
and Technology (UIST). ACM, 65–74. DOI:
http://dx.doi.org/10.1145/2047196.2047205

[12] Jo Erskine Hannay, Carolyn MacLeod, Janice Singer,
Hans Petter Langtangen, Dietmar Pfahl, and Greg
Wilson. 2009. How do scientists develop and use
scientific software?. In Proceedings of the 2009 ICSE
Workshop on Software Engineering for Computational
Science and Engineering (SECSE). IEEE, 1–8. DOI:
http://dx.doi.org/10.1109/SECSE.2009.5069155

[13] Andrew Head, Fred Hohman, Titus Barik, Steven M.
Drucker, and Robert DeLine. 2019. Managing messes in
computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI). ACM, Article 270. DOI:
http://dx.doi.org/10.1145/3290605.3300500

[14] Eric Horton and Chris Parnin. 2019. DockerizeMe:
Automatic inference of environment dependencies for
Python code snippets. In Proceedings of the 41st
International Conference on Software Engineering
(ICSE). IEEE, 328–338.

[15] Jupyter. 2015. Jupyter Notebook UX Survey. (2015).
https:
//github.com/jupyter/surveys/blob/master/surveys/
2015-12-notebook-ux/analysis/report_dashboard.ipynb

[16] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2011. Wrangler: Interactive visual
specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI). ACM, 3363–3372.

[17] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
2012. Enterprise data analysis and visualization: An
interview study. IEEE Transactions on Visualization and
Computer Graphics 18, 12 (Dec 2012), 2917–2926.
DOI:http://dx.doi.org/10.1109/TVCG.2012.219

[18] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty,
Amber Horvath, and Brad A. Myers. 2019. Towards
effective foraging by data scientists to find past analysis
choices. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI). ACM, 92.
DOI:http://dx.doi.org/10.1145/3290605.3300322

[19] M. B. Kery and B. A. Myers. 2018. Interactions for
untangling messy history in a computational notebook.
In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 147–155. DOI:
http://dx.doi.org/10.1109/VLHCC.2018.8506576

[20] Mary Beth Kery, Marissa Radensky, Mahima Arya,
Bonnie E. John, and Brad A. Myers. 2018. The story in
the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI). ACM, Article 174, 11 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173748

[21] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian E Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout,
Sylvain Corlay, and others. 2016. Jupyter Notebooks: A
publishing format for reproducible computational
workflows. In ELPUB. 87–90.

[22] Sean Kross and Philip J. Guo. 2019. Practitioners
teaching data science in industry and academia:
Expectations, workflows, and challenges. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI). ACM, 1–14. DOI:
http://dx.doi.org/10.1145/3290605.3300493

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 11

http://dx.doi.org/10.1109/VLHCC.2017.8103446
http://dx.doi.org/10.1145/3359619.3359744
http://dx.doi.org/10.1145/2047196.2047205
http://dx.doi.org/10.1109/SECSE.2009.5069155
http://dx.doi.org/10.1145/3290605.3300500
https://github.com/jupyter/surveys/blob/master/surveys/2015-12-notebook-ux/analysis/report_dashboard.ipynb
https://github.com/jupyter/surveys/blob/master/surveys/2015-12-notebook-ux/analysis/report_dashboard.ipynb
https://github.com/jupyter/surveys/blob/master/surveys/2015-12-notebook-ux/analysis/report_dashboard.ipynb
http://dx.doi.org/10.1109/TVCG.2012.219
http://dx.doi.org/10.1145/3290605.3300322
http://dx.doi.org/10.1109/VLHCC.2018.8506576
http://dx.doi.org/10.1145/3173574.3173748
http://dx.doi.org/10.1145/3290605.3300493

[23] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi.
2017. Micro-versioning tool to support experimentation
in exploratory programming. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems (CHI). ACM, 6208–6219. DOI:
http://dx.doi.org/10.1145/3025453.3025597

[24] Michael Muller, Ingrid Lange, Dakuo Wang, David
Piorkowski, Jason Tsay, Q. Vera Liao, Casey Dugan,
and Thomas Erickson. 2019. How data science workers
work with data: Discovery, capture, curation, design,
creation. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI). ACM,
Article 126, 15 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300356

[25] B. A. Myers. 1986. Visual programming, programming
by example, and program visualization: A taxonomy. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI). ACM, 59–66.
DOI:http://dx.doi.org/10.1145/22627.22349

[26] Brad A. Myers. 1998. Scripting graphical applications
by demonstration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI). ACM, 534–541. DOI:
http://dx.doi.org/10.1145/274644.274716

[27] Netflix. 2018. Part 2: Scheduling Notebooks at Netflix.
(2018). https://medium.com/netflix-techblog/
scheduling-notebooks-348e6c14cfd6

[28] Anthony J. Onwuegbuzie and Nancy L. Leech. 2007.
Validity and qualitative research: An oxymoron?
Quality & Quantity 41, 2 (01 April 2007), 233–249.
DOI:http://dx.doi.org/10.1007/s11135-006-9000-3

[29] F. Perez and B. E. Granger. 2007. IPython: A system for
interactive scientific computing. Computing in Science
Engineering 9, 3 (May 2007), 21–29. DOI:
http://dx.doi.org/10.1109/MCSE.2007.53

[30] Fernando Perez and Brian E Granger. 2015. Project
Jupyter: Computational narratives as the engine of
collaborative data science. Retrieved September 11, 207
(2015), 108.

[31] F. Perez, B. E. Granger, and J. D. Hunter. 2011. Python:
An ecosystem for scientific Computing. Computing in
Science Engineering 13, 2 (March 2011), 13–21. DOI:
http://dx.doi.org/10.1109/MCSE.2010.119

[32] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P.
Ivanov, J. Frederic, and M. Bussonnier. 2014. The
Jupyter/IPython architecture: A unified view of
computational research, from interactive exploration to
communication and publication. AGU Fall Meeting
Abstracts (Dec. 2014), H44D–07.

[33] B. M. Randles, I. V. Pasquetto, M. S. Golshan, and C. L.
Borgman. 2017. Using the Jupyter Notebook as a tool
for open science: An empirical study. In 2017
ACM/IEEE Joint Conference on Digital Libraries
(JCDL). 1–2. DOI:
http://dx.doi.org/10.1109/JCDL.2017.7991618

[34] Adam Rule, Aurélien Tabard, and James D. Hollan.
2018. Exploration and explanation in computational
notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI). ACM,
Article 32, 12 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173606

[35] Johnny Saldaña. 2009. The Coding Manual for
Qualitative Researchers. SAGE Publications.

[36] Helen Shen. 2014. Interactive notebooks: Sharing the
code. Nature News 515, 7525 (2014), 151.

[37] April Yi Wang, Anant Mittal, Christopher Brooks, and
Steve Oney. 2019. How data scientists use
computational notebooks for real-time collaboration.
Proceedings of the ACM on Human-Computer
Interaction (CSCW) 3 (2019), 1–30.

[38] Aruliah D.A. Brown C.T. Hong N.P.C. Davis M. Guy
R.T. Haddock S.H. Huff K.D. Mitchell I.M.
Plumbley M.D. Wilson, G. and B. Waugh. 2014. Best
practices for scientific computing. PLoS Biology 12, 1
(2014), e1001745.

[39] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2018.
Design exposition with literate visualization. IEEE
Transactions on Visualization and Computer Graphics
25, 1 (2018), 759–768.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 600 Page 12

http://dx.doi.org/10.1145/3025453.3025597
http://dx.doi.org/10.1145/3290605.3300356
http://dx.doi.org/10.1145/22627.22349
http://dx.doi.org/10.1145/274644.274716
https://medium.com/netflix-techblog/scheduling-notebooks-348e6c14cfd6
https://medium.com/netflix-techblog/scheduling-notebooks-348e6c14cfd6
http://dx.doi.org/10.1007/s11135-006-9000-3
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2010.119
http://dx.doi.org/10.1109/JCDL.2017.7991618
http://dx.doi.org/10.1145/3173574.3173606

	Introduction
	Study Design
	Study 1: Field Observations and Exploratory Interviews
	Study 2: Confirmatory Surveys

	Pain Points of Using Notebooks
	Setup
	Explore and Analyze
	Manage Code
	Reliability
	Archival
	Security
	Share and Collaborate
	Reproduce and Reuse
	Notebooks as Products

	Survey Results
	Design Opportunities
	Refactoring
	Deploying to Production
	History
	Long-running Computations

	Related Work
	How Data Scientists Use Notebooks
	Data Scientist Practices
	Tools for Computational Notebooks

	Limitations
	Conclusion
	References

