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ABSTRACT 
Computational notebooks—such as Azure, Databricks, and 
Jupyter—are a popular, interactive paradigm for data scien-
tists to author code, analyze data, and interleave visualiza-
tions, all within a single document. Nevertheless, as data 
scientists incorporate more of their activities into notebooks, 
they encounter unexpected difficulties, or pain points, that 
impact their productivity and disrupt their workflow. Through 
a systematic, mixed-methods study using semi-structured in-
terviews (n = 20) and survey (n = 156) with data scientists, 
we catalog nine pain points when working with notebooks. 
Our findings suggest that data scientists face numerous pain 
points throughout the entire workflow—from setting up note-
books to deploying to production—across many notebook 
environments. Our data scientists report essential notebook 
requirements, such as supporting data exploration and visual-
ization. The results of our study inform and inspire the design 
of computational notebooks. 
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INTRODUCTION 
Computational notebooks are an interactive paradigm for com
bining code, data, visualizations, and other artifacts, all within
a single document [21, 36, 32, 30]. This interface, essentially,
is organized as a collection of input and output cells. For exam
ple, a data scientist might write Python code in an input code
cell, whose result renders a plot in an output cell. Although
these cells are linearly arranged, they can be reorganized or
executed in any order. The code executes in a kernel—the
computational engine behind the notebook. 

his interactive paradigm has made notebooks an appealing
choice for data scientists, and this demand has sparked multi
ple open source and commercial implementations, including
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Azure,1 Databricks,2 Colab,3 Jupyter,4 and nteract.5 While 
originally intended for exploring and constructing computa-
tional narratives [29, 31], data scientists are now increasingly 
orchestrating more of their activities within this paradigm [33]: 
through long-running statistical models, transforming data at 
scale, collaborating with others, and executing notebooks di-
rectly in production pipelines. But as data scientists try to do 
so, they encounter unexpected difficulties—pain points—from 
limitations in affordances and features in the notebooks, which 
impact their productivity and disrupt their workflow. 

To investigate the pain points and needs of data scientists 
who work in computational notebooks, across multiple note-
book environments, we conducted a systematic mixed-method 
study using field observations, semi-structured interviews, and 
a confirmation survey with data science practitioners. While 
prior work has studied specific facets of difficulties in note-
books [24, 17], such as versioning [18, 19] or cleaning unused 
code [13, 34], the central contribution of this paper is a taxon-
omy of validated pain points across data scientists’ notebook 
activities. 

Our findings identify that data scientists face considerable 
pain points through the entire analytics workflow—from set-
ting up the notebook to deploying to production—across 
many notebook environments. While our participants reported 
workarounds, these were ad hoc, required manual interven-
tions, and were prone to errors. Our data scientist report their 
key needs are support for deploying notebooks to production 
and scheduling time-consuming batch executions as well as 
under-the-hood software engineering support for managing 
code and history. Our findings further our understanding of 
requirements for supporting data scientists’ day-to-day ac-
tivities, and suggest design opportunities for researchers and 
toolsmiths to improve computational notebooks and streamline 
data science workflows. 

STUDY DESIGN 
Our investigation consisted of two studies. Study 1, a mix of 
complementary field observations and interviews, investigates 
the difficulties that data scientists face in their day-to-day 
activities. Study 2 confirms our findings from Study 1 through 
a survey of 156 data scientists. 

1https://notebooks.azure.com/ 
2https://databricks.com/product/ 
3https://colab.research.google.com/ 
4https://jupyter.org/ 
5https://nteract.io/ 
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Table 1: Field Study and Interview Participants 

FIELD STUDY PARTICIPANTS 
ID ROLE INDUSTRY EXP. (YRS) NOTEBOOKS LANGUAGES 

FP1 Data Scientist Advertising 5 Jupyter, RStudio Python, R 
FP2 Data Scientist Cloud Computing 3 Jupyter, VS Code Python 
FP3 Data Scientist Machine Learning 15 Jupyter Python 
FP4 Data Engineer Machine Learning 3 Jupyter Python 
FP5 Data Engineer Data Services 2 Jupyter, AzureML Python 

INTERVIEW PARTICIPANTS 
ID ROLE INDUSTRY EXP. (YRS) NOTEBOOKS LANGUAGES 

IP1 Cloud Soln. Architect Cloud Computing 4 Jupyter, Zeppelin Python 
IP2 Data Scientist Business Analytics 3 Jupyter, Databricks Python 
IP3 Data Scientist Cloud Computing 4 Jupyter, Databricks Python 
IP4 Data Scientist Security 10 Jupyter Python 
IP5 Data Scientist Cloud Computing 4 Jupyter Python 
IP6 Soln. Architect Development Tools 4 Jupyter, Colab Python 
IP7 Database Architect Environmental Consulting 6 Jupyter Python, Julia 
IP8 Data Analyst Entertainment 7 Jupyter, iPython Python 
IP9 Software Engineer Manufacturing 8 Mupad C# 
IP10 Data Analyst Finance 5 Proprietary Python 
IP11 Consultant Finance 9 Jupyter, Databricks Python 
IP12 Consultant Finance 15 Jupyter Python 
IP13 Data Scientist Security 10 Jupyter, Colab Python, R 
IP14 Software Engineer Cloud Computing 9 Databricks Python 
IP15 Data Scientist Development Tools 5 Jupyter, Databricks Python, R 

Study 1: Field Observations and Exploratory Interviews 
To understand when and why data scientists experience dif-
ficulties with notebooks, we conducted field observations to 
observe data scientists in situ. We complemented these obser-
vations with interviews with professional data scientists to get 
a broader picture. 

Recruitment. For our field observations, we recruited five 
professional data scientists from within Microsoft—a large, 
multinational, data-driven organization—using our internal 
address book to sample data scientists with the title of “Senior” 
(or higher) and having at least two years of experience in 
the organization. For our interviews, we recruited 15 data 
scientists having at least two years of data science experience 
from multiple companies and industries. 

Participants. Participants reported working in a variety of 
industries and roles, including Data Analyst, Data Scientist, 
and Data Engineer (Table 1). Participants reported 6.6 years 
of experience (sd = 3.7). Participants primarily reported using 
Python with Jupyter notebooks. 

Field study protocol. We observed data scientists who primar-
ily work in computational notebooks as they performed their 
regular data science activities. All sessions were conducted 
with a single observer and a single data scientist in the data 
scientist’s office. Sessions were scheduled for one hour, with 
45 minutes of observation and 15 minutes of retrospective 
interviews. During the session, we recorded their screens and 
audio through screen capture software and a hand-held audio 
recorder. We asked participants to think-aloud as they worked, 

and the observer took in-situ field notes as the data scientists 
conducted their work. During the retrospective interview, the 
observer used these notes to probe further about difficulties 
observed or mentioned during the session. 

Interview study protocol. We conducted semi-structured inter-
views remotely through online communication software, and 
recorded these interviews. The questions roughly followed 
this organization: brief questions regarding what they do as a 
data scientist and what activities they conduct using notebooks, 
followed by more detailed conversation about why they prefer 
to use notebooks as well as any difficulties when using the 
notebooks. Interviews were about 30-45 minutes long. 

Informed consent. In both field observations and interviews, 
participants signed a consent form prior to conducting the 
study, in accordance with our institutional ethics board. Partic-
ipation in the study was voluntary and participants received 
no compensation. 

Analysis. We transcribed the audio for the field observa-
tions and interviews. The first and last author collaboratively 
analyzed these transcripts through an inductive, open cod-
ing process using the ATLAS.ti qualitative analysis software. 
First, we segmented the transcripts and applied descriptive 
codes [35], that is, assigning short phrases or labels, to these 
segments. We merged and split descriptive codes as neces-
sary, looking for similarity in challenging activities that data 
scientists experienced when working in the notebook. Next, 
we performed axial coding, grouping similar codes and ana-
lyzing them to identify higher-level and cross-cutting themes, 
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which we termed pain points. The collaborators met frequently 
over several weeks to discuss, examine, and refine codes and 
themes. 

Validity of qualitative coding. To support interpretive validity, 
we recruited two external raters, both data scientists. We 
randomly sampled five statements from each of the nine pain 
points as identified in our inductive coding process. Using 
Table 2, we asked the raters to independently categorize each 
statement and assign it to a single pain point that best reflected 
that statement. We achieved a Cohen’s Kappa just below 0.8, 
with disagreement from our external raters primarily because 
some statements concern multiple pain points. 

Study 2: Confirmatory Surveys 
To triangulate, validate, and increase the credibility of our 
qualitative field observations and interviews, we conducted a 
survey with a broader population of data scientists. 

Survey protocol. Our survey consisted of demographic ques-
tions about the respondents’ number of years of data science 
experience, the computational notebooks they use regularly, 
the programming languages they use regularly within these 
notebooks (multi-option question, with “other" as an answer 
choice), and how frequently they use computational notebooks 
for their data science activities (5-point Likert-type item fre-
quency scale, “More than 5 times a week,” “4-5 times a week,” 
“2-3 times a week,” “once a week,” and “less than once a 
week.” 

Using the findings of our qualitative analysis of field observa-
tions and interviews, 20 activities were drawn and presented 
as a series of questions using a 5-point Likert-type scale for 
difficulty and importance. All questions in the survey were 
optional. 

To evaluate if our field observations and interviews reached 
theoretical saturation, we asked respondents to indicate if there 
were any other difficulties with using computational notebooks 
that we missed. 

Informed consent. Our survey included instructions for in-
formed consent, in accordance with our institutional policies. 

Recruitment. We recruited participants by e-mail through in-
ternal address book contacts across multiple organizations, 
through social media such as Twitter and LinkedIn, and 
through data science mailing lists. We also asked respondents 
to forward the survey to other data scientists. Respondents did 
not receive compensation for completing the survey. 

Respondents. 156 data scientists from various companies 
responded to our survey, after discarding eight blank responses. 
Respondents had an average of 5.3 years of experience (sd = 
3.9). 53% of our respondents used notebooks “more than 
5 times a week” while 16.6% of them used notebooks once 
or less than once a week. 98% of our respondents primarily 
used Python in notebooks, 30% used R, and 14.7% used Scala. 
Respondents also reported using Java, JavaScript, Spark, and 
SQL. 84% used Jupyter notebooks and 33% used Jupyter Labs. 
36% reported using Databricks and 28% use Azure Notebooks. 

Analysis. We computed descriptive statistics and plotted the 
survey responses for difficulty and importance. We manually 
inspected the responses for other challenging activities that 
we missed. Respondents rarely populated this response. In all 
cases, the answers were additional details for already-covered 
activities (“restructuring the code” for the activity of “refactor-
ing” and “using loops to create multiple plots” for “visualizing 
data and models”) or confirmational responses (“looks like 
you’ve covered everything”). 

PAIN POINTS OF USING NOTEBOOKS 
We identified nine categories of pain points in computational 
notebooks, across the data scientists’ workflow (Table 2). 

Setup 
Difficulties with notebooks happen as soon as the data scientist 
creates a new notebook. 

Loading data. To explore data, it first has to be pulled into 
the notebook. That’s not always easy, especially when the 
data needs to be shuffled back and forth between multiple 
sources and platforms (IP10, IP11, IP14, IP15, FP1). This 
process quickly becomes a tortuous, multi-step adventure that 
requires repeatedly “going to separate cloud instances to bring 
down the data locally, taking that to a local file, and uploading 
it back to the cloud” (IP15). Although some data libraries 
exist (for example, psycopg2)6, they are nontrivial to use, 
and data scientists must be aware that they exist and remember 
how to use them. Unsurprisingly, some of our data scientists 
relied on others for help—IP10 had a developer build magic 
commands in the notebook that “triggered functions behind the 
notebook” on their behalf and provided them with an easier-to-
use interface to connect to their commonly-used data sources. 

Sometimes, when working with large data sets, the “notebook 
tends to crash a lot; the kernel dies and that causes frustration” 
(IP13). In contrast to IDEs, the client/server nature of note-
books complicates setup, and the difficulties of working with 
large data within a web browser are amplified. In such cases, 
this often “requires getting a lot of data engineering resources 
just to be able to run something that’s supposed to be a daily 
job. The stack to do something pretty simple is pretty heavy” 
(IP15). But not all data scientists have dedicated developers or 
data engineers to help them. 

Cleaning data. While clean data makes “a big difference in the 
overall model output” (IP15), it’s seldom readily available. Ef-
forts to clean data are mostly clerical, and there’s “no mystery— 
it’s just time consuming” (IP1). To avoid repetitive cleaning 
data scientists create “a bunch of routines” (IP11). But these 
routines still require modification and manual copying-and-
pasting across notebooks (IP4, IP9, IP15)—an error-prone 
process. 

Explore and Analyze 
Although notebooks profess to allow “quick and dirty work 
and exploration” (IP1, IP3, IP4, IP6, IP8, IP11 , IP12, IP13, 
IP14), data scientists tell us that this isn’t always the case. 

6http://initd.org/psycopg/ 
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Table 2: Summary of Pain Points in Computational Notebooks 

PAIN POINT DESCRIPTION EXAMPLE 

Setup Loading and cleaning data from multiple sources 
and platforms is a tortuous, multi-step, manual 

“If you do a lot of data loading and pre-processing 
always re-loading the data is time consuming” (IP2). 

process. 

Explore and 
Analyze 

An unending cycle of copy-paste and tweaking bits 
of code made worse by feedback latency and kernel 
crashes. 

“I need immediate feedback, like when I am testing 
slight changes in the model. I don’t want to execute 
everything again” (IP1). 

Manage Code Managing code without software engineering sup-
port results in “dependency hell” with ad hoc 
workarounds that only go so far. 

“Debugging is a horrible experience, copying the 
code over to do the debugging outside [in the IDE], 
and copying it back” (IP8). 

Reliability Scaling to large datasets is unsupported, causing 
kernel crashes and inconsistent data. 

“Disconnects between browser-server or server-
kernel introduce all sorts of lack-of-reliability prob-
lems” (IP6). 

Archival Preserving the history of changes and states within 
and between notebooks is unsupported, leading to 
unnecessary rework. 

“The thing is using any kind of versioning mechanism 
for notebooks is just a complete and utter failure” 
(IP2). 

Security Maintaining data confidentiality and access control 
is an ad hoc, manual process where errors can leak 
private client data. 

“We are missing a more private way of handling cre-
dentials. I don’t want client credentials be visible to 
others” (IP13). 

Share and 
Collaborate 

Sharing data or parts of the notebook interac-
tively and at different levels—demo/reports, re-
view/comment, collaborative editing—is generally 
unsupported. 

“There are cases where somebody is asking you to 
review/comment, while other times to go collaborate” 
(IP6). 

Reproduce and 
Reuse 

Replicating results or reusing parts of code is infea-
sible because of high levels of customization and 
environment dependencies. 

“The fact that somebody could run a notebook on 
organization A’s service but not on organization B’s 
is a serious problem” (IP6). 

Notebooks as 
Products 

Deploying to production requires significant 
cleanup and packaging of libraries—DevOps skills 
that are outside the core skill set of data scientists. 

“Once the code gets a certain level of maturity, it’s 
very difficult to transition that to production code. 
Everything has to translate to functions and classes” 
(IP15). 

Modeling. Building models take time. Not only is “[having 
the system] learn the model itself very time consuming” (IP7), 
it also “involves a lot of complexity” just to build them (IP3). 
Getting to the right models require many iterations, but data 
scientists don’t get “immediate feedback” so that they can 
quickly make adjustments (IP1, IP2). Instead, data scientists 
like IP1 have to wait a long time to check if the execution 
was successful, and they can’t interrupt the process to evaluate 
alternatives in the meantime. Worse, if their model produces 
an error, they have to “execute everything again” (IP1). 

Visualizing. Data scientists use visualizations—primarily 
plots—to quickly see how their code refinements modify their 
data (IP1, IP7, IP8, IP6, IP12, IP13). But it’s hard to cus-
tomize the plots when the data scientist isn’t happy with the 
result; these frustrations led our data scientists to continuously 
copy-paste or tweak bits of code (IP4, IP12, IP15) to tailor 
the visualizations to their needs. In some cases, the output 
cells themselves are a hindrance—“there’s a lot of things just 
limited by the footprint of the notebook. Everything is in a cell, 
and the chart is limited by the boundaries and real estate of the 

notebook” (IP15). In these situations, data scientists end up 
manually exporting their code and data and redoing the work 
in exploratory data analysis tools outside of the notebook— 
“integration with tools like Tableau, or even API level access to 
them, would reduce all this copying and pasting” (IP8). Since 
notebooks are intended for facilitating data exploration, it is 
unfortunate that visualization continues to be difficult within 
some notebook environments. 

Iterating. Having to iterate between modeling and visual-
ization, that is, “changing some methods slightly and trying 
different things” (IP1), is the norm. Of course, supporting iter-
ation is one of the core purposes of computational notebooks. 
Notebooks should be an ideal environment for iterating, but 
like we saw in setup, churning through code introduces many 
of the same difficulties when code assistance isn’t available: 
the data scientist ends up “having to go through the same 
ceremony to do even the most basic modeling task” (IP8), 
finding relevant packages, and deleting now-unused code (IP2, 
IP8, IP9, IP11, FP3). One option is to switch to an IDE, but 
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this requires constantly shuffling between the IDE and the 
notebook. 

Manage Code 
Although managing and working with code is a fundamental 
activity in the computational notebook paradigm, data sci-
entists told us about code-related activities they found to be 
challenging. 

Writing code. Having to write code—particularly due to lack 
of code assistance—is something that IP7 “hated the most” 
about working in notebooks. To be efficient, they had “to know 
all the function names and class names correctly and have 
another browser open to search for help and documentation” 
(IP7, FP2). Coding in notebooks is even more difficult using 
new libraries since it’s not possible “to explore the API and 
functions” from within the notebook (IP8). Practically, IP8 
argues, “anyone who tries to use notebooks has to start off 
with an IDE and then graduate into a notebook.” 

Managing dependencies. Having to manage packages and 
library dependencies within the notebook is, to put it mildly, 
a “dependency hell” (IP7). Notebooks provide little-to-no-
support for finding, removing, updating, or identifying depre-
cated packages (IP3, IP7, IP9, IP11, IP12, IP13, IP15). Often, 
discovering what packages are even installed isn’t accessible 
from the notebook environment, requiring data scientists to 
plod over to their command-line terminal and use commands 
like conda and pip to manage their environment (IP3). 

Debugging. Feedback about debugging in notebook was 
mixed. Some data scientists applauded the notebook’s abil-
ity to quickly diagnose errors (IP2, IP5, IP14), while others 
maintained that it’s “a horrible experience” (IP6, IP8, IP15). 

On one hand, the cell-oriented structures make debugging 
“fairly instantaneous and straightforward” because it allows 
“splitting up functions into different cells and then slowly stitch-
ing them together until you get something that works right” 
(IP2). In the case of errors, notebooks at least usually retain the 
output states of previously executed cells. On the other hand, 
the only way to debug in most notebooks is through the use of 
print statements—many computational notebook don’t let 
data scientists “peek inside variables and change them” (IP7). 
Due to out-of-order execution, typical IDE affordances like 
breakpoints would make it difficult to “follow the code flow” 
(IP2), and notebooks likely require different affordances to 
support debugging in this exploratory context (for example, 
data introspection). 

Testing. Tests are another mechanism to troubleshoot issues 
in notebooks, but because there’s no standard way to test 
notebooks, different data scientists end up following different 
approaches (IP1, IP3, IP4, IP5, IP6, IP9, IP13, FP1). For 
example, while IP13 and FP1 wrote test cases within the same 
notebook, IP3 and IP4 used dedicated test notebooks to vali-
date their functionality. 

Reliability 
One problem with computational notebooks is that executing 
them “isn’t particularly reliable” (IP6). The other is that they 
don’t scale to big data. 

Executing notebooks. If the notebook kernel crashes dur-
ing the middle of an operation, or the data scientists gets 
disconnected—this can result in putting the notebook or the 
data in an inconsistent state. For example, when inserting 
many records into a database, getting disconnected from the 
notebook can result in only partial records being written to a 
data store (IP10, FP4). Inconsistent state can be hard to detect 
because there’s “no transparency in terms of understanding 
how the process is being executed on the kernel” (IP2). And 
some notebooks “get very large due to people abusing them; 
as notebooks get larger, the reliability falls” (IP6). Sometimes 
it’s easiest to just restart and run the whole notebook again 
(IP8, IP10, IP15). 

Scaling to big data. A limitation to iterating is that notebooks 
“can only handle so much data in the notebooks” (IP8, IP10). 
“Although notebooks could be used for lightweight extracting, 
transforming, and loading data (ETL), for heavyweight ETL 
we still have to rely on the Java pipelines. The data is way 
too huge for notebooks to handle” (IP6). Notebooks introduce 
a tension between balancing the needs of quick iteration and 
working with large data (IP4). 

A key reason was that reliable kernel connections were hard 
to maintain and resulted in kernel crashes (IP1, IP2, IP6, IP10, 
IP13). These crashes were often a result of the notebooks’ 
limited processing power, which can’t handle large notebooks 
or big data loads. 

Archival 
While some exploratory notebooks have a relatively short shelf 
life as “playgrounds” (IP5), other notebooks have longer life-
times. For the latter, data scientists need support for versioning 
and searching notebooks. 

Versioning. There’s “a lot of room for improvement when we 
want to check notebooks into source control, such as being able 
to visualize the differences between the last version and the 
new version” (IP3). Using traditional versioning mechanisms 
intended for source code are “just a complete and utter failure” 
(IP2) when versioning notebooks. IP2 continues, “because 
all the outputs are saved within the notebook, there’s a lot of 
state that’s bundled in the file.” In traditional source control 
systems, all of these changes appear as spurious differences, 
making it difficult to identify the actual changes between the 
notebooks—“there’s just a a lot of mess” (IP2, FP2). To be 
effective, version control systems need special-handling for 
computational notebooks. Moreover, since “the history and 
execution order of the notebook cannot be tracked by version 
control systems” (IP2, IP15), committing the notebook to 
version control doesn’t mean that you’ll be able to successfully 
run the notebook. 

Searching. Data scientists create a lot of notebooks, and these 
notebooks are “rarely maintained or given useful names, which 
make it hard to know what’s saved in these notebooks” (IP9). 
Since the “number of notebooks grows quickly” (IP7), fold-
ers and files names “become disorganized very fast. It’s hard 
to remember what is saved in these things, so they’re all just 
Untitled-1 or Untitled-2” (IP9). All of which make “find-
ing and navigating to the intended file difficult” (IP14). 
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Security 
Securing notebook was difficult along two dimensions: avoid-
ing unintentional data leaks and managing access to the note-
books. 

Securing sensitive data. Securing data required our data sci-
entists to perform “additional suppression and transformation 
operations,” which is both time consuming and computation-
ally costly (IP11). Adding security into the mix “slows down 
the whole [data science] process” (IP11). In some cases, it’s 
the transformation code itself that needs to masked as it can 
reveal patterns of the underlying suppression mechanisms. But 
notebooks don’t provide a way to “lock the functionality of 
a particular cell so that it’s not visible to others,” while still 
allowing them to execute the code (IP13). For certain types 
of analysis, the transformed data had to be again “unmasked,” 
which introduced even more steps into the data science process. 
Finally, copying or exporting desensitized data over to external 
platforms can be “dangerous, because if you’re copying data 
and screw up something,” this data can be inadvertently leaked 
(IP8). 

Controlling access. In some notebook environments, it’s not 
possible to finely control access to the notebooks, and “the 
only way to share notebooks securely is to upload notebooks 
to secure team drives” (IP6, IP10, IP11, FP5). For example, 
data scientists aren’t able to specify the types of activities that 
others can perform within a notebook, such as making the 
notebook “read-only or only allowing comments” (IP12) or 
restricting notebook to “only run but not modify cells,” or 
modify cells but not run (IP10, IP13). 

Share and Collaborate 
Sharing and collaboration is “messy” (IP5) and “not straight-
forward” (IP2) but “very often requested” (IP6). 

Sharing supporting artifacts. “Sharing a notebook is kind 
of useless without the underlying data” (IP9). But doing so 
means that the recipient has to be able to have access to the 
database, and the correct data within it (IP9, IP15). In ad-
dition, data scientists also need to “match the environment 
settings” of the notebook (IP3, IP15), for example, by follow-
ing manually-written instructions. Alternatively, the sender 
can create separate “requirements files” which can be read 
by package installation programs to automatically install the 
necessary dependencies (IP15). Unfortunately, this approach 
breaks the “single file” metaphor of notebooks, because in-
formation needed to run the notebook is decoupled from the 
notebook itself. 

Sharing with non-data scientists. Data scientists need to 
present their notebooks to customers and other non-data scien-
tists. They do so in three ways: interactively (where the data 
scientists execute the notebook directly to explain the results 
to the audience), statically (for the audience to look at the 
analysis and results at a later time/offline), or as a read-only 
notebook (for non-data scientists to leave comments or notes 
on the notebook for the data scientist to review at a later time). 

When interactively sharing notebooks through live demos, data 
scientists desired to execute the notebook interactively without 
exposing code, since the code isn’t meaningful for most of 

the audience. Data scientists wanted the ability to temporarily 
“collapse code and show only the visualizations and markdown” 
(IP3, IP7, IP15). 

Data scientists also shared their results by exporting the con-
tent of notebooks to other formats, such as presentations or 
printable reports. But because visualizations and data in note-
books “spit out a lot of information, it’s hard to create nice 
looking reports” (IP4). 

Finally, some data scientists wanted stakeholders to be able to 
leave comments on the notebooks without being able to run 
the cells. “Giving the non-technical users an opportunity to 
provide feedback on the notebook itself by leaving comments 
can be extremely valuable” (IP3, IP6). 

Editing collaboratively. “Collaborating in real-time with mul-
tiple users on a single notebook is super powerful” (IP6). How-
ever, collaboration is not possible in many notebook environ-
ments, which makes it challenging to “develop side-by-side 
with somebody, especially remotely” (IP3). 

Reproduce and Reuse 
Data scientists reproduce notebooks to verify how a result was 
computed or obtained. They also reuse and adapt code from 
existing notebooks to save time. 

Reproducing. “Reproducibility is really ensuring that the set 
of software you used to produce a result is exactly the same 
the next time you try to reproduce the same result” (IP6). “The 
only way another person can run the notebook is if they’re 
able to match all the environment settings” (IP15). Another 
challenge to reproducibility is that data scientists customize 
notebooks, for example, by using extensions that they install 
on their local notebook environment. Depending on the exten-
sion, these notebooks can fail to run if they are not available in 
the other notebook environment (IP2, FP5). Crucially, “there’s 
no compatibility at all between extensions in different note-
book implementations. There’s absolutely no standard for how 
these extensions work. So chances are it’s not gonna work. 
That’s a serious problem” (IP6). 

Reusing and adapting. Data scientists reuse notebooks, for ex-
ample, in situations where “the data source can change, but the 
underlying logic would be the same” (IP11). Unfortunately, 
even seemingly simple reuse can become more complicated 
than expected, such as when the “earlier notebook uses abso-
lute paths” (IP5), when the “cells have no designated format 
or function” (IP1) and can’t be easily isolated, and when there 
are complex dependencies to bring into the new notebook (IP3, 
IP11, FP4). 

Notebooks as Products 
Notebooks shine when performing quick, interactive, ex-
ploratory analysis, but these features also encourage sloppy 
coding practices that make it difficult to transition notebooks 
to production. 

There are two common pathways to production. First, the 
data scientist can run the notebook directly, but with larger 
data and with longer-running computations. Second, they can 
package the code in the notebook into a standalone artifact 
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that is decoupled from the original notebook. Neither option 
is particularly pleasant. 

Scheduling long-running computations through the notebook. 
Running long-running computations in notebooks provides 
no feedback on progress; while the computation is running, 
data scientists lose all interactivity in their notebook (IP1, IP8). 
Data scientists would prefer that, “when the process is done, it 
automatically creates a notification” (IP15). At least this way, 
the data scientist knows that they can go back to the notebook 
(IP4, IP5, IP14). While this option is more convenient, data 
scientists reported reliability issues when scaling to big data. 

Packaging as a standalone artifact. Because “notebooks en-
courage coding in cells, it’s not software-engineering friendly” 
(IP15). During exploration and analysis, we found that data 
scientists often created quick and dirty code, but “code in pro-
duction software is very different from code in the notebook” 
(IP15). To make matters worse, cells in the notebook don’t 
have to execute linearly, and the desired execution order isn’t 
stored explicitly with the notebook (IP6, IP15, FP2). For these 
reasons, “it’s very difficult and painful to transition notebooks 
to production code without doing a full rewrite” (IP4, IP14, 
IP15). 

SURVEY RESULTS 
Our qualitative results from field observations and interviews 
show that data scientists’ work is rife with pain points. But, 
which of the activities within these pain points are critical and 
obstruct notebook usage? Figure 1 and Figure 2 show a distri-
bution of responses for importance and difficulty, respectively. 
The distribution of importance shows that all activities are at 
least moderately important (that is, median of responses were 
above 3) to data scientists. 

Since all activities are challenging for some data scientists, 
we focus on high-impact activities when discussing design 
opportunities in the next section. These are activities that 
respondents marked (by median) as at least “difficult” and 
“important,” across multiple types of notebooks. The four 
activities (and the associated pain points) under this criteria are: 
viewing and exploring history (archival), refactoring code in 
notebooks (manage code), scheduling long-running processes 
for automatic execution (notebooks as products), and easily 
deploying notebooks as products (notebooks as products). 

Another lens through which we can prioritize activities is to 
look at low-impact activities. These are activities that are at 
least “important” and “easy” or “very easy.” In other words, 
these activities are already well supported in computational 
notebooks, so notebook developers should avoid impacting 
these activities as they introduce new capabilities in their note-
books. These activities (and pain points) are: load (setup), 
explore (explore and analyze), and visualize data (explore and 
analyze), debug (manage). It’s also notable that data scientists 
find both local and remote notebook environments important 
to their day-to-day activities. 

DESIGN OPPORTUNITIES 
The pain points in our taxonomy suggest both understudied 
research areas and design opportunities for improving compu-

tational notebooks for data scientists. We first discuss design 
opportunities for high-impact activities, followed by design 
opportunities in more niche data science scenarios. Encourag-
ingly, notebook developers are already targeting some of these 
design opportunities—but support thus far is piecemeal, with 
data scientists having to shuffle across different computational 
notebook environments. 

Refactoring 
When compared with traditional integrated development en-
vironments, such as Visual Studio Code7 or PyCharm8, our 
data scientists report that proper coding assistance within note-
books is almost non-existent. Familiar features like autocom-
pletion, refactoring tools, and live templates are often missing 
or do not function properly. Consequently, data scientists 
spend substantial time using online resources like Stack Over-
flow or documentation to help them code. Even when code 
snippets were available online, data scientists had to manip-
ulate and wrangle these snippets to fit within their existing 
code, introducing unnecessary clerical errors in the process. A 
short-term pathway is for toolsmiths to incorporate the famil-
iar coding assistance features of the integrated development 
environment and make them available within the notebook. 
A longer-term pathway is to leverage affordances unique to 
the computational notebook paradigm: the interplay between 
input code cells and graphical output cells enable new mixed-
initiative experiences like programming-by-example [9, 25] 
and programming-by-demonstration [4, 26, 11, 16, 8] within 
the notebook environment. For example, consider a data sci-
entist who writes some initial plotting code in an input cell 
that renders a plot in the output cell. With programming-by-
demonstration, the data scientist would be able to directly 
manipulate the plot through graphical affordances, and these 
manipulations could automatically update the corresponding 
code. 

In many ways, coding assistance is possibly even more im-
portant to data scientists than software engineers: for data 
scientists, coding is primarily a means to answer questions 
about their data, and not the core activity of interest. Lan-
guages such as R and Python are popular with data scientists 
because of their “swiss-army knife’ capabilities, but the flexi-
bility of these languages—for example, dynamic typing and 
reflection—make them difficult for static analysis tools to rea-
son about [6, 7]. For researchers, it’s important that we support 
the languages data scientists actually use, not the languages 
we wish they would use. 

Deploying to Production 
Deploying and adapting exploratory notebooks for production 
environments, such as customer-facing applications, requires 
data scientists to acquire expertise in a skill set that is well 
outside of their core, day-to-day responsibilities. While larger 
organizations have data engineering or software engineering 
teams to assist data scientists in deployment, in smaller or-
ganizations data scientists must take on these responsibilities 
themselves [1]. 
7https://code.visualstudio.com/ 
8https://www.jetbrains.com/pycharm/ 
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Integrate with tools (M=3)

Customize with extension (M=3)
Trace execution paths (M=3) 

Deal with sensitive data (M=3)
Multiple languages (M=3)

Very important (5)

Figure 1: Distribution of importance for activities, measured from 1 (Not important) to 5 (Very important). The median importance for each 
activity is reported as M=median. Activities highlighted in red boxes are high-impact activities (median importance=4, median difficulty=4). 
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Figure 2: Net stacked distribution of difficulty for activities, measured from 1 (Very easy) to 5 (Very difficult). The net stacked distribution 
removes the neutral option, and shows the skew between Difficult (red bars) and Easy (green bars). The median difficulty for each activity is 
reported as M=median. Activities highlighted in red boxes are high-impact activities (median importance=4, median difficulty=4). 

There are several opportunities to improve the data scientists’ 
user experience and productivity. First, the programming lan-
guages for data science—such as Python or R—are not often 
the same programming languages that are used in production 
environments—such as C++ or C#. Automated translation 
tools or runtime environments are one opportunity to help 
mitigate these challenges. In circumstances when using the 
data science programming language is suitable, the data scien-
tist must still clean up their notebook to remove unnecessary 
dependencies, dead-ends, and unused code in their exploration 
before exporting the notebook to a standalone script for exe-

cution in the production environments [14, 10]. Tools such 
as Papermill [27] are a step in the right direction: Papermill 
allows data scientists to directly deploy their notebook to a 
production environment. The tool enables “parameters” in 
the notebook; essentially, these parameters allow production 
systems to pass configuration options to the notebook, for 
example, the name of the data source to analyze. Still other 
promising directions can be found in computational notebook 
environments such as Databricks and Zeppelin. These envi-
ronments provide higher-level abstractions and make default 
decisions about complex configuration options on behalf of 
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the data scientist, simplifying the user experience for them. In 
short, data scientists desire push-button approaches to produc-
tionize their notebooks. 

History 
Due to the affordance of out-of-order execution in computa-
tional notebooks, it can quickly—both unintentionally and in-
tentionally—have an internal state that is different from the lin-
ear order of the notebook presented to the data scientist. This is 
one form of history-related pain point within a notebook. With-
out history support within the notebook, data scientists must 
painfully debug how their notebook entered the current state. 
As data scientists conduct exploration, build models, and eval-
uate multiple design options, they also introduce multiple note-
books into their environment, which they often manage in an 
ad-hoc way (for example, experiment_current.ipynb and 
experiment_old.ipynb). This is the other form of history-
related pain point between notebooks. Without support for 
easily finding the right information across notebooks, data 
scientists end up reimplementing functionality or using stale 
data because they lose track of their notebooks. 

In contrast to version control typically found in software en-
gineering systems (git), preserving the history of artifacts 
is also important to data scientists. Novel innovations in the 
notebook space are required to support these unique require-
ments. For example, Head and colleagues [13] found that 
data scientists do not want to spend up-front effort in man-
aging code versions or organizing their code, and that data 
scientists prefer automated approaches to version control man-
agement. Some notebook environments, such as Nextjournal9, 
attempt to address this need by automatically and periodically 
versioning the notebook, data, and full runtime environment. 

As computational notebooks use both text and visual medium, 
advanced tools and techniques are required that can easily 
differentiate changes (both text and visual) between different 
versions of notebooks. For example, Kery and colleagues [18] 
developed an experimental tool that complements existing ver-
sion control systems and allows the data scientist to visualize 
the history of individual cells, code snippets, markdown, and 
outputs. 

Finally, supporting annotations and comments in computa-
tional notebooks allows data scientists to catalog their thoughts 
and comments for decisions they’ve made in the notebook, 
essentially, a form of inline journaling. 

Long-running Computations 
The scale of data and computation increases as data scien-
tists incorporate more demanding activities into their computa-
tional notebooks. Activities previously offloaded to standalone 
scripts or jobs, like working with large datasets, are now rou-
tinely conducted within the notebook itself. These activities 
are enabled by big data libraries that are directly accessible 
in Python, such as tensorflow and keras, as well as through 
data connectors that give data scientists access to large data 
repositories from within the notebook. 

9https://nextjournal.com/ 

But large scale data means long-running computations, which 
often block operations in the underlying language kernel, cre-
ating tensions with the interactivity that data scientists expect 
from notebooks. For example, many data science libraries are 
synchronous, meaning that they block the data scientist from 
any other operations. And with streaming data—that is, data 
that is continuously generated by a data source—the program 
runs forever. 

To support these activities, notebook developers must support 
scalable computations as a first-class design goal in notebooks. 
In other words, computational notebooks should maintain the 
benefits of exploration, interactivity, debugging, and visualiza-
tion, irrespective of the size of the data. 

Potential opportunities include transaction support, which 
allows the data scientist to abort long-running cells and re-
vert to a safe state prior to executing the problematic cell. 
For streaming data, reactive notebooks such as BeakerX10 

and Tempe11 automatically update computations as new data 
becomes available in the notebook. However, enabling interac-
tivity and scaling requires careful design and introduces new 
challenges—in particular, these notebook models can exagger-
ate confusion data scientists already have with out-of-order 
execution. 

RELATED WORK 

How Data Scientists Use Notebooks 
We found two studies categorizing how data scientists use note-
books. Kery and colleagues [20] studied coding behaviors in 
computational notebooks, focusing on how data scientists kept 
track of variations they explored. Rule and colleagues [34] 
looked at notebook structure, findings tensions between explo-
ration and explanation in notebooks, and identifying reasons 
academic data scientists use notebooks—tracking provenance, 
reusing code, enabling replication, and presenting results. Our 
study differs in that we focus on pain points that professional 
data scientists have when working with computational note-
books. 

The Jupyter organization conducted a survey to identify what 
respondents liked about Jupyter notebooks, and what needs 
remain unaddressed. Our study confirmed some of their find-
ings [15] but disconfirmed others. For example, we also found 
that our respondents, for the most part, found it easy to explore 
and visualize in notebooks. However, our respondents did not 
find lack of debugging tools to be a substantial pain point. 
Our data scientists also reported that traditional version con-
trol solutions (like git) are not appropriate for computational 
notebooks, in contrast to the Jupyter survey. Moreover, our 
study systematically focuses on why certain activities are chal-
lenging across multiple computational notebook environments, 
using field observations and interviews. 

Data Scientist Practices 
Several studies investigated work practices of data scientists, 
although not specifically in computational notebooks. Kandel 

10http://beakerx.com/ 
11https://www.microsoft.com/en-us/research/project/tempe/ 
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and colleagues [17] described recurring pain points, outstand-
ing challenges, and barriers to adoption for visual analytic 
tools. Muller and colleagues [24] described how scientists, 
scholars, engineers, and others work with their data. Wilson 
and colleagues [38] recommended several general practices 
for working in computational notebooks, such as modulariz-
ing code, but the exploratory nature of computational note-
books disincentivize several of these practices. Hannay and 
colleagues [12] found that most scientists learn to develop 
and use software informally from their peers. Kery and col-
leagues [2] described exploratory programming—such as in 
computational notebooks—as a key practice for data scientists; 
they explored further the behaviors and characteristics of this 
work. Wang and colleagues [37] proposed design implications 
to better support collaborative editing, as current synchronous 
editing features result in interference and imbalanced partici-
pation. And Kross and colleagues [22] studied how to teach 
data science in industry and academia. 

Tools for Computational Notebooks 
Researchers have developed some tools to improve the experi-
ence of computational notebooks, mostly around version con-
trol and history [18, 23, 19], cleaning and annotating code [34, 
13], working with streaming data [5], and extending the note-
book model to make visualizations more central [39]. Our 
study finds several additional opportunities for improving the 
user experience in notebooks, not yet addressed by existing 
research. 

LIMITATIONS 
Any empirical study has its strengths and weaknesses. Field 
studies excel in capturing how participants actually work, but 
this data has to be collected opportunistically. Researchers 
need to be present at the time a participant is engaging in the 
relevant activity, in our case, working on computational note-
books. Interviews, by contrast, can be scheduled a priori and 
are easier to perform. However, they depend on participants’ 
memory and (sometimes) what participants think they should 
do and not necessarily what they actually do. Survey data is 
the easiest to collect, but it doesn’t offer the richness of the 
other two empirical methods. A mixed-method study, like 
ours, helps balance the strengths and weaknesses of different 
methods. 

Our study focused primarily on professional data scientists 
who use notebooks in their day-to-day work activities. Con-
sequently, our findings may not generalize to other types of 
notebook users, such as machine learning enthusiasts, edu-
cators, end-user programmers, or infrequent notebook users. 
In addition, most of our participants primarily used Jupyter 
notebooks. Thus, some of the pain points may not apply to 
other notebooks, such as R Notebooks and Spyder, which have 
different architectures. 

The importance and difficulty of our identified pain points are 
dependent on job roles, data scientist experience, and types 
of notebooks the data scientists primarily use. Our reported 
findings aggregated these factors, and any individual data 
scientist may have different priorities in how they perceive 
the importance and difficulty of these activities. In our survey, 

self-selection bias may have also influenced our results [3]: 
our respondents may feel more strongly about pain points in 
notebooks than the general population of data scientists. 

Establishing validity in qualitative research is challenging due 
to several potential biases, including researcher bias, confirma-
tion bias, and interpretive validity [28]. To reduce these issues, 
we employed three techniques. First, we calculated IRR for 
external raters who categorized participant statements to our 
pain points. Second, we conducted a survey to triangulate 
our interview and field study results. Within the survey, we 
asked participants in a short text response if there were any 
pain points we had missed: no new pain points were identified 
through these responses. Third, at the conclusion of our study, 
we conducted an informal focus group with both data scien-
tists (n = 3) and computational notebook developers (n = 2, 
Jupyter and nteract) to identify any potential credibility issues. 

The focus group identified some additional limitations in our 
study. Participants suggested that our pain points may be 
biased towards tabular ("rectangular") data, and that data sci-
entists who work with images, audio, or natural language text 
may be underrepresented. For these domains, loading, pro-
cessing, and exploring data may be far more difficult than 
our results suggest. Developers of notebooks identified that 
accessibility issues did not appear as a pain point in our study, 
although they routinely receive bug reports about these issues. 
They suggested that lack of keyboard shortcuts, text-to-speech 
support, and high-contrast themes, may impact productivity 
for some data scientists. Overall, however, the pain points 
identified in our study resonated with the focus group. 

CONCLUSION 
In this paper, we conducted a mixed-method study with data 
scientists using field observations, interviews, and a survey. 
In field studies and interviews, our data scientists reported a 
variety of difficulties when working with notebooks, and we 
synthesized these difficulties into a taxonomy of pain points. 
We validated the challenging activities that contribute to these 
pain points through a survey and found that supporting all 
of the activities were at least moderately important to data 
scientists, and that four activities—refactoring code, deploy-
ing to production, managing and working with history, and 
executing long-running tasks—were both broadly difficult as 
well as important to address, turning them into high-impact ac-
tivities. Our findings suggest several design opportunities for 
researchers and computational notebook developers. Address-
ing these pain points can substantially improve the usefulness, 
productivity, and user experience for data scientists who work 
with computational notebooks. 
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