

Continuous Coordination (CC):
A New Collaboration Paradigm

Ban Al-Ani, Anita Sarma, Gerald Bortis, Isabella Almeida da Silva, Erik Trainer,
André van der Hoek, David Redmiles

University of California, Irvine

Department of Informatics
444 Computer Science Building

Irvine, CA 92697-3440 USA
Phone: +1(949) 824-2776

{balani, asarma, gbortis, ialmeida, etrainer, andre, redmiles}@ics.uci.edu

ABSTRACT
The increase in software complexity introduced the need for soft-
ware development teams and consequently the need to coordinate
team members’ activities and create a shared awareness. We seek to
overcome some the pitfalls of earlier attempts to coordinate software
development through a new coordination paradigm we term Con-
tinuous Coordination (CC). Generally speaking, the CC paradigm
complements formal synchronization with support for informal ac-
tivities. In this paper, we define the CC paradigm within three di-
mensions and demonstrate how we embodied CC through a spec-
trum of Eclipse plug-ins.

CATEGORIES AND SUBJECT DESCRIP-
TORS
H.4.3 [Information Systems Applications]: Office Automation-
Groupware; H5.3 [Information Interfaces and Presentation]
Group and Organization Interfaces – Computer Supported Coopera-
tive Work.

GENERAL TERMS
Management, Design, Human Factors

KEYWORDS
Software Engineer, collaborative work, visualization, configuration
management, programming, design.

1. INTRODUCTION
Creating software is an inherently complex task because of its

changeable and intangible nature. It is further complicated by the
dependencies that exist among artifacts and the gamut of rich inter-
actions required among developers. Distributed software develop-
ment only adds to this plethora of complexities and further empha-
sized the need for development environments that provide compre-
hensive support for different aspects of software development (e.g.
Curtis et al., 1988).

The proposed paradigm, Continuous Coordination (CC), blends

the best aspects of the more formal, process-oriented approach with
those of the more informal, awareness-based approach. In doing so,
continuous coordination blends processes to guide users in their day-
to-day high-level activities with extensive information sharing and
presentation to inform users of relevant, parallel ongoing activities.
Thus it provides the underlying infrastructure for coordination.
Some of the key properties, we identified, for tools that follow this
paradigm are that the tools share relevant information and do so in a
contextualized and unobtrusive manner. We deem information rele-
vant when it is provided to a developer who will utilize it in the
foreseeable future. Shared information is contextualized and unob-
trusive when it is embedded in the development environment allow-
ing developers to modify their behavior at a time that is convenient
to them.

Other general tool properties are also being explored in our en-
deavor to increase the effectiveness of the tools developed within the
dimensions of CC. For example, we are of the opinion that develop-
ers can need differing levels of information abstraction at various
stages of development while carrying out different developmental
tasks. We sought to develop a range of tools that can offer a spec-
trum of support. The tools can then be incorporated into different
phases of development by developers as they see fit. Thereby in-
creasing flexibility and providing support for developers’ low level
programming activities through to high level support of managerial
activities.

In this paper, we present a definition of Continuous Coordina-
tion dimensions and an outline of some of the tools we have devel-
oped thus far within these dimensions. They are discussed in terms
of the kind of information it provides and to whom.

2. CONTINUOUS COORDINATION
The CC project sought to address a wide range of needs that are

typically manifested during the software engineering process when
conducted by co-located or distributed teams. Shared awareness,
through shared information is one such need. It has been recognized
as being both important and challenging (de Souza et al, 2004).

The challenge in sharing information in this way is achieving
an appropriate level of detail and providing it at a time that is suit-
able to the developers. How much information should we provide
the developer? Providing a constant stream of information can lead
the developers to feel overwhelmed whereas infrequent sharing of
information can mean that a developer lacks sufficient information
to successfully complete a task.

The information provided to the developer depends on his/her
role within the team. What kind of information does the developer
need? For example, a manager would typically need to be aware of

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference’06, Month 1–2, 2006, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

team structure, work products and interactions. A programmer, how-
ever, would generally need to be aware of changes to the design or
code made by other team members.

Finally, we also found that while identifying the amount and
the type of information needed by the developers must be deter-
mined, the manner in which it is presented should also be consid-
ered. When should information be shared? For example, if a devel-
oper chooses to ignore the shared information this should not im-
pede completing the task at hand. Furthermore, shared information
should not distract a developer from the task at hand. The informa-
tion should be available, such that, a developer can access it at a
time suitable to him/her becoming part of his/her peripheral aware-
ness in the meanwhile.

In summary, the type of information needed by the developer,
the triggers to share information and the recipients of shared infor-
mation form the three principal CC dimensions. Our approach to
embodying the CC paradigm within these dimensions will be dis-
cussed in the following section.

3. PLUG-INS: EMBODYING CONTINUOUS
COORDINATION
We sought to embody the CC paradigm through a series of

Eclipse plug-ins, for several reasons. First, we sought to enable de-
velopers to incorporate the proposed plug-ins in a manner suited to
the process they have chosen to adopt. In adopting this approach we
sought to increase the paradigm’s flexibility. Second, we sought to
tailor information to individual developer needs and consequently
the role they play within the project. We decomposed information

that is generally shared, such that, it is possible to identify who it
would benefit (e.g. programmers, designer, managers...etc) and po-
tentially minimize the amount of redundant information shared. The
third and final reason we embodied CC through plug-ins is because
we endeavored to promote self-coordination. While a developer may
not be able to coordinate the whole project within the restrictions of
their assigned roles they are able, through the proposed series of
plug-ins, to coordinate tasks with their peers and those who share
their artifacts. Furthermore, some of the plug-ins provide a high
level of abstraction or visualizations that can be useful to all types of
developers e.g. programmers, designers, managers…etc. In such
instances, in this report, they will be referred to collectively as de-
velopers only.

3.1 Lighthouse
Lighthouse is a coordination platform that is rooted in the con-

cept of emerging design, a real-time representation of the design as it
is being implemented in the code by each of the programmers.
Lighthouse then projects this emerging design view on top of the
initially conceived conceptual design (da Silva et al, 2006).

Figure 1 illustrates how programmers are able to maintain pe-
ripheral awareness of ongoing changes made to the project by the
team members when adopting the proposed dual-monitor setup. In
this set-up a main monitor would have their primary coding envi-
ronment and an auxiliary monitor would be dedicated to Lighthouse.

Lighthouse development efforts are currently focused on further
improving the user interface such that the changes made to the pro-
gram is reflected in the design more effectively. Once this is stage is
concluded the tool will be validated empirically.

 1. a. Project management view. 1. b. Programmer’s side-by-side view of code and emerging design.

Figure 1. The emerging design overlaid on top of the original conceptual design produced by Lighthouse.

3.2 Palantír
The Palantír plug-in is a workspace awareness tool that pro-

vides developers with insight into ongoing development activities in
remote workspaces (Sarma et al, 2003). Specifically, Palantír pro-
vides information that includes identifying who is conducting a
change, what is being changed, calculates a measure of the magni-
tude of those changes, a measure of the impact of those changes, and
graphically displays this information in a configurable and non-
obtrusive manner to developers involved in programming (Figure 2).

Palantír breaks the isolation of distributed Configuration Man-
agement (CM) workspaces by continuously sharing information of
ongoing changes, thereby allowing early detection of conflicts while
changes are still in progress. In addition to information regarding
which artifacts are being changed by which developer, Palantír dis-

tinguishes itself by providing information about the severity and
impact of changes. These measures allow developers to gauge which
changes are important and require their attention.

Finally, Palantír promotes a model of self-coordination recog-
nizing that many possible and flexible resolutions are possible bring-
ing to distributed development a level of awareness that begins to
approach that of local settings. Thus, while the developers are noti-
fied of changes, the notification does not impede their work or force
them to take immediate action.

Currently, we are in the process of evaluating the effectiveness
of Palantír in enabling developers detect potential conflicts earlier
and in producing better quality software (i.e. fewer unresolved con-
flicts) through controlled lab experiments and results are being ana-
lyzed.

Figure 2. Palantír Visualization.

3.3 Ariadne
Ariadne is a collaborative software engineering tool that aims to

enhance developers' awareness of the social dependencies present in
their work by seamlessly integrating such information with devel-
opment activities (Trainer et al, 2005).

Figure 3. Examples of graphical representations of social de-
pendencies produced by the Ariadne plug-in.

It analyzes software development projects for source-code de-
pendencies and collects authorship information for the source-code
from a configuration management repository. The tool then links the
source-code dependencies and authorship information to create a
social network of software developers (Figure 3.a). We aim to com-
plement this social network graph with current social network analy-
sis techniques, giving programmers and designers an insight into
how their work affects other developers and how the work of other
developers affects their own. For example, "centrality" is a measure
of the power of nodes as a function of their degree of connectedness
with other nodes, their closeness to other nodes in the graph, and
their positions as intermediaries between other nodes (Figure 3.b). .

We intend to determine the validity of applying information
gleaned from social network metrics to enhance programmers’ and
designers’ awareness of their colleagues' development efforts. Cen-
trality offers a measurement of control or ownership of code, and
may help developers identify important players in the project team.
Equivalence may be used to help developers identify who is using
code similarly to prevent duplication of work.

Finally, Ariadne is currently being trialed to visualize the social
interaction within the Ariadne project itself. It succeeded in repre-
senting these interaction and the relationships between developers
involved. However, initial trials also revealed issues relating to the
display of textual information (node labels) and readability. These
issues and others will be addressed before conducting extensive
empirical studies.

3.4 Dashboard
This plug-in is currently in the design phase of development. A

“Wizard of Oz” prototype is being utilized to determine what infor-
mation would support the social interactions (Figure 4). Ultimately
we seek to provide a means to simulate informal “watercooler” con-
versation by providing a central location where project developers
can (1) be informed of their work and how it relates to the overall
project, and (2) spontaneously engage in exploration of particular
issues raised on the board. Insights gained in this phase of develop-
ment will assist in developing the first working prototype and deter-
mining which visualizations are incorporated in the final product.

Figure 4. Dashboard provides an abstract view demonstrating
the relationship between the developer and the modules under
development.

In Figure 4, the programmer’s attention is naturally drawn to
the spheres, which represent modules that have caused the build to
fail. Larger spheres emphasize module importance based on severity
metrics. Circling the modules in a clockwise fashion are the names

3.b An Ariadne “sociogram” illustrating the social network
of software developers.

3.a. An Ariadne “social call graph” illustrating code de-
pendencies and author dependencies.

of the programmers who have most recently modified the module.
This visual connection between the programmer and the module is
further explored in the modifications view (made accessible through
the right panel), which displays in real-time the most recent transac-
tions to the configuration management system. Again, more severe
modifications are emphasized by a larger module name and sphere.

3.5 World View
World View plug-in provides a comprehensive view of the

team dynamics of a project, regarding the geographical location of
teams, the time zones of their operations, and the interdependencies
among teams (Figure 5). This view is intended to help developers
involved in global software identify global and local team members,
interactions between sub-groups and other vital information like
how to contact global member and when (Sarma and van der Hoek,
2006).

Figure 5. World View screen prototypes. Shaded areas of the
map represent countries where it is dark. Active teams in the
shaded areas are shown as “white stars”.

In Figure 5 teams are represented as “stars” on a world map and
interdependencies among teams are shown as “lines” connecting
them. The size of the star denotes the size of the team; larger teams
are represented as larger stars. Interdependencies among teams are
determined based on the number of shared artifacts, which are iden-
tified through program analysis of the code base. The thickness of
the lines represents the extent of sharing: the thicker the lines, the
larger the number of shared artifacts. Through this view, developers
can discern at-a-glance which teams are tightly-coupled and through
which artifacts (mouse-hovers display the list of shared artifacts).

The directed lines (arrows) in Figure 5 represent the direction
of conflicts (changes performed by which team affects which team)
and the thickness of the lines denotes the extent of the conflict: the
thicker the line, the larger the significance of the conflict. Here, sig-
nificance is calculated as the number of artifacts that are affected by
the change. Teams and their respective “arrows” are color coded to
differentiate conflicts arising from different teams. This view can
also be configured for the individual developer to show which
changes by a specific developer affects other teams. The artifacts
responsible for the conflicts are highlighted in red.

Currently, the World View tool is in the exploratory phase with
the first prototype to be made available soon.

4. CONCLUDING REMARKS
A new software engineering paradigm was presented in this re-

port, namely: continuous coordination. The project is implemented
through a collection of plug-ins. A brief description of each plug in
and an outline of the user interface were presented for each. The

descriptions sought to demonstrate how each tool fell within the
boundaries of the CC dimensions, namely:
1. Amount of shared information: each tool provides layers of

information such that the developer can adjust the volume and
level of detail based on individual need.

2. Nature of shared information: the varying forms of information
provided by each tool make it possible to focus on information
relevant to the task at hand.

3. Peripheral Awareness: the information provided by each tool is
readily available for the developer to access but does not pre-
vent the developer from continuing with his/her task. The in-
formation provided by each tool thus remains within the pe-
ripheral awareness of the developers and does not impede their
work.
Collectively, these three dimensions seek to define the essence

of CC by enabling the developers to share an awareness of activities
carried out during a collaborative development process; such that,
developers are neither constrained by the lack of information nor is
their work blurred by a high volume of information.

The degree of success achieved by each tool in conforming to
these dimensions is yet to be determined through empirical evalua-
tions. However, feedback received from walkthroughs of early pro-
totypes and mock-ups has been positive overall.

5. ACKNOWLEDGEMENTS
This research was supported by the U.S. National Science

Foundation under grants 0534775, 0326105, 0093489, and
0205724, by the Intel Corporation, by two IBM Eclipse Technology
Exchange grants, and an IBM Technology Fellowship.

6. REFERENCES
[1] Canfora, G.; Cerulo, L., Jimpa: An Eclipse Plug-in for Im-

pact Analysis, Conference on Software Maintenance and
Reengineering (CSMR'06), (March 22 - 24, 2006), 341-342.

[2] Curtis, B., H. Krasner, Iscoe, N. (1988). "A field study of the
software design process for large systems." Communications
of the ACM, 31(11): 1268-1287.

[3] de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and Pat-
terson, J. 2004. Sometimes you need to see through walls: a
field study of application programming interfaces. In Proceed-
ings of the 2004 ACM Conference on Computer Supported
Cooperative Work (Chicago, Illinois, USA, November 06 -
10, 2004).

[4] da Silva, I.A., Chen, P., Van der Westhuizen, C., Ripley, R.
and van der Hoek, A. Lighthouse: Coordination through
Emerging Design, OOPSLA Eclipse Technology Exchange
Workshop, October 2006 (to appear).

[5] Sarma, A., Noroozi, Z., and van der Hoek , A., “Palantír: Rais-
ing Awareness among Configuration Management Work-
spaces”, In Proceedings of Twenty-Fifth International Confer-
ence on Software Engineering, p. 444-454, Portland, Oregon
(May 2003).

[6] Sarma, A. and A. van der Hoek, “Towards Awareness in the
Large”, First International Conference on Global Software
Engineering, Brazil, to appear (October 2006).

[7] Trainer, E., Quirk, S., de Souza, C. R. B., Redmiles, David F.
Bridging the Gap between Technical and Social Dependencies
with Ariadne. In: Proceedings of the Eclipse Technology
eXchange (ETX) Workshop, San Diego, CA, 2005.

