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Abstract— Analyzing software repositories with thousands of 
artifacts is data intensive, which makes interactive exploration 
analysis of such data infeasible. We introduce a novel approach, 
Dominoes, that can support automated exploration of 
relationships amongst project elements, where users have the 
flexibility to explore on the fly the numerous types of project 
relationships. Dominoes organizes data extracted from software 
repositories into multiple matrices that can be treated as domino 
pieces (e.g., [commit|method]). It allows connecting such pieces 
based on a set of matrix operations to derive additional domino 
pieces. These derived domino pieces represent semantics on 
project entity relationships (e.g., number of commits in which 
two methods co-occurred) and can be used for further 
explorations. This opens a vast possibility of data analysis, since 
these domino pieces can be iteratively combined. Our proposed 
matrix representation and operations allow for fast and efficient 
processing of a large volume of data by using a highly parallel 
architecture, such as GPUs. 

Keywords- Exploratory data analysis; software dependencies; 
GPU computing 

I.  INTRODUCTION 
When working on a software project, developers often need 

to answer numerous questions, such as: which other methods 
do I need to edit if I make this change, who was the person who 
last edited this method, who has expertise in this module, who 
do I need to coordinate my changes with, and so on [1]. Since 
software development leaves behind activity logs (i.e., commits 
recorded in the version control system and tasks recorded in the 
issue tracking system), it is possible to answer these questions 
by analyzing these software repositories. However, finding 
these answers from the repositories is not easy since there is 
extensive amount of data that is accrued over the project’s 
lifecycle and this data is typically stored across different 
repositories [2]. This makes creating the right queries a 
nontrivial task [1]. 

Several research prototypes attempt to help in project 
explorations. For example, Tesseract [2] allows interactive 
investigation of relationships among files, developers, and 
issues through a network representation. Information 
Fragments [1] allows a user to compose information from 
tasks, change sets and teams to explore the relationships 
between these entities. CodeBook [3] builds a graph of all 
relationship, and then provides specific applications for 

answering specific questions (e.g., finding related developers or 
artifacts).  

There are several critical deficiencies with these current 
approaches. First, these tools often focus only on a particular 
development aspect (e.g., EEL [4] helps in expert 
identification). Second, these tools typically allow explorations 
of specific relationships that are fixed a priori (e.g., Tesseract 
preprocesses the sets of dyadic relationships first). Third, these 
tools often need a complete history of the project (e.g., in order 
to traverse the relationship graph, Codebook requires the full 
history). Fourth, all these tools operate at coarse granularity 
(file level). Identifying change impact information at a fine-
grained level can highlight nuanced relationships. For instance, 
although two developers have edited the same file, it is possible 
that these developers have complementary expertise in the 
functionality (method) of the file. Finally, these tools need to 
restrict the data that can be analyzed because performing 
interactive data analytics of software archives through visual 
explorations of relationships among project elements is 
infeasible at the scale of operation that is needed. 

In this paper, we present a novel approach – Dominoes – 
designed to enable interactive exploratory analysis of 
relationships of different software entities at varying levels of 
granularity by utilizing matrix operations that can be computed 
via GPUs. Our approach organizes data from a software 
repository into multiple matrices that are treated as domino 
tiles, such as [developer|commit], [commit|method], 
[class|method], amongst many other combinations. Just as in 
the Dominoes game, where joining two congruent squares edge 
to edge can form a rectangle, our matrices can be combined to 
create additional (derived) matrices. This derivation process is 
guided by a set of matrix operations, such as addition, 
multiplication, and transposition. For example, a computation 
of logical coupling at the method level can be achieved as 
[method|method] = [commit|method]T × [commit| method]. 
With this new (derived) domino tile, we can derive dependency 
among developers as [developer|developer] = 
[developer|commit] × [commit|method] × [method|method] × 
[commit|method]T × [developer|commit]T. Many such different 
explorations are possible, with each derived domino tile 
representing a particular aspect in software engineering.  

A primary goal of Dominoes is to enable users to explore 
the relationships in their project elements across different levels 
of granularity. Therefore, the granularity aspect is a central 
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construct, with one of the domino tile types being that of 
“composition” (e.g. [package|class], [file|class], and 
[class|method]). Connecting any other domino tile with these 
composition tiles or their transpose allows navigation from 
coarse-grained to fine-grained analysis or vice versa.  

Explorations of such relationships at a fine-grained level 
(methods across different versions of the software) while more 
accurate, can lead to extremely large data sets to be analyzed. 
Dominoes implements the exploratory analysis of software 
project entities as linear algebra operations over matrices, 
which can be parallelized in GPU (Graphics Processing Unit) 
[5]. This allows boosts in performance of about three orders of 
magnitude [7]. Therefore, Dominoes opens a new realm of 
exploratory software analysis, as endless combinations of 
domino pieces can be experimented with in an exploratory 
fashion. 

II. DOMINOES APPROACH 
In this section we describe our overall approach and then 

focus on the matrices and how we operate over them. 
Dominoes extracts data from a software repository and 
converts them into multiple matrices, correlating the desired 
attributes in lines and columns. This strategy allows data 
manipulation and its operations using parallel architecture. In 
our case, this fact allows interactive manipulations even with 
large datasets, as we are using GPU to perform matrix 
operations.  

We represent a matrix as M and its transpose by using a 
superscript (MT). Individual elements in a matrix are denoted 
as M[i,j]. The operator “×” represents matrix multiplication. It 
is important to note that when multiplying two matrices the 
number of columns in the first operand must be equal to the 
number of rows in the second operand. In our case the column 
and rows of the operand over which we are multiplying also 
needs to be the congruent (same project element), similar to the 
Dominoes game. In other words, we can multiply 
[developer|commit] × [commit|method], but not 
[developer|commit] × [method|method]. 

A. Dominoes Tiles 
Dominoes includes basic building tiles, which can be 

combined to create derived building tiles; which can be further 
combined with other basic or derived tiles. The basic building 
tiles are created by extracting data from existing software 
repositories (version control systems, issue tracking systems, 
etc.). For example, commits, issues, discussions about a 
commit, or pull request can be collected from GitHub. The 
basic building tiles around commits include: 

• [class|method] (ClM): relationship between a class and its 
constituent methods, where cell ClM[i,j] has a value of 1 
when class i contains method j.  

• [commit|method] (CM): relationship between commits and 
methods, where cell CM[i,j] has a value of 1 when commit 
i adds or changes method j. Note that the index i does not 
necessary express the commit id. 

• [developer|commit] (DC): relationship between developers 
and their commits, where cell DC[i,j] has a value of 1 
when developer i is the author of commit j. 

• [bug|commit] (BC): relationship between commits and 
bugs, where cell BC[i,j] has a value of 1 when commit j 
fixed bug i. 

These basic building tiles can then be combined to form a 
series of derived building tiles. Here we show a small set of 
derived building tiles that can be computed using only 
multiplication and transposition operations: 

• [method|method] (MM = CMT × CM): represents method 
dependencies, where MM[i,j] denotes the strength of the 
dependency of method j on method i. The rationale of this 
matrix is based on logical dependencies, as elements that 
are co-committed share some program logic. Note that we 
can also create an MM matrix through program analysis, in 
which case it would be termed as a basic building tile. 
Such MM matrices have been explored by Steward in 
creating Design Structure Matrices [8]. In Section III-B we 
explore more elaborate ways for computing MM. 

• [class|class] (ClCl = ClM  × MM  × ClMT ): represents 
class dependencies, where ClCl[i,j] denotes the strength of 
the dependency of class j on class i. Note that using the 
composition tile, we can provide analysis results at a 
higher-level of abstraction easily. 

• [bug|method] (BM = BC × CM): represents the methods 
that were changed to fix each bug. This matrix could be 
used to identify which methods are “buggy”.  

• [developer|method] (DM = DC × CM): represents the 
methods that a developer has changed. This matrix could 
be used to identify experts on a particular method as well 
as if there is breadth in expertise for a given method.  

• [developer|class] (DCl = DM × ClMT): represents classes 
that a developer has changed. DCl uses the composition 
operation to provide expertise information at the class 
level, which is typically used during bug triaging [3]. 

• [developer|developer] (DD = DM × MMT × DMT): 
represents the expertise dependency among developers, 
where developer j depends on some knowledge of 
developer i, because of underlying technical dependencies 
in their work. It is worth no notice that this derived 
building tile used other derived building tile (MM and 
DM) in its definition. 

By applying the composition operation, the above software 
engineering constructs can switch to class or file grains. 

B. Specialized Operations 
Our basic matrices are typically binary, that is, M[i,j] is 

either 1 or 0, whereas our derived matrices are not. This is 
largely because commits are atomic transactions and therefore 
most associated matrices with commits are binary. In the case 
of derived matrices cell values have associated semantics. 
Simple operations such as multiplication and transposition 
allow us to compose different types of domino tiles to derive 
more complex matrices and, thereby, different software 
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engineering constructs. However, there are three “specialized” 
operations that can be applied on derived matrices where 
individual cells are not binary. 

Let us take the example of the MM matrix. The diagonal 
shows how frequently a method has been changed and each 
cell (M[i,j]) shows how frequently a method (i) has changed 
with another method (j). This semantics is equivalent to 
absolute support, largely adopted in the data mining 
community. The support of an item set is defined as the 
proportion of transactions in the dataset that contains the item 
set. According to [9], the rule 𝑋⟶ 𝑌 has support s if s% of 
transactions contain 𝑋 ∪ 𝑌 . As this operation pattern of 
multiplying a matrix by its transpose is very popular and 
semantic rich, we treat it as a specialized operation and is 
computed according to Eq. 1.  

M!"# = M×M! (1) 

The semantics of support allows us to answer software 
engineering related questions regarding the strength of the 
relationships. For example, if we are interested in predicting 
the other files a developer needs to edit because of a change, 
we can use the concept of logical dependencies to identify all 
those methods that are dependent of the edited method and may 
also need to be changed. We could use the MM = MC!"# 
matrix to answer this question.  

Unfortunately, support is transitive, where M!"# 𝑖, 𝑗 =
  M!"#[𝑗, 𝑖] . Consequently, using support to represent 
dependencies is not precise, as program dependency is not 
transitive. For example, in our scenario, the area of a Cylinder 
depends on the circumference of the Circle, but not vice versa. 

In order to obtain a more precise relationship that reflects 
the direction of the dependency, Zimmermann et al. [10] use 
confidence to represent logical coupling. This metric suggests 
which artifacts should be modified together, given that a 
specific artifact is being modified. According to [11], the rule 
𝑋⟶ 𝑌 has confidence c if c% of transactions that contain 𝑋 
also contain 𝑌  [11]. In the context of our approach, when 
applied to compute MM matrix, confidence quantifies the 
occurrence of an entity (e.g., method) change given that the 
other entity (e.g., method) has also been changed. The 
confidence operator is computed according to Eq. 2. 

M!"#$[𝑖, 𝑗] =
M!"# 𝑖, 𝑗
M!"# 𝑖, 𝑖

 (2) 

Confidence does not have a transitive property among 
elements, so it is possible to define different levels of 
dependency for each pair. However, confidence suffers form 
another type of problem. In the context of data mining, 
confidence is used to quantify relations such as “those who buy 
product X also buy product Y”. In this case, if product “Y” is 
presented in almost all orders, purchase of any product will 
lead to a high confidence in buying “Y”. For this reason, 
analyzing confidence alone tends to be imprecise, and can 
exhibit false relationships. 

To address this problem we can use a third metric – lift [9]. 
Lift measures the influence of the antecedent in the frequency 
of the consequent. Formally, the rule 𝑋⟶ 𝑌 has lift l if the 
frequency of 𝑌 increases in l times when 𝑋 occurs. According 

to this definition, we are interested in dependencies with lift 
greater than 1, as any other value implies irrelevant 
(coincidental) relationships. The lift operator is defined by Eq. 
3, where the scalar multiplication by the number of commits 
(Mrows) transforms the absolute support (Msup) into relative 
support (values ranging from 0 to 1). 

M!"#$ 𝑖, 𝑗 =
M!"#$ 𝑖, 𝑗 ×M!"#$

M!"# 𝑗, 𝑗
 (3) 

III. DISCUSSION 
Here we describe our approach by drawing on a scenario 

detailed in Section III-A. We apply our approach in identifying 
artifact dependencies on Apache Derby 1 , an open source 
relational database project, as explained in Section III-B.  
Finally, in Section III-C we discuss the Dominoes architecture. 

A. Scenario Evaluation 
Consider a scenario where three developers (Alice, Bob, 

and Carlos) work together on a “geometry project”, consisting 
of four classes (Circle, Cylinder, Cone, and Shape). Circle has 
a method circumf() that calculates its circumference. Shape has 
a method draw() to render a shape. Finally both Cylinder and 
Cone have methods area() to calculate the area of the 
respective shapes. Table I describes five commits and their 
change descriptions. Table II shows which commits modified 
which method. Note that this is an intentionally simple 
example to explain the concepts in the paper. 

Figure 1 represents the support, confidence, and lift values 
for the MM matrix, where Ci represents 
Circle.circumference(), Cy – Cylinder.area(), Co – 
Cone.area(), and S – Shape.draw(). 

TABLE I.  COMMITS MADE BY DEVELOPERS 

Commit # Developer   Description 

C1 Alice Change type of function parameter to compute the 
radius (Circle) and how to render it (in Shape) 

C2 Carlos Change the side of Cone and how to render it 
C3 Alice Change how a Shape is rendered 

C4 Alice 
Calculation of how circumference and area are 
calculated using PI. Required modification on 
how to draw a Shape 

C5 Bob Modify the height calculation of a cylinder and 
how it is rendered 

 

TABLE II.  METHODS CHANGED FOR COMMIT 

Commit # Circle 
circumf()   

Cylinder 
area() 

Cone 
area() 

Shape 
draw() 

C1 1 1 0 1 
C2 0 0 1 1 
C3 0 0 0 1 
C4 1 1 1 1 
C5 0 1 0 1 

 

 

 
                                                             

1 Derby Repository: https://github.com/apache/derby 
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2 2 1 2
2 3 1 3
1 1 2 2
2 3 2 5

         

1 1 0.5 1
0.6 1 0.3 1
0.5 0.5 1 1
0.4 0.6 0.4 1

         

2.5 1.6 1.2 1
1.6 1.6 0.7 1
1.2 0.8 2.5 1
1 1 1 1

 

 
Figure 1.  Support, Confidence, and Lift calculated from previous scenario. 

If we consider the confidence matrix, we notice that the 
dependency from Cy to Ci (100% conf.) is stronger than from 
Ci to Cy (60% conf.), because whenever Ci was changed it also 
required changes to Cy  (commits C1 and C4) (see Table II). 
However, Cy was changed once without Ci (commit C5). With 
such a confidence analysis we can state that Cy (always) 
depends on Ci, but Ci does not necessarily depend on Cy. 
Therefore, using confidence to derive the DD matrix would 
identify that Bob should communicate with Alice, but not 
necessary the other way around. 

The confidence matrix also indicates high dependency from 
S to all other methods. However, this occurs not because S 
really depends on all other methods, but because S was 
changed in all commits, independently (see Table II). The lift 
matrix eliminates such coincidental dependencies, keeping only 
dependencies between Cy and Ci, and Co and Ci, since all 
other values are either equal to or below 1. 

In summary, support alone is not sufficient to indicate 
dependencies among project entities, but helps in eliminating 
dependencies that appear by chance (e.g., Co and Ci). In a large 
project with thousands of commits thresholding on a 
predefined support level can help eliminate accidental 
dependencies. On the other hand, lift plays a complementary 
role of identifying dependencies to elements that are very 
frequent (e.g., S) and therefore may be a cause of coincidental 
changes. Finally, confidence is important to identify the 
direction of the dependency (e.g., from Cy to Ci). With such an 
analysis, we find that the only real dependency in our scenario 
is from Cy to Ci, which would lead to a communication 
requirement from Bob to Alice in the DD matrix. 

Our approach, therefore, provides four distinct advantages. 
First, the confidence measure allows more nuanced 
investigations (e.g., direction of dependency). Second, the use 
of lift measure increases the accuracy of the finding by filtering 
out common, but unrelated changes. Third, the fine-grained 
analysis from the method level increases accuracy, since we 
can identify dependencies among individual methods. 
Therefore, if we find that Cy depends on Ci, we can find that 
Bob needs to coordinate with Alice who is working on Ci and 
not another developer who is working on the same file (Circle, 
but on a different method). Finally, GPU processing allows 
these investigations to be performed interactively.   

B. Derby Analysis 
In order to evaluate Dominoes in a real setting, we applied 

it over Apache Derby, an open source project. This evaluation 
aims to demonstrate how solely working with support is error 
prone for finding artifact dependencies. All analyses were 
made considering the repository data from 08/11/2004 to 
01/23/2014, which comprises 7,578 commits, 36 distinct 

developers, 34,335 files, and 305,551 methods committed 
during approximately 10 years. This evaluation was performed 
at the file-level for easier interpretation of the results. However, 
as discussed before, Dominoes can easily navigate from coarse 
to fine grained analysis and vice-versa.  

After processing the data, we found that due to the project 
characteristics of Derby, the lift analysis does not filter out any 
coincidental dependencies. This is because the Derby file 
dependencies are highly clustered, causing low support and a 
very high lift. When we filter the lift values by thresholding on 
1, no data points were eliminated. Therefore, we continued 
with the support/confidence analysis. 

Table III presents the top 5 logical dependencies in terms of 
support and with the biggest difference in confidence, 
considering a support threshold above 30. It is important to 
remember that confidence is not transitive.  

Considering the first case as an example, it is possible to 
observe that using the common approach that is based on 
support, artifacts DataDictionary.java and DataDictionary-
Impl.java would be considered as dependent to each other as 
they have a high support (in fact, 79 is the highest value of 
absolute support in the whole system). However, when 
observing the confidence, it is possible to see that only Data-
DictionaryImpl.java has dependency with DataDictionary.java, 
which is reasonable as changing a method implementation 
normally does not result a change to its interface. The 
following two rows are also interface/implementation cases, 
presenting the same behavior. In the fourth row, we have a 
composition case, where DRDAConnThread.java possesses a 
DRDAStatement.java instance. In this case, modifying the latter 
does not necessary imply a modifications in the former. 
However, there is a high likelihood of a related change in the 
opposite direction, that is, modifications in DRDA-
Statement.java can change method signatures used by 
DRDAConnThread.java, for instance. 

Finally, the last case is a class specialization, thus normally 
requiring modification to both files, with a slightly higher 
dependence from the subclass to the superclass. These analyses 
show the importance of using confidence to identify the 
direction of the dependencies. 

 

TABLE III.  TOP 5 LOGICAL DEPENDENCIES IN TERMS OF HIGH SUPPORT 
AND BIGGEST CONFIDENCE DIFFERENCE 

Artifact A Artifact B Support Conf. 
(A-B) 

Conf. 
(B-A) 

DataDictionary.java DataDictionaryImpl.java 79 0.88 0.37 

DD_Version.java DataDictionaryImpl.java 45 0.78 0.21 

LanguageConnectionCo
ntext.java 

GenericLanguageConne
ctionContext.java 44 0.86 0.48 

DRDAConnThread.java DRDAStatement.java 37 0.22 0.68 

ResultSetNode.java SelectNode.java 36 0.54 0.45 

 

Ci  Cy  Co   S             Ci     Cy     Co    S             Ci      Cy    Co    S 
 Ci 

Cy 
Co 
S 
 

Ci 
Cy 
Co 
S 
 

Ci 
Cy 
Co 
S 
 Support 

 
Confidence 

 
Lift 
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Besides these five top dependencies, Figure 2 presents a 
scatter plot chart with all dependencies at three specific support 
levels (10, 20, and 30). This chart plots each dependency 
according to its confidence in both directions (A-B and B-A). 
This way, dependencies with the same confidence value in both 
directions are plotted along the diagonal. As we can see, 
however, there are several cases where points are located far 
from the diagonal. When we consider the rightmost chart in 
Figure 2 (support threshold at 30) for discussion we can 
observe some distinct patterns. The red quadrant shows that 
both conf(A-B) and conf(B-A) are less than 0.5, thus 
containing weak bidirectional dependencies. The yellow 
quadrant, on the other hand, shows dependencies where both 
conf(A-B) and conf(B-A) are above 0.5, thus containing strong 
bidirectional dependencies. Finally, the green and blue 
quadrants show unidirectional dependencies with highest 
divergences among confidence. In this case, dependencies from 
these quadrants can be erroneously classified as bidirectional if 
we are to analyze dependencies solely by support. 

Performing an analysis such as the one in Figure 2 can 
unveil how inaccurate dependencies extracted from support-
based approaches tend to be. As demonstrated for the Derby 
project, only the yellow-quadrant dependencies should be 
classified as bidirectional. Both blue and green quadrants 
present unidirectional dependencies. 

In this evaluation, the FC (i.e., [file|commit]) matrix was of 
size 34,335×7,578. The generation of FCsup and FCconf using 
GPU (NVidia GeForce GTX580) took about 0.7 minutes. 
However, doing the same computation using CPU (Intel Core 2 
Quad Q6600) would take 696 minutes. This shows that we got 
a speedup of three orders of magnitude when GPU is in place – 
with just the simple calculation that requires 1 transposition 
and 3 multiplication operations. Similarly, when we process 
MC (i.e., [method|commit]), which is 305,551×7,578, it takes 
about 5 minutes in GPU, being impossible to be processed on 
CPU in a reasonable amount of time.  

C. Dominoes Architecture 
Dominoes Architecture is designed in a way that data from 

a software project repository is extracted and the associated 
change information is archived. Currently, we are mining 
projects that use Git by cloning and accessing the local repo. 
The local repo is then preprocessed to generate a tree of all 

modifications performed in all commits by analyzing which 
files, packages, classes, and methods were modified. It is 
important to note that information of each modification is 
decomposed to get a fine-grained view of the changes by using 
the Eclipse ASTParser (suitable for Java-based projects). For 
example, even if we represent changes at the package level (for 
a coarse-grained analysis), we know exactly which class was 
modified, as well the methods. This information is then stored 
in a relational database. Furthermore, after the initial data 
collection, information about subsequent changes can be 
updated incrementally to the database. 

Basic Dominoes tiles are then constructed on the fly and 
become available to be used. Depending on the type of 
operation required by the user, these domino tiles are sent to 
the GPU, which performs the desired operations to generate the 
derived domino tiles. These derived domino tiles can also be 
saved as a template piece, should that piece be used extensively 
in calculations. 

IV. RELATED WORK 
Our related work can be divided in two main groups: 

approaches that determine dependencies amongst artifacts or 
developers and approaches that provide support for exploratory 
analysis. There are numerous approaches that focus on 
identifying structural dependencies (through syntactic analysis) 
or logical dependencies (through change history) amongst 
artifacts. Cataldo et al. [12] stands out as they use matrices to 
process dependencies among developers based on 
dependencies among artifacts. In their approach, both structural 
dependencies and logical dependencies become Task 
Dependency (TD) matrices, and change requests, associating 
developers to artifacts, becomes Task Assignment (TA) matrix. 
These matrices are used in an equation that indicates 
coordination requirements 𝑇!×𝑇!×𝑇!! . Our approach 
generalizes this idea by allowing different kinds of exploration 
over matrices. Finally, our identification of relationships is 
innovative, as it allows combining support, confidence, and lift, 
to compose the dependency matrix depending on the research 
need.  

Tools that enable exploratory analysis provide either 
predefined questions or are very limited to derive information 
that was not conceived beforehand. In the case of Tesseract [2], 
for example, the available relationships are preprocessed and 

Figure 2. Relation among confidence for various support threshold. The leftmost chart considers a threshold of 10, while the middle uses 20, and finally the 
rightmost uses 30.  
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the matrices are fixed at a coarse grain (file-file, file-developer, 
file-bug, bug-developer). CodeBook [3] is a similar approach 
that builds a graph of all relationship and then provides 
applications for answering specific questions (e.g., identifying 
related developers or artifacts). Gall et al. [13] built a tool for 
mining software archives at a fine grain in order to compare 
source code changes. From these analyses, recommendations 
such as change type patterns and consistency of changes can be 
made. Instead of a recommendation system, Dominoes 
provides a generic and flexible platform for exploratory 
analysis of project elements at a fine-grain level, which is 
compatible with multiple data types and relationships. Its 
interactive capabilities are mainly possible due to the adoption 
of GPU. It is important to state we have already used GPU for 
solving software engineering problems. In a previous work [6] 
we achieved boosts of two orders of magnitude when running 
image diff, patch, and merge operations in GPU. 

V. CONCLUSION 
Dominoes is an exploratory data analysis approach that 

allows users to select information about different project 
elements and their interrelationships from a repository. 
Relationships are represented by matrices, defined as basic 
building tiles and derived building tiles. Both kinds of building 
tiles can be combined iteratively to reveal deeper, complex 
relationships. Through such explorations, relationships that 
have not been computed or published before can be discovered 
through the operations over these building tiles. As all 
operations are performed in parallel over GPU, exploratory 
analysis can occur seamlessly at real time, even when 
computing relationships in fine-grained data. The current 
version of Dominoes tool extracts data from a Git repository 
and operates over the matrices by using GPU kernels in 
CUDA. 

Our evaluation contrasted the use of support alone and the 
use of support and confidence to distinguish the dependence 
directions. In the Derby case, employing confidence leads to a 
more accurate analysis for finding dependencies among 
artifacts. Moreover, using confidence for thresholding a 
relationship is more natural for the user, as it represents a 
normalized value. 

The Dominoes architecture was intentionally designed to 
easily accommodate the definition of new basic building tiles, 
such as relationships mined from communication channels 
(e.g., email, chat, dissuasion forums). The same extensibility 
feature also applies for operations. Besides the basic matrix 
operations, such as multiplication and transpose, specialized 
operations can also be plugged into Dominoes, as showed in 
section III-B for support, confidence, and lift. This leads to a 
relevant approach for the scientific community, as empirical 
studies can be reproduced over different corpora in order to 
validate an investigation. This has the potential of alleviating 
the pain of setting up an environment for each trial of an 
investigation. 

Although we currently use matrices and GPU underneath 
Dominoes, other data representations and execution 
environments could be adopted in the future. For example, 
relational algebra is a compelling alternative to link sparse data. 
Moreover, SMP is the de facto architecture of modern personal 

computers. However, some kinds of analysis, such as 
reachability (used in impact analysis), can heavily benefit by 
operating over matrices in GPU. Besides that, due to the 
characteristic of our data, methods to deal with sparse matrix in 
order to reduce the memory usage can be adopted. 

A concept not discussed in this paper, which is currently 
under development, is the use of three-dimensional (3D) 
building blocks. These 3D building blocks consider time as the 
third dimension over the matrices. In our experience, using this 
additional dimension collected through a specific time window 
allows observing the evolution of relationships over time. 
Another ongoing work is real time visualizations of basic and 
derived building tiles both in two and three dimensions to 
support explorations by end users on their own data. 
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