
 1

Contextualized Awareness:
A Lynchpin of Software Development

Anita Sarma
University of California, Irvine

Donald Bren School of Information and Computer Sciences
Department of Informatics

Irvine, CA 92697-3440 USA
asarma@ics.uci.edu

1. Introduction
Software development is a complex socio-technical en-
deavor involving intricate interdependencies among arti-
facts and multifaceted interactions among developers.
Breakdowns in coordination are often the primary cause for
conflicts in software development. Problems involved in
coordination have been extensively researched by both the
Software Engineering and the CSCW communities and has
produced two very distinct coordination methodologies: the
formal and the informal approach to coordination [1].
On the one hand, collaborative Software Engineering tools
to date follow the formal process-based approach and dis-
cretize time and tasks in concrete, but isolated process
steps. This discretization enables these solutions to scale
well and be efficient. However, this approach is fundamen-
tally flawed in assuming that human activity can be codi-
fied and that periodic resynchronization of tasks is an easy
step. On the other hand, coordination tools provided by the
CSCW community reflect the exact opposite approach:
rather than constraining and guiding a user in their tasks,
the focus is on informally raising awareness by informing
users of ongoing, parallel activities so that they can inter-
pret this information and self-coordinate amongst them-
selves. While this has lead to novel tools and approaches,
these tools suffer from issues of scalability and cognitive
overload.
The formal and the informal approaches have their
strengths and weaknesses and there is an emerging need for
a new approach that combines the strengths of these ap-
proaches while overcoming their shortcomings. It has been
widely noted that developers often create ad-hoc processes
around the established approach to facilitate coordination
in their teams. For instance, it was observed that developers
in companies that followed a formal process-based ap-
proach (configuration management system) created infor-
mal processes of sending email or conversing over Instant
Messaging to circumvent the system and enable fellow
developers to be aware of forthcoming changes [2, 3].
Our research proposes an integrated approach that com-
bines formal and informal coordination to provide both the

tools and the information necessary for users to self-
coordinate. We call this approach the Continuous Coordi-
nation paradigm [1]. In particular, tools following this
paradigm should retain the checkpoints and measures of the
formal approach to coordination, while providing develop-
ers a view of each others relevant activities between the
formal checkpoints. That is, following this approach soft-
ware development will retain the underpinnings of the for-
mal processes (e.g., discretized task units, private work-
spaces, and synchronization points), but will promote
awareness of relevant ongoing activities so that developers
can create a context for their work. In doing so, these tools
can (a) provide developers with measures to understand the
potential relationships among their individual work and the
work of their colleagues and (b) ensure there is no informa-
tion overload by only transmitting relevant and timely in-
formation.
Creating such tools, however, requires a thorough under-
standing of the kinds of information that is required to as-
sist a developer in the specific task at hand. To accomplish
this, we need to carefully explore the following three as-
pects of information: (1) the kinds of information that is to
be shared, (2) the granularity of the information that is to
be provided, and (3) the presentation of information that is
appropriate to a given situation or member of the team.
In Section 2 of this paper, I describe my experiences in
researching different collaboration tools. In Section 3, I
discuss the insights that I have gained and the open re-
search questions that the community faces. Section 4 ex-
plains my goals for attending the workshop followed by a
short bio in Section 5.

2. Interest & Experiences
My research interests lies in the intersection of Software
Engineering and CSCW. Thus far, I have researched novel
conceptual approaches to coordination and designed, as
well as implemented, tools that draw on these approaches
to improve coordination in distributed software develop-
ment.

 2

Figure 1. Clockwise from top: (a) Palantír, (b) Workspace Activity Viewer, (c) World View, and (d) Lighthouse.

During the course of my work, I have been involved in the
implementation of four research prototypes, namely,
Palantír [4], the Workspace Activity Viewer [5], Light-
house [6], and the World View [7]. Each of these tools
follows the Continuous Coordination paradigm, but pro-
vides a unique flavor of coordination support.
Palantír is a workspace awareness tool that is geared to-
wards the individual developer to provide contextualized
visualizations that present information of ongoing parallel
activities that may affect artifacts in the local workspace
[4]. Specifically, Palantír presents information of which
artifact is being changed by which other developer, calcu-
lates a measure of the size of the change based on the rela-
tive lines of code changed, and computes the impact of
remote changes on artifacts in the local workspace. Palantír
currently provides a set of four visualizations, each varying
in the degree of detail and obtrusiveness so that developers
can choose the visualization that best suits their prefer-
ences. Figure 1(a) shows the Palantír Eclipse integration.
The Workspace Activity Viewer is a three-dimensional
visualization that builds on the Palantír infrastructure to
provide an overview of activities of the entire project [5].
The Workspace Activity Viewer can be used in two distinct
ways (see Figure 1(b)). First, managers can obtain a high-
level, real-time view of the state of the entire project, so
that they can quickly gain an insight of project level con-
cerns. For example, if artifacts are frequently being modi-
fied in multiple workspaces, this may be a sign of overlap-
ping task responsibilities. Second, the Workspace Activity

Viewer provides a movie-like capability to provide insight
into the evolution of a project by replaying past events.
This enables retrospective analyses to understand when a
project was stagnating, this may point to the project falling
behind schedule, or undergoing a frenzy of activities.
Lighthouse is a coordination tool that tracks the emerging
design – a real-time representation of the design as it is
being implemented through code [6]. Lighthouse overlays
the “emerging design” with the original design such that
any deviation from the original can be easily identified.
Additionally, Lighthouse provides information of which
developer is responsible for the emerging design, the
status, and the latency of changes to facilitate coordination
among team members. Lighthouse, therefore, provides an
integrated visualization that interlaces configuration man-
agement, awareness, and design in a unified approach.
The World View application provides a comprehensive
view of the team dynamics of a project, regarding the geo-
graphical location of teams, the time zones of their opera-
tions, and the interdependencies among teams [7]. This
view is intended to help developers involved in global soft-
ware identify global and local team members, interactions
between sub-groups, and other vital information like how
and when to contact global member (see Figure 1(c)).

3. Open Research Issues
Constructing tools that follow the Continuous Coordination
paradigm raises several questions regarding, among others,
which information should be shared, how to avoid over-

 3

loading developers with information, scalability, and gen-
eral effectiveness of the approach in helping developers
coordinate their tasks. The tools that I have researched thus
far serve as an initial investigation into the feasibility of
providing awareness to facilitate coordination in distributed
software development. Each of these tools provides infor-
mation in different formats and for different stakeholders.
For example, while Palantír and Lighthouse provide fine-
grained details necessary for the day-to-day activities of
individual developers, Workspace Activity Viewer and
World View provide high level information more suited for
project management purposes.
The following are key considerations for improving work-
space awareness tools.
• Shared information: identifying the “correct” informa-

tion that is required or helpful to a user involved in a par-
ticular task. The aforementioned prototypes build on
configuration management systems and leverage its in-
frastructure to draw information of activities and “push”
this information to all workspaces. Particularly, informa-
tion of workspace operations are collated and transmitted
across workspaces to create awareness of activities.
However, this information alone could be insufficient
and other sources of information (e.g., chats messages,
issue trackers, meeting minutes) might prove to be use-
ful.

• Granularity of information: the “right” level of abstrac-
tion and analysis that is required to suit the needs of dif-
ferent stakeholders. Merely transmitting raw information
about activities of others will simply lead to information
overload. In order to identify the kinds of analysis to be
done or the abstraction required, tool builders must first
identify the users of the tools, the kinds of tasks they per-
form, the coordination problems that they face, and the
manner in which they currently gain relevant information
for their tasks.

• Information presentation: the manner in which informa-
tion is presented is a critical deciding factor in a collabo-
ration tool’s adoption. We have taken different ap-
proaches through our prototypes. For instance, Palantír
presents information in an unobtrusive contextualized
manner by embedding awareness information in the de-
velopment environment. Lighthouse is best used as a pe-
ripheral awareness mechanism with a dual monitor sys-
tem setup (see Figure 1(d)). Whereas, the World View
and the Activity Viewer are designed to be centralized
large screen displays acting as a focal point for meetings
and project discussions. There exist tradeoffs in the
amount of information that can be presented and the ob-
trusiveness of the display. Finding the right balance is
critical for a collaborative tool, but is often difficult to
achieve.

4. Workshop Goals
My primary goal is to develop a deeper understanding of
the human aspects inherent in the coordination activities
related to supporting the software development lifecycle.
This understanding coupled with my background in soft-
ware engineering will provide me with the tools to develop
a more nuanced approach to investigating and developing
mechanisms to address the key considerations discussed in
the previous section. Furthermore, I look forward to inter-
acting with fellow researchers to seek better ways of col-
lecting, analyzing, and presenting awareness generating
information, such that it is easy-to-use, timely, and benefi-
cial to users.

5. Bio
Anita Sarma is a doctoral candidate in the Department of
Informatics of the Donald Bren School of Information and
Computer Sciences at the University of California, Irvine.
Her research interests include configuration management
systems and their use for coordination and collaboration.
She is the primary developer of Palantír and World View.

6. Acknowledgements
Effort partially funded by the National Science Foundation
under grant numbers CCR-0093489, DUE- 0536203, and
IIS-0205724. Effort also supported by an IBM Eclipse In-
novation grant and an IBM Technology Fellowship.

7. References
[1] A. van der Hoek, et al. Continuous Coordination: A New

Paradigm for Collaborative Software Engineering Tools.
Workshop on Directions in Software Engineering Environ-
ments. 2004. p. 29-36.

[2] R.E. Grinter. Using a Configuration Management Tool to
Coordinate Software Development. Conference on Organiza-
tional Computing Systems. 1995. p. 168-177.

[3] C.R.B. de Souza, D. Redmiles, and P. Dourish. "Breaking the
Code", Moving between Private and Public Work in Collabora-
tive Software Development. International Conference on Sup-
porting Group Work (Group 2003). 2003. p. 105 -114.

[4] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantír: Raising
Awareness among Configuration Management Workspaces.
Twentyfifth International Conference on Software Engineering.
2003. p. 444-454.

[5] R. Ripley, A. Sarma, and A. Van der Hoek, Using Visualiza-
tions to Analyze Workspace Activity and Discern Software Pro-
ject Evolution. 2006, University of California, TR: UCI-ISR-
06-1.

[6] C. van der Westhuizen, P. Chen, and A. van der Hoek. Emerg-
ing Design: New Roles and Uses for Abstraction. Workshop on
the Role of Abstraction in Software Engineering: Organiza-
tional, Managerial and Cognitive Perspectives. 2006. Elec-
tronic proceedings, 6 pages.

[7] A. Sarma and A. Van der Hoek. Towards Awareness in the
Large. First International Conference on Global Software En-
gineering (to appear). 2006.

