
Exploratory Data Analysis of Software
Repositories via GPU Processing

Jose Ricardo da Silva Junior,
Esteban Clua, Leonardo Murta
Universidade Federal Fluminense

Niterói - Brazil
{jricardo,esteban,leomurta}@ic.uff.br

Anita Sarma
Computer Science and Engineering

University of Nebraska, Lincoln
Lincoln – United States

asarma@cse.unl.edu

Abstract— Analyzing software repositories with thousands of
artifacts is data intensive, which makes interactive exploration
analysis of such data infeasible. We introduce a novel approach,
Dominoes, that can support automated exploration of
relationships amongst project elements, where users have the
flexibility to explore on the fly the numerous types of project
relationships. Dominoes organizes data extracted from software
repositories into multiple matrices that can be treated as domino
pieces (e.g., [commit|method]). It allows connecting such pieces
based on a set of matrix operations to derive additional domino
pieces. These derived domino pieces represent semantics on
project entity relationships (e.g., number of commits in which
two methods co-occurred) and can be used for further
explorations. This opens a vast possibility of data analysis, since
these domino pieces can be iteratively combined. Our proposed
matrix representation and operations allow for fast and efficient
processing of a large volume of data by using a highly parallel
architecture, such as GPUs.

Keywords- Exploratory data analysis; software dependencies;
GPU computing

I. INTRODUCTION
When working on a software project, developers often need

to answer numerous questions, such as: which other methods
do I need to edit if I make this change, who was the person who
last edited this method, who has expertise in this module, who
do I need to coordinate my changes with, and so on [1]. Since
software development leaves behind activity logs (i.e., commits
recorded in the version control system and tasks recorded in the
issue tracking system), it is possible to answer these questions
by analyzing these software repositories. However, finding
these answers from the repositories is not easy since there is
extensive amount of data that is accrued over the project’s
lifecycle and this data is typically stored across different
repositories [2]. This makes creating the right queries a
nontrivial task [1].

Several research prototypes attempt to help in project
explorations. For example, Tesseract [2] allows interactive
investigation of relationships among files, developers, and
issues through a network representation. Information
Fragments [1] allows a user to compose information from
tasks, change sets and teams to explore the relationships
between these entities. CodeBook [3] builds a graph of all
relationship, and then provides specific applications for

answering specific questions (e.g., finding related developers or
artifacts).

There are several critical deficiencies with these current
approaches. First, these tools often focus only on a particular
development aspect (e.g., EEL [4] helps in expert
identification). Second, these tools typically allow explorations
of specific relationships that are fixed a priori (e.g., Tesseract
preprocesses the sets of dyadic relationships first). Third, these
tools often need a complete history of the project (e.g., in order
to traverse the relationship graph, Codebook requires the full
history). Fourth, all these tools operate at coarse granularity
(file level). Identifying change impact information at a fine-
grained level can highlight nuanced relationships. For instance,
although two developers have edited the same file, it is possible
that these developers have complementary expertise in the
functionality (method) of the file. Finally, these tools need to
restrict the data that can be analyzed because performing
interactive data analytics of software archives through visual
explorations of relationships among project elements is
infeasible at the scale of operation that is needed.

In this paper, we present a novel approach – Dominoes –
designed to enable interactive exploratory analysis of
relationships of different software entities at varying levels of
granularity by utilizing matrix operations that can be computed
via GPUs. Our approach organizes data from a software
repository into multiple matrices that are treated as domino
tiles, such as [developer|commit], [commit|method],
[class|method], amongst many other combinations. Just as in
the Dominoes game, where joining two congruent squares edge
to edge can form a rectangle, our matrices can be combined to
create additional (derived) matrices. This derivation process is
guided by a set of matrix operations, such as addition,
multiplication, and transposition. For example, a computation
of logical coupling at the method level can be achieved as
[method|method] = [commit|method]T × [commit| method].
With this new (derived) domino tile, we can derive dependency
among developers as [developer|developer] =
[developer|commit] × [commit|method] × [method|method] ×
[commit|method]T × [developer|commit]T. Many such different
explorations are possible, with each derived domino tile
representing a particular aspect in software engineering.

A primary goal of Dominoes is to enable users to explore
the relationships in their project elements across different levels
of granularity. Therefore, the granularity aspect is a central

495

construct, with one of the domino tile types being that of
“composition” (e.g. [package|class], [file|class], and
[class|method]). Connecting any other domino tile with these
composition tiles or their transpose allows navigation from
coarse-grained to fine-grained analysis or vice versa.

Explorations of such relationships at a fine-grained level
(methods across different versions of the software) while more
accurate, can lead to extremely large data sets to be analyzed.
Dominoes implements the exploratory analysis of software
project entities as linear algebra operations over matrices,
which can be parallelized in GPU (Graphics Processing Unit)
[5]. This allows boosts in performance of about three orders of
magnitude [7]. Therefore, Dominoes opens a new realm of
exploratory software analysis, as endless combinations of
domino pieces can be experimented with in an exploratory
fashion.

II. DOMINOES APPROACH
In this section we describe our overall approach and then

focus on the matrices and how we operate over them.
Dominoes extracts data from a software repository and
converts them into multiple matrices, correlating the desired
attributes in lines and columns. This strategy allows data
manipulation and its operations using parallel architecture. In
our case, this fact allows interactive manipulations even with
large datasets, as we are using GPU to perform matrix
operations.

We represent a matrix as M and its transpose by using a
superscript (MT). Individual elements in a matrix are denoted
as M[i,j]. The operator “×” represents matrix multiplication. It
is important to note that when multiplying two matrices the
number of columns in the first operand must be equal to the
number of rows in the second operand. In our case the column
and rows of the operand over which we are multiplying also
needs to be the congruent (same project element), similar to the
Dominoes game. In other words, we can multiply
[developer|commit] × [commit|method], but not
[developer|commit] × [method|method].

A. Dominoes Tiles
Dominoes includes basic building tiles, which can be

combined to create derived building tiles; which can be further
combined with other basic or derived tiles. The basic building
tiles are created by extracting data from existing software
repositories (version control systems, issue tracking systems,
etc.). For example, commits, issues, discussions about a
commit, or pull request can be collected from GitHub. The
basic building tiles around commits include:

• [class|method] (ClM): relationship between a class and its
constituent methods, where cell ClM[i,j] has a value of 1
when class i contains method j.

• [commit|method] (CM): relationship between commits and
methods, where cell CM[i,j] has a value of 1 when commit
i adds or changes method j. Note that the index i does not
necessary express the commit id.

• [developer|commit] (DC): relationship between developers
and their commits, where cell DC[i,j] has a value of 1
when developer i is the author of commit j.

• [bug|commit] (BC): relationship between commits and
bugs, where cell BC[i,j] has a value of 1 when commit j
fixed bug i.

These basic building tiles can then be combined to form a
series of derived building tiles. Here we show a small set of
derived building tiles that can be computed using only
multiplication and transposition operations:

• [method|method] (MM = CMT × CM): represents method
dependencies, where MM[i,j] denotes the strength of the
dependency of method j on method i. The rationale of this
matrix is based on logical dependencies, as elements that
are co-committed share some program logic. Note that we
can also create an MM matrix through program analysis, in
which case it would be termed as a basic building tile.
Such MM matrices have been explored by Steward in
creating Design Structure Matrices [8]. In Section III-B we
explore more elaborate ways for computing MM.

• [class|class] (ClCl = ClM × MM × ClMT): represents
class dependencies, where ClCl[i,j] denotes the strength of
the dependency of class j on class i. Note that using the
composition tile, we can provide analysis results at a
higher-level of abstraction easily.

• [bug|method] (BM = BC × CM): represents the methods
that were changed to fix each bug. This matrix could be
used to identify which methods are “buggy”.

• [developer|method] (DM = DC × CM): represents the
methods that a developer has changed. This matrix could
be used to identify experts on a particular method as well
as if there is breadth in expertise for a given method.

• [developer|class] (DCl = DM × ClMT): represents classes
that a developer has changed. DCl uses the composition
operation to provide expertise information at the class
level, which is typically used during bug triaging [3].

• [developer|developer] (DD = DM × MMT × DMT):
represents the expertise dependency among developers,
where developer j depends on some knowledge of
developer i, because of underlying technical dependencies
in their work. It is worth no notice that this derived
building tile used other derived building tile (MM and
DM) in its definition.

By applying the composition operation, the above software
engineering constructs can switch to class or file grains.

B. Specialized Operations
Our basic matrices are typically binary, that is, M[i,j] is

either 1 or 0, whereas our derived matrices are not. This is
largely because commits are atomic transactions and therefore
most associated matrices with commits are binary. In the case
of derived matrices cell values have associated semantics.
Simple operations such as multiplication and transposition
allow us to compose different types of domino tiles to derive
more complex matrices and, thereby, different software

496

engineering constructs. However, there are three “specialized”
operations that can be applied on derived matrices where
individual cells are not binary.

Let us take the example of the MM matrix. The diagonal
shows how frequently a method has been changed and each
cell (M[i,j]) shows how frequently a method (i) has changed
with another method (j). This semantics is equivalent to
absolute support, largely adopted in the data mining
community. The support of an item set is defined as the
proportion of transactions in the dataset that contains the item
set. According to [9], the rule 𝑋⟶ 𝑌 has support s if s% of
transactions contain 𝑋 ∪ 𝑌 . As this operation pattern of
multiplying a matrix by its transpose is very popular and
semantic rich, we treat it as a specialized operation and is
computed according to Eq. 1.

M!"# = M×M! (1)

The semantics of support allows us to answer software
engineering related questions regarding the strength of the
relationships. For example, if we are interested in predicting
the other files a developer needs to edit because of a change,
we can use the concept of logical dependencies to identify all
those methods that are dependent of the edited method and may
also need to be changed. We could use the MM = MC!"#
matrix to answer this question.

Unfortunately, support is transitive, where M!"# 𝑖, 𝑗 =
 M!"#[𝑗, 𝑖] . Consequently, using support to represent
dependencies is not precise, as program dependency is not
transitive. For example, in our scenario, the area of a Cylinder
depends on the circumference of the Circle, but not vice versa.

In order to obtain a more precise relationship that reflects
the direction of the dependency, Zimmermann et al. [10] use
confidence to represent logical coupling. This metric suggests
which artifacts should be modified together, given that a
specific artifact is being modified. According to [11], the rule
𝑋⟶ 𝑌 has confidence c if c% of transactions that contain 𝑋
also contain 𝑌 [11]. In the context of our approach, when
applied to compute MM matrix, confidence quantifies the
occurrence of an entity (e.g., method) change given that the
other entity (e.g., method) has also been changed. The
confidence operator is computed according to Eq. 2.

M!"#$[𝑖, 𝑗] =
M!"# 𝑖, 𝑗
M!"# 𝑖, 𝑖

 (2)

Confidence does not have a transitive property among
elements, so it is possible to define different levels of
dependency for each pair. However, confidence suffers form
another type of problem. In the context of data mining,
confidence is used to quantify relations such as “those who buy
product X also buy product Y”. In this case, if product “Y” is
presented in almost all orders, purchase of any product will
lead to a high confidence in buying “Y”. For this reason,
analyzing confidence alone tends to be imprecise, and can
exhibit false relationships.

To address this problem we can use a third metric – lift [9].
Lift measures the influence of the antecedent in the frequency
of the consequent. Formally, the rule 𝑋⟶ 𝑌 has lift l if the
frequency of 𝑌 increases in l times when 𝑋 occurs. According

to this definition, we are interested in dependencies with lift
greater than 1, as any other value implies irrelevant
(coincidental) relationships. The lift operator is defined by Eq.
3, where the scalar multiplication by the number of commits
(Mrows) transforms the absolute support (Msup) into relative
support (values ranging from 0 to 1).

M!"#$ 𝑖, 𝑗 =
M!"#$ 𝑖, 𝑗 ×M!"#$

M!"# 𝑗, 𝑗
 (3)

III. DISCUSSION
Here we describe our approach by drawing on a scenario

detailed in Section III-A. We apply our approach in identifying
artifact dependencies on Apache Derby 1 , an open source
relational database project, as explained in Section III-B.
Finally, in Section III-C we discuss the Dominoes architecture.

A. Scenario Evaluation
Consider a scenario where three developers (Alice, Bob,

and Carlos) work together on a “geometry project”, consisting
of four classes (Circle, Cylinder, Cone, and Shape). Circle has
a method circumf() that calculates its circumference. Shape has
a method draw() to render a shape. Finally both Cylinder and
Cone have methods area() to calculate the area of the
respective shapes. Table I describes five commits and their
change descriptions. Table II shows which commits modified
which method. Note that this is an intentionally simple
example to explain the concepts in the paper.

Figure 1 represents the support, confidence, and lift values
for the MM matrix, where Ci represents
Circle.circumference(), Cy – Cylinder.area(), Co –
Cone.area(), and S – Shape.draw().

TABLE I. COMMITS MADE BY DEVELOPERS

Commit # Developer Description

C1 Alice Change type of function parameter to compute the
radius (Circle) and how to render it (in Shape)

C2 Carlos Change the side of Cone and how to render it
C3 Alice Change how a Shape is rendered

C4 Alice
Calculation of how circumference and area are
calculated using PI. Required modification on
how to draw a Shape

C5 Bob Modify the height calculation of a cylinder and
how it is rendered

TABLE II. METHODS CHANGED FOR COMMIT

Commit # Circle
circumf()

Cylinder
area()

Cone
area()

Shape
draw()

C1 1 1 0 1
C2 0 0 1 1
C3 0 0 0 1
C4 1 1 1 1
C5 0 1 0 1

1 Derby Repository: https://github.com/apache/derby

497

2 2 1 2
2 3 1 3
1 1 2 2
2 3 2 5

1 1 0.5 1
0.6 1 0.3 1
0.5 0.5 1 1
0.4 0.6 0.4 1

2.5 1.6 1.2 1
1.6 1.6 0.7 1
1.2 0.8 2.5 1
1 1 1 1

Figure 1. Support, Confidence, and Lift calculated from previous scenario.

If we consider the confidence matrix, we notice that the
dependency from Cy to Ci (100% conf.) is stronger than from
Ci to Cy (60% conf.), because whenever Ci was changed it also
required changes to Cy (commits C1 and C4) (see Table II).
However, Cy was changed once without Ci (commit C5). With
such a confidence analysis we can state that Cy (always)
depends on Ci, but Ci does not necessarily depend on Cy.
Therefore, using confidence to derive the DD matrix would
identify that Bob should communicate with Alice, but not
necessary the other way around.

The confidence matrix also indicates high dependency from
S to all other methods. However, this occurs not because S
really depends on all other methods, but because S was
changed in all commits, independently (see Table II). The lift
matrix eliminates such coincidental dependencies, keeping only
dependencies between Cy and Ci, and Co and Ci, since all
other values are either equal to or below 1.

In summary, support alone is not sufficient to indicate
dependencies among project entities, but helps in eliminating
dependencies that appear by chance (e.g., Co and Ci). In a large
project with thousands of commits thresholding on a
predefined support level can help eliminate accidental
dependencies. On the other hand, lift plays a complementary
role of identifying dependencies to elements that are very
frequent (e.g., S) and therefore may be a cause of coincidental
changes. Finally, confidence is important to identify the
direction of the dependency (e.g., from Cy to Ci). With such an
analysis, we find that the only real dependency in our scenario
is from Cy to Ci, which would lead to a communication
requirement from Bob to Alice in the DD matrix.

Our approach, therefore, provides four distinct advantages.
First, the confidence measure allows more nuanced
investigations (e.g., direction of dependency). Second, the use
of lift measure increases the accuracy of the finding by filtering
out common, but unrelated changes. Third, the fine-grained
analysis from the method level increases accuracy, since we
can identify dependencies among individual methods.
Therefore, if we find that Cy depends on Ci, we can find that
Bob needs to coordinate with Alice who is working on Ci and
not another developer who is working on the same file (Circle,
but on a different method). Finally, GPU processing allows
these investigations to be performed interactively.

B. Derby Analysis
In order to evaluate Dominoes in a real setting, we applied

it over Apache Derby, an open source project. This evaluation
aims to demonstrate how solely working with support is error
prone for finding artifact dependencies. All analyses were
made considering the repository data from 08/11/2004 to
01/23/2014, which comprises 7,578 commits, 36 distinct

developers, 34,335 files, and 305,551 methods committed
during approximately 10 years. This evaluation was performed
at the file-level for easier interpretation of the results. However,
as discussed before, Dominoes can easily navigate from coarse
to fine grained analysis and vice-versa.

After processing the data, we found that due to the project
characteristics of Derby, the lift analysis does not filter out any
coincidental dependencies. This is because the Derby file
dependencies are highly clustered, causing low support and a
very high lift. When we filter the lift values by thresholding on
1, no data points were eliminated. Therefore, we continued
with the support/confidence analysis.

Table III presents the top 5 logical dependencies in terms of
support and with the biggest difference in confidence,
considering a support threshold above 30. It is important to
remember that confidence is not transitive.

Considering the first case as an example, it is possible to
observe that using the common approach that is based on
support, artifacts DataDictionary.java and DataDictionary-
Impl.java would be considered as dependent to each other as
they have a high support (in fact, 79 is the highest value of
absolute support in the whole system). However, when
observing the confidence, it is possible to see that only Data-
DictionaryImpl.java has dependency with DataDictionary.java,
which is reasonable as changing a method implementation
normally does not result a change to its interface. The
following two rows are also interface/implementation cases,
presenting the same behavior. In the fourth row, we have a
composition case, where DRDAConnThread.java possesses a
DRDAStatement.java instance. In this case, modifying the latter
does not necessary imply a modifications in the former.
However, there is a high likelihood of a related change in the
opposite direction, that is, modifications in DRDA-
Statement.java can change method signatures used by
DRDAConnThread.java, for instance.

Finally, the last case is a class specialization, thus normally
requiring modification to both files, with a slightly higher
dependence from the subclass to the superclass. These analyses
show the importance of using confidence to identify the
direction of the dependencies.

TABLE III. TOP 5 LOGICAL DEPENDENCIES IN TERMS OF HIGH SUPPORT
AND BIGGEST CONFIDENCE DIFFERENCE

Artifact A Artifact B Support Conf.
(A-B)

Conf.
(B-A)

DataDictionary.java DataDictionaryImpl.java 79 0.88 0.37

DD_Version.java DataDictionaryImpl.java 45 0.78 0.21

LanguageConnectionCo
ntext.java

GenericLanguageConne
ctionContext.java 44 0.86 0.48

DRDAConnThread.java DRDAStatement.java 37 0.22 0.68

ResultSetNode.java SelectNode.java 36 0.54 0.45

Ci Cy Co S Ci Cy Co S Ci Cy Co S
 Ci

Cy
Co
S

Ci
Cy
Co
S

Ci
Cy
Co
S
 Support

Confidence

Lift

498

Besides these five top dependencies, Figure 2 presents a
scatter plot chart with all dependencies at three specific support
levels (10, 20, and 30). This chart plots each dependency
according to its confidence in both directions (A-B and B-A).
This way, dependencies with the same confidence value in both
directions are plotted along the diagonal. As we can see,
however, there are several cases where points are located far
from the diagonal. When we consider the rightmost chart in
Figure 2 (support threshold at 30) for discussion we can
observe some distinct patterns. The red quadrant shows that
both conf(A-B) and conf(B-A) are less than 0.5, thus
containing weak bidirectional dependencies. The yellow
quadrant, on the other hand, shows dependencies where both
conf(A-B) and conf(B-A) are above 0.5, thus containing strong
bidirectional dependencies. Finally, the green and blue
quadrants show unidirectional dependencies with highest
divergences among confidence. In this case, dependencies from
these quadrants can be erroneously classified as bidirectional if
we are to analyze dependencies solely by support.

Performing an analysis such as the one in Figure 2 can
unveil how inaccurate dependencies extracted from support-
based approaches tend to be. As demonstrated for the Derby
project, only the yellow-quadrant dependencies should be
classified as bidirectional. Both blue and green quadrants
present unidirectional dependencies.

In this evaluation, the FC (i.e., [file|commit]) matrix was of
size 34,335×7,578. The generation of FCsup and FCconf using
GPU (NVidia GeForce GTX580) took about 0.7 minutes.
However, doing the same computation using CPU (Intel Core 2
Quad Q6600) would take 696 minutes. This shows that we got
a speedup of three orders of magnitude when GPU is in place –
with just the simple calculation that requires 1 transposition
and 3 multiplication operations. Similarly, when we process
MC (i.e., [method|commit]), which is 305,551×7,578, it takes
about 5 minutes in GPU, being impossible to be processed on
CPU in a reasonable amount of time.

C. Dominoes Architecture
Dominoes Architecture is designed in a way that data from

a software project repository is extracted and the associated
change information is archived. Currently, we are mining
projects that use Git by cloning and accessing the local repo.
The local repo is then preprocessed to generate a tree of all

modifications performed in all commits by analyzing which
files, packages, classes, and methods were modified. It is
important to note that information of each modification is
decomposed to get a fine-grained view of the changes by using
the Eclipse ASTParser (suitable for Java-based projects). For
example, even if we represent changes at the package level (for
a coarse-grained analysis), we know exactly which class was
modified, as well the methods. This information is then stored
in a relational database. Furthermore, after the initial data
collection, information about subsequent changes can be
updated incrementally to the database.

Basic Dominoes tiles are then constructed on the fly and
become available to be used. Depending on the type of
operation required by the user, these domino tiles are sent to
the GPU, which performs the desired operations to generate the
derived domino tiles. These derived domino tiles can also be
saved as a template piece, should that piece be used extensively
in calculations.

IV. RELATED WORK
Our related work can be divided in two main groups:

approaches that determine dependencies amongst artifacts or
developers and approaches that provide support for exploratory
analysis. There are numerous approaches that focus on
identifying structural dependencies (through syntactic analysis)
or logical dependencies (through change history) amongst
artifacts. Cataldo et al. [12] stands out as they use matrices to
process dependencies among developers based on
dependencies among artifacts. In their approach, both structural
dependencies and logical dependencies become Task
Dependency (TD) matrices, and change requests, associating
developers to artifacts, becomes Task Assignment (TA) matrix.
These matrices are used in an equation that indicates
coordination requirements 𝑇!×𝑇!×𝑇!! . Our approach
generalizes this idea by allowing different kinds of exploration
over matrices. Finally, our identification of relationships is
innovative, as it allows combining support, confidence, and lift,
to compose the dependency matrix depending on the research
need.

Tools that enable exploratory analysis provide either
predefined questions or are very limited to derive information
that was not conceived beforehand. In the case of Tesseract [2],
for example, the available relationships are preprocessed and

Figure 2. Relation among confidence for various support threshold. The leftmost chart considers a threshold of 10, while the middle uses 20, and finally the
rightmost uses 30.

499

the matrices are fixed at a coarse grain (file-file, file-developer,
file-bug, bug-developer). CodeBook [3] is a similar approach
that builds a graph of all relationship and then provides
applications for answering specific questions (e.g., identifying
related developers or artifacts). Gall et al. [13] built a tool for
mining software archives at a fine grain in order to compare
source code changes. From these analyses, recommendations
such as change type patterns and consistency of changes can be
made. Instead of a recommendation system, Dominoes
provides a generic and flexible platform for exploratory
analysis of project elements at a fine-grain level, which is
compatible with multiple data types and relationships. Its
interactive capabilities are mainly possible due to the adoption
of GPU. It is important to state we have already used GPU for
solving software engineering problems. In a previous work [6]
we achieved boosts of two orders of magnitude when running
image diff, patch, and merge operations in GPU.

V. CONCLUSION
Dominoes is an exploratory data analysis approach that

allows users to select information about different project
elements and their interrelationships from a repository.
Relationships are represented by matrices, defined as basic
building tiles and derived building tiles. Both kinds of building
tiles can be combined iteratively to reveal deeper, complex
relationships. Through such explorations, relationships that
have not been computed or published before can be discovered
through the operations over these building tiles. As all
operations are performed in parallel over GPU, exploratory
analysis can occur seamlessly at real time, even when
computing relationships in fine-grained data. The current
version of Dominoes tool extracts data from a Git repository
and operates over the matrices by using GPU kernels in
CUDA.

Our evaluation contrasted the use of support alone and the
use of support and confidence to distinguish the dependence
directions. In the Derby case, employing confidence leads to a
more accurate analysis for finding dependencies among
artifacts. Moreover, using confidence for thresholding a
relationship is more natural for the user, as it represents a
normalized value.

The Dominoes architecture was intentionally designed to
easily accommodate the definition of new basic building tiles,
such as relationships mined from communication channels
(e.g., email, chat, dissuasion forums). The same extensibility
feature also applies for operations. Besides the basic matrix
operations, such as multiplication and transpose, specialized
operations can also be plugged into Dominoes, as showed in
section III-B for support, confidence, and lift. This leads to a
relevant approach for the scientific community, as empirical
studies can be reproduced over different corpora in order to
validate an investigation. This has the potential of alleviating
the pain of setting up an environment for each trial of an
investigation.

Although we currently use matrices and GPU underneath
Dominoes, other data representations and execution
environments could be adopted in the future. For example,
relational algebra is a compelling alternative to link sparse data.
Moreover, SMP is the de facto architecture of modern personal

computers. However, some kinds of analysis, such as
reachability (used in impact analysis), can heavily benefit by
operating over matrices in GPU. Besides that, due to the
characteristic of our data, methods to deal with sparse matrix in
order to reduce the memory usage can be adopted.

A concept not discussed in this paper, which is currently
under development, is the use of three-dimensional (3D)
building blocks. These 3D building blocks consider time as the
third dimension over the matrices. In our experience, using this
additional dimension collected through a specific time window
allows observing the evolution of relationships over time.
Another ongoing work is real time visualizations of basic and
derived building tiles both in two and three dimensions to
support explorations by end users on their own data.

ACKNOWLEDGMENT
This work is partially supported by CNPq, CAPES, and

FAPERJ and NSF through awards: HCC- 1110916 and CCF-
1253786.

REFERENCES
[1] T. Fritz and G. C. Murphy, “Using Information Fragments to Answer

the Questions Developers Ask,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, New
York, NY, USA, 2010, pp. 175–184.

[2] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in
software development,” in Proceedings of the 31st International
Conference on Software Engineering, Washington, DC, USA, 2009, pp.
23–33.

[3] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering
and Exploiting Relationships in Software Repositories,” in Proceedings
of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, New York, NY, USA, 2010, pp. 125–134.

[4] S. Minto and G. C. Murphy, “Recommending Emergent Teams,” in
Fourth International Workshop on Mining Software Repositories, 2007.
ICSE Workshops MSR ’07, 2007, pp. 5–5.

[5] J. Krüger and R. Westermann, “Linear algebra operators for GPU
implementation of numerical algorithms,” in ACM SIGGRAPH 2003
Papers, New York, NY, USA, 2003, pp. 908–916.

[6] J. R. da Silva, T. Pacheco, E. Clua, and L. Murta, “A GPU-based
Architecture for Parallel Image-aware Version Control,” in 2011 15th
European Conference on Software Maintenance and Reengineering,
Los Alamitos, CA, USA, 2012, vol. 0, pp. 191–200.

[7] S. Rajasekaran, L. Fiondella, M. Ahmed, and R. A. Ammar, Multicore
Computing: Algorithms, Architectures, and Applications. New York,
NY: CRC Press, 2013.

[8] D. V. Steward, “The design structure system: A method for managing
the design of complex systems,” IEEE Trans. Eng. Manag., vol. EM-28,
no. 3, pp. 71–74, 1981.

[9] S. Tuffery, Data mining and statistics for decision making. Chichester,
West Sussex; Hoboken, NJ.: Wiley, 2011.

[10] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Softw. Eng. IEEE Trans.
On, vol. 31, no. 6, pp. 429–445, 2005.

[11] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proceedings of the 20th International
Conference on Very Large Data Bases, San Francisco, CA, USA, 1994,
pp. 487–499.

[12] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: a framework for assessing the impact of technical and work
dependencies on software development productivity,” in Proceedings of
the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, New York, NY, USA, 2008, pp. 2–11.

[13] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer
and ChangeDistiller,” IEEE Softw, vol. 26, no. 1, pp. 26–33, Jan. 2009.

500

