
https://doi.org/10.1007/s10664-019-09735-4

An empirical investigation into merge conflicts
and their effect on software quality

Caius Brindescu1 · Iftekhar Ahmed2 ·Carlos Jensen1 ·Anita Sarma1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Merge conflicts are known to cause extra effort for developers, but little is known about
their effect on software. While some research has been done, many questions remain. To
better understand merge conflicts and their impact we performed an empirical study about
the types, frequency, and impact of merge conflicts, where impact is measured in terms of
bug fixing commits associated with conflicts. We analyzed 143 open source projects and
found that almost 1 in 5 merges cause conflicts. In 75.23% of these cases, a developer
needed to reflect on the program logic to resolve it. We also found that the code associated
with a merge conflict is twice as likely to have a bug. When the code associated with merge
conflicts require manual intervention, the code is 26× more likely to have a bug.

Keywords Version control · Software merging · Merge conflicts · Software quality ·
Empirical study · Mining software repositories

1 Introduction

Modern software development effort is, more often than not, a team effort. The complexity
of software projects, such as the Linux Kernel has grown exponentially over the past years,
and the Kernel now stands at over 21 million lines of code (Corbet and Kroah-Hartman

Communicated by: Sven Apel

� Caius Brindescu
brindesc@oregonstate.edu

Iftekhar Ahmed
iftekha@uci.edu

Carlos Jensen
carlos.jensen@oregonstate.edu

Anita Sarma
anita.sarma@oregonstate.edu

1 Oregon State University, Corvallis, OR 97331, USA
2 University of California, Irvine, Irvine, CA 92697, USA

Empirical Software Engineering (2020) 25:562–590

Published online: 5 September 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09735-4&domain=pdf
http://orcid.org/0000-0003-1196-8749
mailto: brindesc@oregonstate.edu
mailto: iftekha@uci.edu
mailto: carlos.jensen@oregonstate.edu
mailto: anita.sarma@oregonstate.edu

2016). Software of such complexity requires a large development team to develop and main-
tain; last year alone more than 1,500 people made over 70,000 individual code contributions
to the Linux Kernel (Corbet and Kroah-Hartman 2016). While most software systems are
simpler than the Linux Kernel, the kind of distributed and collaborative work model which
powers this project is broadly representative of how much of today’s software development
is done, especially in open source projects.

Modern Version Control Systems (VCS) have made parallel development easier by
streamlining and coordinating code management and merging. For example, in Git, creating
parallel branches or cloning an entire project can be done through a single command. This
ability to create private development lines makes it easy for developers to experiment with-
out impacting or being impacted by others’ work. However, as is well known, isolation of
private development lines can cause problems when changes are synchronized (Brun et al.
2011; Sarma et al. 2003; de Souza et al. 2003).

Merge conflicts can occur when developers make concurrent changes to the same code
artifacts. The changes are generally authored by two different developers, but merge con-
flicts can also happen between the edits of one developer. While automatic merge tools
help, manual intervention is required when changes overlap. Resolving merge conflicts,
even easy ones, can disrupt the flow of programing, forcing developers to shift their focus
on the resolution process. Other times, a conflict resolution requires a deeper understanding
of the program’s structure and goals. For example, when a function’s signature or parame-
ters are changed, a developer first needs to understand the rationale behind the change, and
any dependencies, before she can resolve the conflict. Prior work has found that in complex
merges, developers may not have the expertise or knowledge to make the right deci-
sions (Costa et al. 2014; Nieminen 2012), which might degrade the quality of the merged
code.

Another problem associated with merge conflicts is that they often take the developer
outside of their development process. For instance, a developer may follow an established
process of peer review of code submissions, but the merged code maybe “cobbled” together.
This could lead to an increased likelihood of bugs slipping through, as could an incomplete
understanding of the nature of changes and dependencies.

Prior research has shown that merging long lived branches can lead to merge conflicts
(when the VCS fails to merge the two branches due to current edits to the same lines, also
called direct conflicts), or indirect conflicts (integration failures where the merged code
does not compile, or tests fail) (Bird et al. 2009; Perry et al. 2001; Shihab et al. 2012). While
others have shown that merge conflict occurrence is frequent (Perry et al. 2001), what is
not known is whether the code emerging from the resolution of merge conflicts is sub-par,
whether different types of merge conflicts affect the resultant code quality differently, and
whether there are any differences in the merged code created by experienced developers’ as
compared to novices.

Currently, therefore, there is an important gap in our understanding of the nature of merge
conflicts and the results of their resolution. Closing these gaps can help us not just build
better tools and processes to help developers, but also develop a more nuanced and in depth
understanding of the risks and problems associated with merge conflicts.

The goal of this paper is to characterize the different types of merge conflicts and identify
any effects they have on the quality of the resulting code. We ask the following research
questions:

– RQ1: What are the most common types of merge conflicts?
– RQ2: How likely is code resulting from a merge conflict to contain bugs?

Empirical Software Engineering (2020) 25:562–590 563

– RQ3: What are the factors that affect the quality of the code resulting from a merge
conflict resolution?

– RQ4: What are the resolution strategies used by developers when resolving merge
conflicts?

To answer these questions, we analyzed a broad sample of 143 open source projects.
From these projects, we collected 556,911 commits, 36,122 of which were merge commits.
19.32% of these merges, in turn, resulted in conflicts.

Our research identified six types of direct merge conflicts. Some types of conflicts
require resolution that is trivial (e.g. formatting differences), while others are challenging
(e.g. those that make changes to the underlying Abstract Syntax Tree). About 60% of con-
flict resolutions in our dataset involve changes to the Abstract Syntax Tree (AST) that are
entangled (henceforth called SEMANTIC merge conflicts). We also found that code asso-
ciated with a merge conflict is twice as likely to have a bug, and code associated with
SEMANTIC merge conflicts are 26 times more likely to have a bug compared to code
associated with other conflicts.

In summary, our contributions are:

– A taxonomy of merge conflicts;
– Empirical results that show that direct merge conflicts are indicative of changes that are

bug-prone;
– Identification of factors that are associated with direct merge conflicts that are bug-

prone;
– Identification of most commonly used resolution strategies.

2 RelatedWork

2.1 Merge Conflicts

Researchers have looked at strategies for merging code, problems associated with them, and
how to proactively avoid them in order to support collaborative development efforts. Mens
(2002) present a survey on the state of the art of software merging. Their survey goes into
depth regarding merge strategies and ways to reduce conflicts. However, it does not provide
evidence of the kinds of problems merge conflicts present.

Empircal Studies: Merge conflicts are known to be costly (Grinter 1995; Perry et al.
2001; de Souza et al. 2003). They delay the project, requiring an examination of the conflict,
and developing a consensus solution. Several empirical studies have detailed how merge
conflicts are a problem, and the strategies that developers follow to evade having to resolve
conflicts. For example, Perry et al. (2001) found that increased parallel work, in addition
to causing conflicts, can also lead to an increase in software defects. Developers are known
to follow informal processes (e.g., check in partial code, email the team about impending
changes) to avoid having to resolve conflicts when committing changes [25], or rush to com-
mit their work in an effort to avoid being the developer who has to resolve the conflicts (de
Souza et al. 2003). A developer may also choose to delay the incorporation of others’ work,
fearing that a conflict may be hard to resolve (de Souza et al. 2003). Such processes can
have a detrimental effect on team productivity and morale. Our work is the first to inves-
tigate the root cause of a merge conflict, and to try and quantify how problematic merge
conflicts are for developers.

Empirical Software Engineering (2020) 25:562–590564

Proactive conflict detection: There have been a number of papers that focus on devel-
oping tools to proactively detect or avoid merge conflicts. Sarma et al. (2003) and Ripley
et al. (2004) presented Palantı́r, a tool that helps make developers aware of changes to each
other’s workspaces. Similarly, Biehl et al. (2007) presented FASTDash, and da Silva et al.
(2006) introduced Lighthouse, which also try to foster awareness among developers. Kasi
and Sarma (2013) presented Cassandra, a tool that schedules tasks in order to minimize the
chance of conflicts occurring. Brun et al. (2011, 2013) developed Crystal, which identifies
two different types of merges conflicts: “textual,” which are detected by the version con-
trol system’s merge tool, and “higher level conflicts,” which are not detected until a build
or test fails. The tool merges changes in a shadow repository as they are committed in order
to catch these types of conflict as early as possible. Similarly, Guimarães and Silva (2012)
introduced a technique to continuously merge changes in the IDE in order to detect merge
conflicts as soon as possible. Servant et al. (2010) presented a tool and visualization that
enable developers to understand the impact of their changes, which can then prevent indi-
rect conflicts. Dewan and Hegde (2007) presented a software development model aimed at
reducing conflicts by notifying developers when they work on the same file, and allowing
them to collaborate when resolving conflicts. While proactive detection tools help develop-
ers prevent merge conflicts, it is not always possible (e.g. important security fixes cannot
be delayed to avoid such a conflict). Our work aims to bring understanding of the merge
conflicts that do occur.

Merge help: Researchers have investigated techniques to manage merging of changes, in
order to more efficiently resolve conflicts, either in an automated way, or by preserving and
presenting useful context for the developer trying to resolve the conflict. Apel et al. (2011,
2012) and Cavalcanti et al. (2017) presented a new merging technique, semistructured
merge, which considers the structure of the code being merged. Lippe and van Oosterom
(1992) presented Operation Based Merging, which, when merging, considers the changes
performed, not just the end result. However, McKee et al. (2017) have shown that devel-
opers do not trust tools if they don’t understand how they work, and they prefer to resolve
merge conflicts manually. Our work can help researches focus on the merge conflicts that
are more “painful” for developers.

Conflict categorization: Finally, researchers have looked at ways of categorizing con-
flicts. Sarma et al. (2003) categorized conflicts as direct conflicts, when parallel files have
been changed and indirect conflicts, when parallel changes to dependent files cause a con-
flict. Similarly, Brun et al. (2011), distinguish between first level (textual) conflicts from
second level (build and test failure) conflicts. Buckley et al. (2005) proposed a taxonomy
of changes based on properties like time of change, change history, artifact granularity etc.
Their taxonomy deals with software changes in general or conflicts at a coarser level. We
are intersted in creating a taxonomy that provides finer details about merge conflicts and
the impact of their resolution. Finally, Accioly et al. (2018) and Menezes (2016) present a
classification that considers the types of changes that generate the conflict. Our approach is
different, as we are using a human-centered approach at identifying the root cause of a con-
flict. We are the first to propose and validate a categorization that looks at the root cause of
a merge conflict.

2.2 Measuring Software Quality

One goal of our research is measuring the impact that conflicts have on software quality.
Various measures of software quality have been proposed. Boehm et al. (1976), and Gor-
ton and Liu (2002), to mention a few, have explored measures including completeness,

Empirical Software Engineering (2020) 25:562–590 565

usability, testability, maintainability, reliability, efficiency, etc. Some of these metrics are
difficult to measure, especially in the absence of requirement documents or other support-
ing information. Researchers have also used code smells as a measurement of software
quality (Marinescu 2001, 2004), though smells are often focused on future maintainability
issues.

2.3 Tracking Code Changes and Conflicts

Our analysis requires mining the history of each line of code to determine if and when it was
involved in a merge conflict, a software patch/upgrade, or a bug fix. Researchers have pro-
posed various algorithms for tracking individual lines of code across versions of software.
Canfora et al. (2007) proposed an algorithm that uses Levenstein edit distance to compute
similarity of lines, matching “chunks” of changed code. Zimmermann et al. (2006) proposed
annotation graphs which work at the region level for tracking lines. Godfrey and Zou (2005)
described “origin analysis,” a technique for tracking entities across multiple revisions of
a code base by storing inexpensively computed and easily comparable “fingerprints” of
interesting software entities in each revision of a file. These fingerprints can then be used to
identify areas of the code that are likely to match before applying more expensive techniques
to track code entities. Kim et al. (2006) propose a seminal algorithm, SZZ, for tracking the
origin of lines across changes. Finally, Falleri et al. (2014) propose the GumTree algorithm
for tracking changes at an AST level. This is the approach that we chose for our experiments.

3 Methodology

Our goal here is to quantify and categorize merge conflicts across a wide set of represen-
tative open source projects, and the fault-proneness of the resulting code (whether these
changes were associated with bug fixes or other improvements). Additionally, we want to
collect relevant metrics about the projects themselves, and the contributors (such as whether
these contributors were part of the core development team or intermittent/new developers).

To achieve these goals, we first select a project sampling strategy that allows us to gather
data from projects that are representative of the kind of development practice we are interested
in. We then track the lines of code through versions and code merges in order to study how
the code evolved, and which lines were associated with conflicts, updates, and bug fixes.
Next, we determine the nature of code updates (e.g. was this a bug fix, or a new feature, etc.).
In order to do this, we manually classify a subset of the commits and trained an auto-
mated classifier to classify the rest. Finally, we use the data to build a model to predict the
total number of bug fixes that would occur on a conflicting line. The following subsections
describe each of these steps in detail, and the overall picture is presented in Fig. 1.

We also released the tooling we used for analyzing the projects. The tool for identifying
merge conflicts is available here: https://github.com/caiusb/conflict-detector. The tool for
collecting the metrics is available here: https://github.com/caiusb/MergeConflictAnalysis.
Finally, our statement tracker is available here: https://github.com/caiusb/statement-history.

3.1 Project Sampling

We collected projects from GitHub (2017) for our empirical evaluation. Our goal was to
ensure that the projects chosen offered a reasonably unbiased representation of modern
software practices. We also tried to reduce the number of variables that could contribute

Empirical Software Engineering (2020) 25:562–590566

https://github.com/caiusb/conflict-detector
https://github.com/caiusb/MergeConflictAnalysis
https://github.com/caiusb/statement-history

Fig. 1 An overview of our data collection and analysis process. Tools used are listed using a monospaced
typeface in the lower part of the boxes. JDT stands for Java Development Toolkit (https://www.eclipse.
org/jdt/)

to random noise during evaluation. With these goals in mind, we decided to focus on Java
projects using the popular Maven build system (Apache Maven 2018). This decision was
influenced by the fact that Java is one of the most popular languages (according to the
number of projects hosted on GitHub (2017)), and the availability of analysis tools.

We started by randomly selecting 900 projects, the first to show up when using the
GitHub search mechanism. From these, we eliminated aggregate projects (which could skew
our results), leaving 500 projects. After eliminating projects in which we could not com-
pile more than half of the merge commits (for reasons such as unavailable dependencies, or
compilation errors due to syntax or bad configurations), 312 projects remained. Finally, we
eliminated projects that our AST difference tool (Falleri et al. 2014) could not handle. This
left us with a total of 200 projects.

We followed the guidelines presented by Kalliamvakou et al. (2014) for mining Git
repositories. We removed projects that were too small, that is, having fewer than 10 files,
or fewer than 500 lines of code, or those projects that were not active in the past 6 months.
We also removed projects that had no merge conflicts. This was essential because there is a
long tail of small and short-lived projects on GitHub, which include trial projects, projects
with single author or no parallel development. Since these projects do not represent the
kinds of development efforts we are interested in, we remove them from consideration. The
thresholds chosen are based on similar studies (Ahmed et al. 2017).

Our final data set contained 143 projects across different domains. As a check on our
sampling, we manually categorized the domains of our projects by looking at their project
description, and using the categories used by De Souza and Maia (2013). Table 1 presents
the summary of the domains of the projects.

Next, we discuss the individual project characteristics. Table 2 provides a summary of
features and other descriptive information of the projects in our study.

The line counts (lines of code in the project) were taken from the version of the code that
was in the repository on March 1st, 2016, and the duration is the number of days from the
date of the first commits to March 1st, 2016.1 The number of developers is the number of

1Some projects may have migrated to GitHub from other platforms, so this is a lower-bound figure

Empirical Software Engineering (2020) 25:562–590 567

https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/

Table 1 Distribution of projects
by domain Domain Percentage

Development 61.98%

System Administration 12.66%

Communications 6.42%

Business & Enterprise 8.10%

Home & Education 3.11%

Security & Utilities 2.61%

Games 3.08%

Audio & Video 2.04%

unique individuals that contributed at least once over the life of the project. Individuals were
identified by the name in the “Author” field in each Git commit. The standard deviations
are high, which suggest that our sample contains a diverse set of projects. This acts in favor
of making our findings more generalizable.

From our sample of 143 projects we extracted 556,911 commits. This included 36,122
merge commits. Our data shows a high standard deviation in the total number of commits
as well as merges. Therefore, we further investigate the distribution of merge commits (see
Fig. 2). From the figure we can see that merge commits are not scarce, as projects have
an average of 252.6 merge commits. Out of all the merges, we identified 6,979 (19.32%)
conflicts, as described in the next section.

3.2 Conflict Identification

Since Git does not explicitly record information about merge conflicts, we recreate each
merge in the corpus to determine if a conflict had occurred. We use Git’s default algorithm,
the recursive merge strategy, as this is likely to be most commonly used by the average Git
project.

This also allows us to identify each conflicting commit and the affected file. More specif-
ically, we used the git merge command that automatically merges the commits, and
flags merges with overlapping changes as merge conflicts. The distribution of merge con-
flicts is shown in Fig. 3. We see that projects experienced an average of 25 merge conflicts,
or 19.32% of all merges. Merge conflicts, therefore, are a common part of the developer
experience (in our dataset).

We then collect statistics regarding each file involved in a conflict, including files that
have conflict and those that merged cleanly. We track the size of the changes being merged,

Table 2 Project characteristics
Dimension Max Min Average Std. dev.

LOC 542,571 751 75,795.04 105,280.10

Duration (Days) 6,386 42 1,674.54 1,112.11

of Developers 105 4 72.76 83.19

Total Commits 30,519 16 3,894.48 5,070.73

Total Merges 4,916 1 252.60 522.73

Total Conflicts 227 1 25.86 39.49

Empirical Software Engineering (2020) 25:562–590568

Fig. 2 Distribution of merge commits. The vertical line represents the mean (252.60)

the difference between the two branches (in terms of LOC, AST difference, and the num-
ber of methods and classes involved). We track the types of AST nodes involved (e.g.,
BinaryExpression, MethodInvocation, ExpressionStatement etc.) There
were 81 node types in total. We use the Gumtree algorithm (Falleri et al. 2014) to determine
the AST differences. We also collect meta information about the merge, for example, if the
change was merged into the master branch or not. Finally, we track the number of authors
involved in the merge.

In this the paper, we only analyze merge conflicts, that are detected by Git, and we do
not consider indirect conflicts, that are not detected by Git, but are noticeable because of
build or test failures.

3.3 Conflict Types

To understand the root cause for each conflict we manually investigated and classified 606
randomly sampled commits. We classify each conflict based on the type of changes caus-
ing the merge conflict (e.g., whitespace or comment added vs. variable name changed).
When classifying a conflict into a category, we chose the most “severe” category. As an
example, if a merge contained conflicts in both comments (FORMATTING) and program
logic (SEMANTIC), we classify it as SEMANTIC. We do so since we want to identify those

Fig. 3 Distribution of merge conflicts. The vertical line represents a mean of 25.86 conflicts per project

Empirical Software Engineering (2020) 25:562–590 569

Table 3 Conflict categories. A semantic change is a change that affects the program logic

Category Definition C.a Example

SEMANTIC Two conflicting semantic changes, NTb https://github.com/zanata/

where two different changes in the zanata-server/commit/49fda3

program logic overlap

DISJOINT Semantically unrelated changes that NTb https://github.com/jdktomcat/

overlap textually commit/0cbbd0

DELETE A conflict in which one of the branches NTb https://github.com/osmandapp/

deletes code modified on the Osmand/commit/defe2e

other branch

FORMATTING Conflicting changes due to formatting Tc https://github.com/scudderfish/

(whitespace changes) MSLoggerBase/commit/b495d3

COMMENTS Conflicting changes are limited Tc https://github.com/scudderfish/

to comments only MSLoggerBase/commit/b495d3

OTHER Not belonging to any of the above Tc

aComplexity bNon-trivial cTrivial

conflicts that require the most developer reasoning (at least for some part of the conflict).
The first two authors independently coded 300 of these commits using qualitative thematic
coding (Cruzes and Dyba 2011). Using Cohen’s Kappa, they achieved an inter-rater agree-
ment of 0.84 on 20% of the data. The first author then classified the remaining 306 commits.
The codes and their definitions are given in Table 3. Detailed examples for each category
can be found in the companion website (Companion website 2016). Next, we will present
an example of each category of NON-TRIVIAL merge conflicts.

Listing 1 presents a SEMANTIC conflict from our manually classified corpus. In
this example, we have two refactorings (renaming resultDate to projectLast-
ModificationDate and sdf to dateFormat) as well as introducing and using a new

Listing 1 An example of a SEMANTIC merge conflict. Taken from the Catdroid project, commit c03c15
(https://github.com/Catrobat/Catroid/commit/c03c15)

Empirical Software Engineering (2020) 25:562–590570

https://github.com/zanata/zanata-server/commit/49fda3
https://github.com/zanata/zanata-server/commit/49fda3
https://github.com/jdktomcat/cat/commit/0cbbd0
https://github.com/jdktomcat/cat/commit/0cbbd0
https://github.com/osmandapp/Osmand/commit/defe2e
https://github.com/osmandapp/Osmand/commit/defe2e
https://github.com/scudderfish/MSLoggerBase/commit/b495d3
https://github.com/scudderfish/MSLoggerBase/commit/b495d3
https://github.com/scudderfish/MSLoggerBase/commit/b495d3
https://github.com/scudderfish/MSLoggerBase/commit/b495d3
https://github.com/Catrobat/Catroid/commit/c03c15

Listing 2 Example of a DISJOINT merge conflict. Taken from the Catdroid project, commit 3ba518 (https://
github.com/Catrobat/Catroid/commit/3ba518)

variable (projectXMLFile). The developer resolving this merge conflict would have to
untangle the changes, in order to keep the correct refactorings and make sure that the new
variable is used where required.

Listing 2 presents an example of a DISJOINT merge conflict. In this example, two devel-
opers added different values to an existing enum. In this case, the resolution is straight
forward, as the correct solution is having all the enum values added on both branches.

Finally, Listing 3 shows the Git’s output when a file is deleted on one branch, and modi-
fied in the other. In this case, the developers is left with the modified file. It’s up to them to
find out why was the file deleted. It is also up to them to understand the changes that were
made, and decide if to keep the file, or if the changes need to be reimplemented elsewhere,
if the code was reorganized as part of a larger refactoring.

3.4 Conflict Type Classification

We use this set of 606 (10%) commits as training data for a machine learning classifier
to use on the full set of merge commits. Each class is classified using an Adaptive Boost
(AdaBoost) ensemble classifier, where we use 100 Decision Trees as weak classifiers. We
choose AdaBoost as it had the highest performance (precision and recall) when compared
with Support Vector machine (SVM) for our dataset. This was not surprising as ensem-
ble of classifiers have shown significantly improved performance in other domains such
as prediction (Sun et al. 2012). We categorize all of the 6,979 conflicting commits using
AdaBoost.

Performance of any prediction is dependent on the features used. Therefore, we wanted
to use a comprehensive set of features. We performed a literature search, and we used factors
from these 2 papers (Apel et al. 2011; Mens 2002) to decide on the final set. We also
included features that are known to influence the comprehension of a program, such as
changes size and the spread of the change (number of affected program elements).

Listing 3 Git’s output when encountering a DELETE merge conflict. Taken from the WordPress-Android
project, commit 5fe68c (https://github.com/wordpress-mobile/WordPress-Android/commit/5fe68c)

Empirical Software Engineering (2020) 25:562–590 571

https://github.com/Catrobat/Catroid/commit/3ba518
https://github.com/Catrobat/Catroid/commit/3ba518
https://github.com/wordpress-mobile/WordPress-Android/commit/5fe68c

We gathered these factors from either the Git repository, or we derived them by analyzing
the source code, when the factors are related to the process and code metrics (characterized
in numerical form)

To train the classifier we use a set of 24 features, including: the total size of the versions
involved in a conflict, the size of the conflicting area, the number of statements, methods and
classes involved in the conflict. The complete list can be found in Table 4 and in our com-
panion website (Companion website 2016). The features were chosen based on the existing
literature. We also considered factors that are known to influence the comprehension of a
program, as well as the authors’ experience.

Our goal was to achieve high precision and recall. We use 10 fold cross-validation to
test the performance of our classifier, measured using the F1-score. The F1-score considers
precision and recall by taking their harmonic mean. The average F1-score of the 10 rounds
for the conflict type classifier is 0.64, the precision is high at 0.75. The F1-score is defined
as the harmonic mean between the precision and recall scores.

We present the confusion matrix in Fig. 4. The diagonal elements represent the number
of points for which the predicted label is equal to the true label, while off-diagonal elements
are those that are mislabeled by the classifier. While our classifier has decent results, it’s
worth noting that there are some mislabeled commits. This is happening because for some

Table 4 Features used to train the classifier

Feature Description

AST Sizea The total number of AST Nodes involved in a merge conflict

LOC Sizea The sum of the LOC of the files involved in a conflict

AST diff size between the branches The difference in number of AST nodes involved in the conflict

AST diff branch-solutiona The difference in AST nodes between a branch and the merge

conflict resolution solution

LOC diff size between the branches The total number of LOC involved in the conflict

LOC diff branch-solutiona The difference in AST nodes between a branch and the merge

conflict resolution solution

AST Size of the solution The total number of nodes for the solved merge conflict

(only the files affected by a conflict)

LOC Size of the solution The LOC size of the solved merge conflict (only the files

affected by a conflict)

authors The number of authors whose changes are involved

in a merge conflict

Merged in master “True” if the branch was merged in the master branch,

“False” otherwise (was merged in a different branch)

Branch timea The timestamp of the last commit on each branch

Solution time The timestamp of the merge conflict resolution commit

methods The total number of methods involved in the merge conflict

classes The total number of classes involved in a merge conflict

statements The total number of statements involved in a merge conflict.

AST Nodes in conflict The total number of AST nodes involved in the merge conflict.

Is AST Conflict “True” if the merge conflict is at the AST level.

aCollected for both branches

Empirical Software Engineering (2020) 25:562–590572

Fig. 4 The confusion matrix for our classifier

categories (e.g. COMMENTS) less training data was available. We discuss this further in the
Threats to Validity (Section 5).

3.5 Tracking Statements

We needed to track statements that were involved in merge conflicts in order to track the
eventual outcome of merge conflicts. We decided to use GumTree (Falleri et al. 2014) for
our analysis, as it allows us to track elements at an AST level. This way we can track only
the elements that we are interested in (statements), and ignore other changes that do not
effectively change the code. The GumTree algorithm works by determining if any AST
node was changed, or had any children added, deleted or modified. The algorithm maps the
correspondence between nodes in two different trees, which allows it to accurately track
the history of the program elements. This algorithm has unique advantages over other line
tracking algorithms, such as SZZ (Kim et al. 2006). These advantages include: ignoring
whitespace changes, tracking a node even if its position in the file changes (e.g. because
lines have been added or deleted before the node of interest), and tracking nodes across
refactorings, as long as the node stays within the same file. Using this technique, we can
track a node even when it has been moved, for example, because of an extract method
refactoring.

For each statement of interest, we use the version of the source code at the point
preceding the merge conflict as the starting point. We use it to identify the AST nodes cor-
responding to the line of interest. We consider the code as changed if the AST node was
changed, or had children that were added, deleted or modified. An example of a change
to AST node is: changing int x = 0; to int y = 0;. This modifies the AST node
(SimpleName: x in the first snippet) by changing its name property (x to y). Similarly,
the change x = x +1; to x = 1; modifies the node because it modifies it’s subtree. The
algorithm maps the correspondence between nodes in two different trees, which allows us
to track the history of any statement.

AST differencing has three advantages over simple line based differencing. The first is
that it ignores whitespace changes. Second, we are able to track a node even if its position
in the file changes (e.g. lines are added or deleted before the node of interest). Third, we are
able to track nodes across refactorings, as long as the node stays within the same file.

For each node involved in a conflict, we identified all future commits that touched the file
containing that node. To do so, we track the Java statement that corresponds to the (changed)

Empirical Software Engineering (2020) 25:562–590 573

AST node. Note that in Java, there might be multiple statements in the same line (e.g., a
large if-else statement block), therefore, it is important to track only the statements that
corresponds to the changed AST node.

We then repeated the same analysis for statements that were not involved in a conflict
to determine if there was any difference between lines associated with a merge conflict and
those which were not.

3.6 Commit Classification

In order to answer research questions 2 and 3 we needed to group commits into one of two
categories: (1) bug-fixes and improvements (modifying existing code), and (2) commits that
introduced new functionality (adding new code) or were related to documentation, test code
etc.

We investigate bug-fixes as it gives an objective measure for the definition of quality
for open source projects, which often lack detailed requirements, roadmaps, or even test
harnesses. The more bug fixes and changes a line of code faces over a period of time, the
more one can argue that that line of code was incomplete or poorly implemented (Ahmed
et al. 2016). As this measure works at the individual line level, just like merge conflicts, we
decided to use it as our measure of code quality.

It is not always trivial to determine which category a commit falls under, especially
when larger projects see a large amount of activity. Manual classification of commits was
therefore not an option, and we decided to use machine learning techniques.

In order to build a classifier, we randomly selected and manually labeled a set of 1,500
commits. Two evaluators worked independently to classify the commits. Their datasets had
a 33% overlap, which we used to calculate the inter-rater reliability. This gave us a Cohen’s
Kappa of 0.90. In our training dataset, the portion of bug-fixes was 46.30%, with 53.70%
of the commits assigned to the “Other” category. Some keywords indicating bug-fixes
or improvements were “Fix,” “Bug,” “Resolves,” “Cleanup,” “Optimize,” and, “Simplify,”
together with their derivatives. Anything that did not fit into this pattern was marked as
“Other.”

Not all bug-fixing commits include these keywords or a direct reference to an issue-
id; commit messages are written by the initial contributor, and there are few guidelines.
A similar observation was made by Bird et al. (2009), who performed an empirical
study showing that bias could be introduced due to missing linkages between commits
and bugs.

We trained a Naive-Bayes (NB) classifier and a Support Vector Machine (SVM) using the
SciKit toolset (Pedregosa et al. 2011). The frequencies of the words in the commit message
were used as the predictors. We used 10% of the data to train the classifier. We applied the
classifiers to the training data with 10-fold cross-validation. As before, we used the F1-score
to measure and compare the performance of the models. The NB classifier outperformed
the SVM. We used the NB classifier to classify the full set of 16,571 commits.

Table 5 has the quality indicator characteristics of the NB classifier. Tian et al. (2012),
suggest that for keyword-based classification the F1-score is usually around 0.55, which
happened in our case. While our classifier is far from perfect, it is comparable to “good”
classifiers in the literature. Further, we believe it is unlikely for the biases to have a con-
founding effect on our analysis. Since our analysis only relies on relative counts of bug-fixes
for statements, as long as we do not systematically undercount bug-fixes for only some
statements, our results should be valid. A manual inspection of the classification results did
not show any evidence of systemic over- or under-counting.

Empirical Software Engineering (2020) 25:562–590574

Table 5 Details of the bugfix
(Naive Bayes) classifier Precision Recall F1-score

Bug-fix 0.63 0.43 0.51

Other 0.74 0.86 0.80

For each line of code resulting from a merge conflict, we count the number of future
commits in which it appears, as long as those commits are identified as bug-fixes. We stop
tracking when we encounter a commit that is classified as “Other” (see Fig. 5, where we
count commits C1 and C2, but not Cn). Our reasoning is that once an element has seen a
change that is not a bug-fix, it is no longer fair to assume that subsequent bug fixes are
associated with the original merge conflict.

3.7 Core Authors Identification

We categorize developers as core or non-core based on the amount of their contributions.
This is because, typically, a small core team is responsible for more than 80% of contri-
butions to open source projects (Mockus et al. 2002). Therefore, those developers who are
in the core are likely those with higher experience. We calculate this by first splitting the
project history into quarters. We then identify those developers who had the most contri-
butions in a quarter. We do so because in open source there is high developer turnover, or
developers become inactive for periods of time, therefore, it is better to gauge experience in
shorter time periods. We identify developers as core contributors by evaluating if they are
in the top 20% (in terms of number of commits) of the developers in that quarter.

We note that some developers started as non-core and transitioned to core, whereas some
went from active to inactive. Therefore, an author can switch between core and non-core
across quarters, based on their levels of contribution, and vice-versa.

3.8 Regression Analysis

In order to answer our third research question, we needed to build a regression model to
identify the factors that impact the number of bug fixes occurring on lines of code result-
ing from merge conflicts. We use Generalized Linear Regression (Cohen et al. 2013). In
our data, the dependent variable (count of bug fixes occurring on conflict lines) follows
a Poisson distribution. Therefore, we use a Poisson regression model with a log linking
function.

Fig. 5 An overview of the tracking algorithm. The lines marked with � represent the conflicting region of
a merge. For each line we identify the AST nodes, and track all the modifications (at AST level) forward in
time. We stop when we hit a commit that was classified as Other

Empirical Software Engineering (2020) 25:562–590 575

We include the following factors in our regression model: file dependencies, source code
and change metrics, and author related metrics. For calculating the dependencies of the files
that are involved in a conflict, we use Understand (2017) to count the number of references
to- and from other files. We collect this information as a proxy for the importance of the
file. We assume that the more a file is referenced by other files, the more central that file
is, and hence more important. Any change in these central files can increase the chance of a
change being required in other files.

For each conflict commit, we record the information about the size of the change – the
difference between the two merged branches, in terms of LOC, AST difference, and the
number of methods and classes being affected. Our intuition is that larger changes should
have a higher chance of causing a conflict. We also calculate the number of authors who
made commits to the branches that were merged.

After collecting these metrics, we checked for multi-collinearity using the Variance Infla-
tion Factor (VIF) of each predictor in our model (Cohen et al. 2013). VIF describes the level
of multicollinearity (correlation between predictors). A VIF score between 1 and 5 indicates
moderate correlation with other factors, so we selected the predictors with VIF score thresh-
old of 5. This step was necessary since the presence of highly correlated factors forces the
estimated regression coefficient of one variable to depend on other predictor variables that
are included in the model.

3.9 Identifying Resolution Strategies

Not all conflicts are created equal, and their resolution is dependent on the nature of the
changes being merged. A developer can choose different strategies for resolving conflicts.
The easiest strategy is to simply select one of the branches that is being merged. While this
might work for trivial conflicts (such as FORMATTING), it might not work for more complex
conflicts. In some cases, it might be possible to mix and match the changes by interleaving
existing code from the two branches. However, in more complicated cases, a developer
might need to adapt the code from both branches to successfully merge the changes.

In order to determine the strategy that developers had used, we look at the existing solu-
tions to merge conflicts. For each conflict we perform a line difference between the solution
and the tips of the two branches being merged. Lines that were different from one branch,
but not the other are considered to have been selected by the developer for integration.
Lines that are different from both branches implies that they have been changed in order
to be successfully integrated. Based on these observations we identified the following three
resolution strategies:

1. SELECT ONE: The solution is the same as one of the branches (the difference to one of
the branches is 0);

2. INTERLEAVE: The solutions contains lines from both the branches; none of the lines
were changed and no new lines were added (we can match each line in the solution to
a line in one of the branches);

3. ADAPTED: Existing lines were changed or/and new lines were added.

4 Results

In the following section, we present our results structured around our four research
questions.

Empirical Software Engineering (2020) 25:562–590576

4.1 Merge Conflict Characteristics (RQ1)

In our dataset, 19.32% of merges resulted in merge conflicts (6,979 merge conflicts in
36,122 merge commits). This means that almost 1 in 5 merges resulted in conflicts that
required human intervention. Our results are similar to those found by Brun et al. (2013)
and Sarma et al. (2003). A merge conflict not only means that developers have to stop their
work, reason about the conflicting changes, and figure out the best way to integrate the
changes. It also creates a situation where it is possible for bugs to slip through if developers
do not refactor and run test cases, or have their proposed (adapted) code peer reviewed.

4.1.1 Types of Merge Conflicts

To further understand how different types of merge conflicts can impact the source code, we
examine the type of changes leading to a merge conflict (see Section 3.2 for discussion of
categories and methodology). Our results are presented in Table 6, where we present both
the results of the automated classifier, as well as the results from our manual classification
of the 606 merge conflicts. The distributions of the automatically classified merge conflict
types match the distributions of our manual labeling (training data), showing the efficacy of
the automated classifier.

The resolution of the first two types of merge conflicts (SEMANTIC and DISJOINT)
requires understanding the program logic of the changes in order to successfully resolve
the merge conflict. We find that the most common type of merge conflict is SEMANTIC

(59.46% of all merge conflicts) where changes are entangled. 14.53% of merge conflicts
emerge from concurrent changes to program logic that do not interact with each other and
can co-exist (DISJOINT). This means that in the vast majority (at least 75.23% of cases, for
the SEMANTIC, DISJOINT and DELETE categories) of merge conflicts, a developer needs to
reflect on the program logic when integrating changes, and that for the majority of merge
conflicts (at least 59.46% of cases, which represents the SEMANTIC category), new code
has to be written.

Merge conflicts due to lines of code being deleted are easier to merge, but still require
the developer to reason about the deletion. DELETE conflicts constituted a small percentage
(1.24%) of all merge conflicts.

Although resolving merge conflicts due to FORMATTING changes (23.21% of all merge
conflicts) or COMMENTS (0.60% of all merge conflicts) require human intervention, they
are easier and less risky to resolve since they do not affect the programs’ functionality. It is
interesting to note that merge conflicts caused by comments are the rarest of all—alluding

Table 6 Merge conflict types and their frequency of occurrence

Category # of conflicts % of total (classifier) % of total (training) �

SEMANTIC 4,150 59.46% 50.86% +8.6%

DISJOINT 1,014 14.53% 22.74% −8.21%

DELETE 86 1.24% 2.52% −1.28%

FORMATTING 1,620 23.21% 11.84% +11.35%

COMMENTS 42 0.60% 2.21% −1.61%

OTHER 67 0.96% 3.31% −2.40%

Empirical Software Engineering (2020) 25:562–590 577

Fig. 6 Frequency of change type by merge conflict type

to the fact that inline comments are rarely changed (if added at all), and most likely only
updated when the code is changed.

4.1.2 Change Types

We first examine the kinds of changes that are associated with merge conflicts to understand
the types of tasks that are most associated with merge conflicts. We were curious to see
if merge conflicts arose from behaviors like multiple developers fixing the same bug. We
found this not to be the case. The majority of the changes involved in merge conflicts were
non-bug fix changes (see Fig. 6).

4.1.3 Merge Conflict Characteristics

Next we characterize merge conflicts based on the type and size of changes, the num-
ber and type of developers making the changes (Table 7). For the former, we determine
whether the merger conflicts are non-trivial, that is, if they were associated with changes
to the AST. The AST difference captures the impact of changes and is a good estimator
of the amount of information a developer must process when resolving merge conflicts.
The average size of a Java file is 4,845 AST Nodes, and the maximum is 168,790 AST
Nodes. We find that DELETE merge conflicts are associated with the highest AST dif-
ference (median of 1,662 nodes, which is 34% of the average file). We believe that a

Table 7 Characteristics of merges conflicts

Conflict Median AST diff Median Median # Overall core

Category (% of median) LOC diff authors developers %

SEMANTIC 387 (8%) 2,351.0 4 89.08%

DISJOINT 88 (2%) 1,037.0 3 89.65%

DELETE 1,662 (34%) 16,102.5 2 86.01%

FORMATTING 0 (0%) 62.0 2 91.67%

COMMENTS 19 (<1%) 427.5 3 80.00%

OTHER 6 (<1%) 238.0 4 86.49%

Empirical Software Engineering (2020) 25:562–590578

majority of these changes are associated with refactoring, a result of “chunks of code” that
are moved, sometimes across files. Since these (cross-file) moves get counted twice (once
for the removal, and once for the addition), it inflates the AST node numbers and LOC
differences.

SEMANTIC merge conflicts also led to large AST differences (median 387 nodes). This
is intuitive because larger changes have a higher chance of having semantic interactions. In
our data set, independent (DISJOINT) changes (affecting a median of 88 AST nodes) are not
as complex as those in the prior two categories. As expected FORMATTING merge conflicts
have a median AST difference of 0. COMMENTS merge conflicts also have AST node dif-
ferences (median of 19). This is because Eclipse’s JDT has AST nodes for comments. The
LOC differences mirror the AST differences.

The median number of authors involved in conflicting commits ranged from 2 to 4. Note
that SEMANTIC merge conflicts included changes from a median of four developers, which
means that the developer resolving the merge conflict has to reason about changes made by
multiple developers—not an easy task. Even DISJOINT merge conflicts included changes
from a median of three developers.

Next, we look at the experience level of developers resolving merge conflicts. We clas-
sify developers as core or non-core based on their level of contributions as described in
Section 3.8. We find that core members are involved in the majority of merge conflict res-
olutions across all merge conflict types. This is intuitive, as core developers have more
knowledge of the system and are therefore the best suited for solving merge conflicts. How-
ever, a number of merge conflicts are solved by non-core developers. This can still present
problems, as they have less experience and insight into the code, which may make it difficult
for them to correctly resolve merge conflicts.

In summary, we identified 6 types of merge conflicts, and the vast majority (75.20%) of
merge conflicts impact the program logic, and therefore, require reasoning about the goals
of the changes and the best way to integrate them.

4.2 Merge Conflicts and Code Quality (RQ2)

To answer RQ2 we examine whether the changes involved in merge conflicts are more likely
to contain bugs than non-conflicting merges. We perform this analysis at the statement level;
for every line of code involved in a merge we examine whether it was involved in a future
bug fix based on the approach described in Sections 3.6 and 3.8. We use Fisher’s Exact Test
to compare the number of bug-fix commit between conflicting and non-conflicting merges.
The results show that commits that are involved in a merge conflict are 2.38 times more
likely to contain a (future) bug fix (Fisher’s Exact Test, odds ratio = 2.38, p < 0.05).

Next we determine whether there are differences between different types of merge con-
flicts, as not all merge conflicts take the same effort to resolve. For our analysis we cluster
merge conflicts into two groups:

– NON-TRIVIAL merge conflicts include the SEMANTIC, DISJOINT and DELETE cate-
gories. Developers have to determine how to resolve the logical changes in these merge
conflicts.

– TRIVIAL merge conflicts include the other categories: FORMATTING, COMMENTS and
OTHER. Since these merge conflicts do not involve semantic changes, a trivial merge
resolution, such as choosing one version over the other, is feasible.

As before, we use Fisher’s Exact Test to examine the difference between TRIVIAL and
NON-TRIVIAL merge conflicts and future bug fixes. We find that NON-TRIVIAL merge

Empirical Software Engineering (2020) 25:562–590 579

conflicts are 26.81 times more likely to need a bug fixing commit compared to lines involved
in TRIVIAL merge conflicts (Fisher’s Exact Test, odds ratio = 26.81, p < 0.05.) This
confirms that merge conflicts in the NON-TRIVIAL category are more challenging for
developers to resolve, and might either introduce bugs or are associated with changes that
themselves are likely to cause bugs.

We also ran Fisher’s Exact Test and found a statistical difference between SEMANTIC

and DISJOINT merge conflicts (odds ratio = 0.47, p < 0.05.) This means that merge con-
flicts arising from disjoint (independent) changes are half as likely to be buggy compared
to SEMANTIC merge conflicts. There was no statistical difference between DELETE and
SEMANTIC or DELETE and DISJOINT merge conflicts. There was no significant difference
between the merge conflicts types in the TRIVIAL group. As we perform repeated tests, we
use the Bonferroni adjustment for the α values.

In summary, we find that code that was involved in a merge conflict has a higher like-
lihood of being involved with a future bug. While some bugs are injected in the merge
resolution, others were likely already there (e.g., changes in DISJOINT merge conflicts). In
either case, a closer scrutiny of code involved in a merge conflict is warranted.

4.3 Factors Correlated with Bugs (RQ3)

As reported in the defect prediction literature, there are several factors that correlate with
the bugginess of code. A critical factor is the size of the module under investigation (El
Emam et al. 2001). Therefore, we posit that the size of a change in a merge should be
a predictor of bug-proneness. Another factor that has been associated with defects is the
number of committers—the “too many cooks” (Weyuker et al. 2008) phenomena. Finally,
it has been noted that changes made to central files have a higher likelihood of reducing
software quality (Cataldo and Herbsleb 2013). Therefore, we model the total number of bug
fixes to conflicting commits by the size of the change, file dependencies, number of authors,
and their experience level.

We build a Poisson regression model with a log linking function. After filtering the fac-
tors with V IF ≤ 5, we had a set of eight factors (Table 8) out of 43 total; all eight factors
were significant at p < 0.05. These factors are: number of references to other files, num-
ber of references to the file involved in the merge, number of non-core contributor authors
involved in the merge, number of authors involved in the merge, number of AST nodes
changed, number of classes involved in the merge, number of methods involved in the merge
and the number of LOCs changed.

Table 8 Poisson regression
model predicting bug-fix
occurrence

Factor Coefficients

of References to other files 0.08408

of References to the file involved in merge −0.03501

of Non-core contributor −1.898

of authors w/ changes involved in the merge −0.5634

of classes involved in the conflicta −0.1636

of methods involved in the conflictb 0.3756

of AST nodes changed 0.0007278

of LOC changes 0.00003705

aThe number of classes
containing conflicting changes
bThe number of methods
containing conflicting changes

Empirical Software Engineering (2020) 25:562–590580

The McFadden Pseudo R-squared (Hensher and Stopher 1979) of our model is 0.36. We
calculated McFadden’s Pseudo R-squared as a quality indicator of the model because there
is no direct equivalent of R-squared for Poisson regression. The ordinary least square (OLS)
regression approach to goodness-of-fit does not apply for Poisson regression. Moreover,
pseudo R-squared values like McFadden’s cannot be interpreted as one would interpret OLS
R-squared values. McFadden’s Pseudo R-squared values tend to be considerably lower than
those of the R-squared. Values of 0.2 to 0.4 represent an excellent fit (Hensher and Stopher
1979).

The effect of outward dependencies (number of external references from the file involved
in a merge conflict) is positive, therefore changes that refer to external file (class) elements
are more likely to contain bugs. We found a negative effect of inward dependencies (number
of references to the file involved in merge). We also found a negative coefficient for the
size of the change (number of classes involved in the merge conflict), the number of authors
involved in the change and the number of non-core contributor. The correlation between
the number of authors with changes involved in a merge conflict and the number of future
bugfixes is also negative.

Finally, in line with previous research (Kim et al. 2008; Mockus and Weiss 2000;
Weyuker et al. 2008) we find a positive effect of number of methods involved in the merge
conflict, number of LOC changes and number of AST nodes changed on future bug fixing
commit counts.

4.4 Resolution Strategies (RQ4)

In this section, we analyze the strategies developers use when resolving merge conflicts.
Overall, we find that ADAPTED was the most commonly used resolution strategy (60.82%),
compared to INTERLEAVE (26.38%) and SELECT ONE (12.80%). Figure 7 presents the
results detailed by merge conflict type. Inr the case of SEMANTIC merge conflicts, we
observe that about 80% of the resolutions modify the existing code (ADAPTED) in order to
successfully resolve the merge conflict. As expected, merge conflicts that have a semantic
nature require a bit of “coercion” for them to work together correctly.

Another category where a high percentage of resolutions use the ADAPTED strategy is
COMMENTS. We hypothesize that this is because merge conflicts in comments are actually

Fig. 7 Resolution strategy based on commit type

Empirical Software Engineering (2020) 25:562–590 581

Fig. 8 Developer category for each merge conflict category

conflicting edits in two English texts, which require changing the text to make the sentence
structure coherent when integrating the changes.

We see that in FORMATTING merge conflicts, the vast majority (over 80%) involve
a resolution by either SELECT ONE or by INTERLEAVE strategies. The small amount of
ADAPTED strategy is probably because developers were reformatting the code to integrate
the changes.

An interesting result is that more than half of the merge conflicts that are generated by
DISJOINT changes still require the developers to use ADAPTED in order to resolve it. Our
hypothesis that while the changes themselves might be disjoint, simply interleaving them
might not be sufficient.

We now investigate who resolves merge conflicts. We found that the vast majority of
merge conflicts are resolved by one of the authors that contributed to one of the branches,
as shown in Fig. 8. Core developers solve most of them (89.47%), while non-core develop-
ers solve only a small fraction (10.53%). We also saw that about 2% of the merge conflicts
were solved by THIRD PARTY developers (who have not contributed to any of the branches).
We also analyze whether these third party contributors were core or non-core developers.
We present the data in Table 9. For the SEMANTIC category, over 80% of the third party

Table 9 Distribution of developer types resolving merge conflicts

Category Third party One of the authors

Core Non-core Core Non-core

SEMANTIC 80.97% 19.03% 90.19% 9.80%

DISJOINT 75.00% 25.00% 91.38% 8.62%

DELETE 91.67% 8.33% 91.57 8.33 %

FORMATTING 81.25 % 18.75% 86.61% 13.39%

COMMENTS 85.71% 14.29% 76.92% 23.08%

OTHER 76.06 % 23.94 % 88.47% 11.53%

Empirical Software Engineering (2020) 25:562–590582

developers resolving a merge conflict were core contributors. We postulate that these devel-
opers are “integrators” for the project. Only a very small fraction of the merge conflicts are
resolved by a third party developer who is a non-core developer. The same trend can be seen
for the other merge categories as well.

In summary, we find that ADAPTED is the most used strategy for resolving merge
conflicts. When dealing with NON-TRIVIAL merge conflicts the percentage increases
significantly, possibly indicating the higher difficulty these merge conflicts pose.

5 Discussion

Merge conflicts are far from a solved problem. Despite advances in VCS tools and pre-
scribed development practices, such as frequent commits and review workflows, merge
conflicts still occur frequently. We found that 1 out of every 5 merge commits in our dataset
resulted in a merge conflict that required human intervention. Additionally, lines of code
involved in a merge conflicts were 2× more likely to be buggy. Our taxonomy of merge
conflicts shows that in 60% of cases, merge conflicts arise because of interacting, seman-
tic changes. Furthermore, lines of code involved in these types of merge conflicts are 26×
more likely to be buggy than in other types of merge conflicts.

Our results have implications for developers, tool builders, and researchers. Develop-
ers should focus their testing and code reviews on code resulting from merge conflicts, as
they are more likely to be buggy. This is even more critical when the merge involves more
changes, or when the conflicting changes span multiple methods.

Tool builders can use our merge conflict taxonomy and conflict (commit) classifier to
automatically identify and flag lines of code resulting from merge conflicts, so that these
receive higher test coverage or increased code review. Similarly, tools can use the informa-
tion of the files, methods, lines of code involved in a merge conflict to prioritize testing,
especially in the context of swarm testing (Groce et al. 2012; Holzmann et al. 2011).

Our results indicate that 24% of merge conflicts (FORMATTING, COMMENTS) are trivial
to resolve. However, they still require human intervention, which interrupts developers’
workflow. Tool builders should aim to better support automated code integration for such
cases, so that it doesn’t require human intervention. For example, Git, has the option of
performing a merge that ignores whitespace changes. However, this is not a default option.
Research has shown (Johnson et al. 2002; Johnson and Goldstein 2003; Sunstein and Thaler
2003; Samuelson and Zeckhauser 1988) that users, and developers (Parsons and Saunders
2004), are affected by default and anchoring biases. This indicates a preference of using the
default options, instead of changing them. Perhaps the description of the option to ignore
whitespace while merging should be more prominent, or enabled by default. As we see
that a fairly large number of merge conflicts (over 20%) are caused by formatting changes,
enabling the option by default could significantly reduce the number of merge conflicts
developers face.

Ours is the first empirical study to investigate the effects of merge conflicts on the bug-
giness of code. Some of our results are counterintuitive and present opportunity for new
lines of research. For example, we observe that an increased number of non-core develop-
ers is correlated to fewer bug-fixes in the future. We posit that this happens because when
non-core developers introduce changes, core developers review them when merging, “elim-
inating” some of the bugs in the process. We have observed this behavior while analyzing
the merge conflict resolution strategies in Section 4.4 where we see that most merges are
solved by core developers.

Empirical Software Engineering (2020) 25:562–590 583

As shown in Section 4.3, we found a negative effect of inward dependencies (number of
references to the file involved in merge.) We posit that changes to central files might have
to pass more tests or that bugs are identified earlier because more people depend on them.

In the case of the number of authors with changes involved in the merge conflict, we
speculate that we are seeing the effect of Linus’ law, which states that “many eyes make
all bugs shallow” (Raymond 1999). We plan to perform further research to investigate how
many of the bug fixes that were found after the merge conflict existed before the merge
(were dormant), and how many were introduced as part of the merge conflict resolution.
The negative correlation between number of classes and bugginess can be attributed to the
fact that changes that span multiple classes are more likely to be refactorings, compared to
other changes.

When looking at the resolution strategies, we find that developers primarily use
ADAPTED as the resolution strategy when dealing with SEMANTIC merge conflicts. Lines
involved in SEMANTIC merge conflicts are also most likely to be involved in future bug
fixes.

We hypothesize that changes introduced by ADAPTED are not subject to the same level of
review as regular commits. Therefore, there is a chance that the ADAPTED merge resolution
strategy itself could introduce new bugs. Also, they might contain preexisting bugs. Further
studies are needed to answer these questions.

We also saw that non-core developers who were not involved in the development of
either of the branches (3rd party) resolve merge conflicts. This is counterintuitive, as non-
core developers are less likely to have an in depth understanding of the code base and they
are more likely to introduce bugs. On top of that, not being involved in the development of
either branch makes their ADAPTED resolution strategy bug prone. It might also be the case
that a developer is classified as non-core, but she might have localized experience. Further
investigation is needed to explore this.

We posit that because resolving merge conflicts take developers outside of the established
workflow, they may not adhere to the strict testing or reviewing process that they would
otherwise follow when making their original changes. Developers may pay more attention
to changes that include multiple authors, because of which lines of code resulting from
such merge resolution are negatively associated with bugginess. Further investigation of
the review and testing processes that developers follow for merge resolution is needed to
validate this idea.

Our study has included a broad spectrum of projects from different domains. However,
they are all open source. Commercial projects have different constraints, development pri-
orities, and practices. Future research comparing the differences between these two types of
development with respect to the types of merge conflicts, merge resolution processes, and
bugginess of resulting code needs to be performed.

6 Threats to Validity

Our empirical study, like any, has threats to validity. Where possible, we have taken steps to
ameliorate their impact.

Identifying merges: Not all projects use git merge to integrate their change. Some
use rebase or squash for that purpose. It is currently impossible to tell, from the public
history alone, when rebasing or squashing occurs, as all we see is a clean, linear history.
This presents the threat that we might under-sample the total number of merge conflicts that

Empirical Software Engineering (2020) 25:562–590584

occur in practice. However, we believe this thread has minimal impacts on our results. This
just reduces the number of merge conflicts available for analysis, which is compensated by
the increased corpus size.

Sampling Bias: All our projects are sampled from a single source—GitHub (GitHub
2017), so our findings may be limited to open source programs. To ensure representative-
ness of our samples, we used search results from the Github repository of Java projects
that use the Maven build system. So, our sample of programs could be biased by skew
in the projects returned by Github. Github’s selection mechanisms favoring projects based
on some unknown criteria may be another source of error. While this makes our results
less generalizable, the threat is minimal since we analyze a large number of projects: 500
projects were extracted, from which 143 were selected spanning eight different domains.

Fitness of our approach: We use Gumtree algorithm (Falleri et al. 2014) to track pro-
gram elements across commits when calculating AST differences. Gumtree, however, does
not track program elements across renames or moves to other folders. Despite this draw-
back, Gumtree is a robust algorithm used to track refactoring and moves within the same
file, and is better than line differencing tools.

Machine learning classifiers: We use machine learning to group merger conflicts into
the six categories, and to determine whether a commit was a bug-fix. As with any classifier,
we may have some mislabeling. This threat is low as our classifiers have good F1-measure
and high precision. The confusion matrix (Fig. 3) shows that the highest misclassification
is likely to happen when SEMANTIC merge conflicts are identified as DISJOINT merge con-
flicts. This does not affect our findings for RQ2 (effect of merge conflict on code quality)
since both (SEMANTIC and DISJOINT) merge conflict types are in the same NON-TRIVIAL

category. Also, our misclassification is asymmetrical because we are classifying more TRIV-
IAL (COMMENTS) merge conflicts as NON-TRIVIAL (SEMANTIC, DISJOINT) than vice
versa. So this makes our results conservative, because any misclassified NON-TRIVIAL com-
mits reduces the future bug-fix count used to answer RQ2. Regarding the bug-fix classifier,
our recall and precision measures are on par with past work (Bird et al. 2009). Since our
analysis relies on relative count of bug fixes, as long as we do not systematically undercount
bug fixes, our results are valid.

Bug-fix commit categorization: It’s not always possible to untangle bug fixing changes
from other kinds (refactorings, formatting, even adding new features). The same is true of
other commit types, where bug fixes might have “crept in.” As mention before, as long as
we don’s systematically over- or under-count the number of bug-fixing commits, our results
should still be valid.

Finally, we have assumed that all bugs were found and fixed by developers when we use
it as a metric of bugginess of merged lines of code. This may not always be true, and hence
our results are conservative.

7 Conclusions

Our empirical study spanning 143 open source projects found that merge conflicts occur
frequently. Moreover, code involved in a conflict had a 2× higher chance of being buggy.
To create a better understanding of the merge conflicts, their frequency, and impact, we
create a taxonomy of conflicts, which includes six categories of conflicts depending on the
type of resolution effort needed. We found about 74% of merge conflicts include interacting
semantic changes (to the underlying AST). Moreover, code resulting from these conflicts

Empirical Software Engineering (2020) 25:562–590 585

was 26× times more likely to be buggy as compared to that from other conflicts. They
are also more likely to be solved using an ADAPTED strategy, compared to other types of
conflicts.

Our analysis of the factors associated with merge conflicts show that conflicts that
involved files with high (outward) dependencies were correlated with more bugs. However,
inward dependencies, number of non-core contributors, and the number of authors were
associated with fewer bugs.

We conjecture that the merge resolution process disrupts the normal review and testing
workflow, which might be the reason why lines involved in a merge conflict have a higher
likelihood of being buggy. We plan to perform more research to investigate the review and
testing workflow around a merge resolution. We also plan to study the frequency and dis-
tribution of bugs that are actually introduced as part of the resolution process as opposed to
bugs that were dormant and remaining in the original code.

Acknowledgements We would like to thank the Software Engineering and HCI research groups at Oregon
State University for their input and feedback on this project. This work was in part made possible through
support from the National Science Foundation (Grants IIS:1559657, CCF:1253786), and IBM.

References

Accioly P, Borba P, Cavalcanti G (2018) Understanding semi-structured merge conflict characteristics
in open-source java projects. Empir Softw Eng 23(4):2051–2085. https://doi.org/10.1007/s10664-017-
9586-1

Ahmed I, Gopinath R, Brindescu C, Groce A, Jensen C (2016) Can testedness be effectively measured?
In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering, FSE 2016. ACM, Seattle, pp 547–558, https://doi.org/10.1145/2950290.2950324

Ahmed I, Brindescu C, Mannan UA, Jensen C, Sarma A (2017) An empirical examination of the relationship
between code smells and merge conflicts. In: Proceedings of the 11th ACM/IEEE international sympo-
sium on empirical software engineering and measurement, ESEM ’17. IEEE Press, Piscataway, pp 58–
67. https://doi.org/10.1109/ESEM.2017.12

Apache Maven (2018) Maven. The Apache Software Foundation. https://maven.apache.org/. Accessed 1 May
2018

Apel S, Liebig J, Brandl B, Lengauer C, Kästner C (2011) Semistructured merge: rethinking merge in revi-
sion control systems. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on foundations of software engineering, ESEC/FSE ’11. ACM, New York, pp 190–200,
https://doi.org/10.1145/2025113.2025141

Apel S, Lessenich O, Lengauer C (2012) Structured Merge with auto-tuning: balancing precision and per-
formance. In: Proceedings of the 27th IEEE/ACM international conference on automated software
engineering, ASE 2012. ACM, Essen, pp 120–129, https://doi.org/10.1145/2351676.2351694

Biehl JT, Czerwinski M, Smith G, Robertson GG (2007) FASTDash: a visual dashboard for fostering aware-
ness in software teams. In: Proceedings of the SIGCHI conference on human factors in computing
systems, CHI ’07. ACM, New York, pp 1313–1322, https://doi.org/10.1145/1240624.1240823

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?: bias
in bug-fix datasets. In: Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software engineering, pp 121–130

Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation of software quality. In: Proceedings of the
2nd international conference on software engineering, ICSE ’76. IEEE Computer Society Press, Los
Alamitos, pp 592–605

Brun Y, Holmes R, Ernst MD, Notkin D (2011) Proactive detection of collaboration conflicts. In: Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of software
engineering, ESEC/FSE ’11. ACM, Szeged, pp 168–178, https://doi.org/10.1145/2025113.2025139

Brun Y, Holmes R, Ernst MD, Notkin D (2013) Early detection of collaboration conflicts and risks. IEEE
Trans Softw Eng 39(10):1358–1375. https://doi.org/10.1109/TSE.2013.28

Empirical Software Engineering (2020) 25:562–590586

https://doi.org/10.1007/s10664-017-9586-1
https://doi.org/10.1007/s10664-017-9586-1
https://doi.org/10.1145/2950290.2950324
https://doi.org/10.1109/ESEM.2017.12
https://maven.apache.org/
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/TSE.2013.28

Buckley J, Mens T, Zenger M, Rashid A, Kniesel G (2005) Towards a taxonomy of software change. J Softw
Maint Evol Res Pract 17(5):309–332. https://doi.org/10.1002/smr.319

Canfora G, Cerulo L, Penta MD (2007) Identifying changed source code lines from version repositories.
In: Fourth international workshop on mining software repositories (MSR’07:ICSE Workshops 2007),
pp 14–14, https://doi.org/10.1109/MSR.2007.14

Cataldo M, Herbsleb JD (2013) Coordination breakdowns and their impact on development productivity and
software failures. IEEE Trans Softw Eng 39(3):343–360. https://doi.org/10.1109/TSE.2012.32

Cavalcanti G, Borba P, Accioly P (2017) Evaluating and improving semistructured merge. Proc ACM
Program Lang 1(OOPSLA):59:1–59:27. https://doi.org/10.1145/3133883

Cohen J, Cohen P, West S, Aiken L (2013) Applied multiple regression/correlation analysis for the behavioral
sciences. Taylor & Francis

Companion website (2016) http://caius.brindescu.com/research/mc-classification
Corbet J, Kroah-Hartman G (2016) 2016 Linux Kernel Development Report. Tech. rep., The Linux

Foundation
Costa C, Figueiredo JJC, Ghiotto G, Murta LGP (2014) Characterizing the problem of developers’ assign-

ment for merging branches. Int J Softw Eng Knowl Eng 24(10):1489–1508. https://doi.org/10.1142/
S0218194014400166

Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering. In:
2011 international symposium on empirical software engineering and measurement, pp 275–284.
https://doi.org/10.1109/ESEM.2011.36

da Silva IA, Chen PH, Van der Westhuizen C, Ripley RM, van der Hoek A (2006) Lighthouse: coordina-
tion through emerging design. In: Proceedings of the 2006 OOPSLA workshop on Eclipse Technology
eXchange, eclipse ’06. ACM, New York, pp 11–15, https://doi.org/10.1145/1188835.1188838

de Souza CRB, Redmiles D, Dourish P (2003) “Breaking the code”, Moving between private and pub-
lic work in collaborative software development. In: Proceedings of the 2003 International ACM
SIGGROUP Conference on Supporting Group Work, GROUP ’03. ACM, New York, pp 105–114,
https://doi.org/10.1145/958160.958177

De Souza LBL, Maia MDA (2013) Do software categories impact coupling metrics? In: Proceedings of the
10th working conference on mining software repositories, MSR ’13. IEEE Press, Piscataway, pp 217–
220

Dewan P, Hegde R (2007) Semi-synchronous conflict detection and resolution in asynchronous software
development. In: Bannon LJ, Wagner I, Gutwin C, Harper RHR, Schmidt K (eds) ECSCW 2007.
Springer, London, Limerick, pp 159–178. https://doi.org/10.1007/978-1-84800-031-5 9

El Emam K, Benlarbi S, Goel N, Rai SN (2001) The confounding effect of class size on the validity of
object-oriented metrics. IEEE Trans Softw Eng 27(7):630–650. https://doi.org/10.1109/32.935855

Falleri JR, Morandat F, Blanc X, Martinez M, Montperrus M (2014) Fine-grained and accurate source code
differencing. In: Proceedings of the 29th ACM/IEEE international conference on automated software
engineering, ASE ’14. ACM, New York, pp 313–324, https://doi.org/10.1145/2642937.2642982

GitHub (2017) https://www.github.com/
Godfrey MW, Zou L (2005) Using origin analysis to detect merging and splitting of source code entities.

IEEE Trans Softw Eng 31(2):166–181. https://doi.org/10.1109/TSE.2005.28
Gorton I, Liu A (2002) Software component quality assessment in practice: successes and practical imped-

iments. In: Proceedings of the 24th international conference on software engineering, ICSE ’02. ACM,
New York, pp 555–558, https://doi.org/10.1145/581339.581408

Grinter RE (1995) Using a configuration management tool to coordinate software development. In: Proceed-
ings of conference on organizational computing systems, COCS ’95. ACM, New York, pp 168–177,
https://doi.org/10.1145/224019.224036

Groce A, Zhang C, Eide E, Chen Y, Regehr J (2012) Swarm Testing. In: Proceedings of the 2012 inter-
national symposium on software testing and analysis, ISSTA 2012. ACM, Minneapolis, pp 78–88,
https://doi.org/10.1145/2338965.2336763

Guimarães ML, Silva AR (2012) Improving early detection of software merge conflicts. In: Proceedings of
the 34th international conference on software engineering, ICSE ’12. IEEE Press, Zurich, pp 342–352

Hensher D, Stopher P (1979) Behavioural travel modelling, Croom Helm, London
Holzmann GJ, Joshi R, Groce A (2011) Swarm verification techniques. IEEE Trans Softw Eng 37(6):845–

857. https://doi.org/10.1109/TSE.2010.110
Johnson EJ, Goldstein D (2003) Do defaults save lives? Science 302(5649):1338–1339. https://doi.org/10.

1126/science.1091721
Johnson EJ, Bellman S, Lohse GL (2002) Defaults, framing and privacy: why opting in-opting out1. Mark

Lett 13(1):5–15. https://doi.org/10.1023/A:1015044207315

Empirical Software Engineering (2020) 25:562–590 587

https://doi.org/10.1002/smr.319
https://doi.org/10.1109/MSR.2007.14
https://doi.org/10.1109/TSE.2012.32
https://doi.org/10.1145/3133883
http://caius.brindescu.com/research/mc-classification
https://doi.org/10.1142/S0218194014400166
https://doi.org/10.1142/S0218194014400166
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1145/1188835.1188838
https://doi.org/10.1145/958160.958177
https://doi.org/10.1007/978-1-84800-031-5_9
https://doi.org/10.1109/32.935855
https://doi.org/10.1145/2642937.2642982
https://www.github.com/
https://doi.org/10.1109/TSE.2005.28
https://doi.org/10.1145/581339.581408
https://doi.org/10.1145/224019.224036
https://doi.org/10.1145/2338965.2336763
https://doi.org/10.1109/TSE.2010.110
https://doi.org/10.1126/science.1091721
https://doi.org/10.1126/science.1091721
https://doi.org/10.1023/A:1015044207315

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils of
mining GitHub. In: Proceedings of the 11th working conference on mining software repositories, MSR
2014. ACM, New York, pp 92–101, https://doi.org/10.1145/2597073.2597074

Kasi BK, Sarma A (2013) Cassandra: proactive conflict minimization through optimized task scheduling.
In: Proceedings of the 2013 international conference on software engineering, ICSE ’13. IEEE Press,
Piscataway, pp 732–741

Kim S, Zimmermann T, Pan K, Whitehead EJJ (2006) Automatic identification of bug-introducing changes.
In: Proceedings of the 21st IEEE/ACM international conference on automated software engineering,
ASE ’06. IEEE Computer Society, Washington, DC, pp 81–90, https://doi.org/10.1109/ASE.2006.23

Kim S, Whitehead EJ Jr, Zhang Y (2008) Classifying software changes: clean or buggy? IEEE Trans Softw
Eng 34(2):181–196. https://doi.org/10.1109/TSE.2007.70773

Lippe E, van Oosterom N (1992) Operation-based merging. In: Proceedings of the fifth ACM SIG-
SOFT symposium on software development environments, SDE 5. ACM, New York, pp 78–87,
https://doi.org/10.1145/142868.143753

Marinescu R (2001) Detecting design flaws via metrics in object-oriented systems. In: Proceedings of the
39th international conference and exhibition on technology of object-oriented languages and systems
(TOOLS39), TOOLS ’01. IEEE Computer Society, Washington, DC, p 173

Marinescu R (2004) Detection strategies: metrics-based rules for detecting design flaws. In: 20th IEEE
international conference on software maintenance, 2004. Proceedings, pp 350–359

McKee S, Nelson N, Sarma A, Dig D (2017) Software practitioner perspectives on merge conflicts and
resolutions. In: 2017 IEEE international conference on software maintenance and evolution, ICSME
2017, Shanghai, China, September 17–22, 2017, pp 467–478. https://doi.org/10.1109/ICSME.2017.53

Menezes GGLD (2016) On the nature of software merge conflicts. Ph.D. thesis, Universidade Federal
Fluminense

Mens T (2002) A state-of-the-art survey on software merging. IEEE Trans Softw Eng 28(5):449–462.
https://doi.org/10.1109/TSE.2002.1000449

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Tech J 5(2):169–180.
https://doi.org/10.1002/bltj.2229

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: Apache
and Mozilla. ACM Trans Softw Eng Methodol 11(3):309–346. https://doi.org/10.1145/567793.567795

Nieminen A (2012) Real-time collaborative resolving of merge conflicts. In: Proceedings of the 2012 8th
international conference on collaborative computing: networking, applications and worksharing (Collab-
orateCom 2012), COLLABORATECOM ’12. IEEE Computer Society, Washington, DC, pp 540–543.
https://doi.org/10.4108/icst.collaboratecom.2012.250435

Parsons J, Saunders C (2004) Cognitive heuristics in software engineering applying and extending anchoring
and adjustment to artifact reuse. IEEE Trans Softw Eng 30(12):873–888

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

Perry DE, Siy HP, Votta LG (2001) Parallel changes in large-scale software development: an observational
case study. ACM Trans Softw Eng Methodol 10(3):308–337. https://doi.org/10.1145/383876.383878

Raymond ES (1999) The Cathedral and the bazaar, 1st edn. O’Reilly & Associates, Inc., Sebastopol
Ripley RM, Yasui RY, Sarma A, van der Hoek A (2004) Workspace awareness in application development.

In: Proceedings of the 2004 OOPSLA workshop on Eclipse Technology eXchange, eclipse ’04. ACM,
New York, pp 17–21, https://doi.org/10.1145/1066129.1066133

Samuelson W, Zeckhauser R (1988) Status quo bias in decision making. J Risk Uncertain 1(1):7–59
Sarma A, Noroozi Z, Hoek AVD (2003) Palantı́r: raising awareness among configuration management

workspaces. In: Proceedings of the 25th international conference on software engineering, May 3-10,
2003, Portland, Oregon, USA, pp 444–454. https://doi.org/10.1109/ICSE.2003.1201222

Servant F, Jones JA, van der Hoek A (2010) CASI: preventing indirect conflicts through a live visualization.
In: Proceedings of the 2010 ICSE workshop on cooperative and human aspects of software engineering,
CHASE ’10. ACM, New York, pp 39–46, https://doi.org/10.1145/1833310.1833317

Shihab E, Bird C, Zimmermann T (2012) The effect of branching strategies on software quality. In: Proceed-
ings of the ACM-IEEE international symposium on empirical software engineering and measurement,
ESEM ’12. ACM, New York, pp 301–310, https://doi.org/10.1145/2372251.2372305

Sun Z, Song Q, Zhu X (2012) Using coding-based ensemble learning to improve software defect prediction.
IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1806–1817

Sunstein CR, Thaler RH (2003) Libertarian paternalism is not an oxymoron. The University of Chicago Law
Review, pp 1159–1202

Empirical Software Engineering (2020) 25:562–590588

https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ASE.2006.23
https://doi.org/10.1109/TSE.2007.70773
https://doi.org/10.1145/142868.143753
https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1145/567793.567795
https://doi.org/10.4108/icst.collaboratecom.2012.250435
https://doi.org/10.1145/383876.383878
https://doi.org/10.1145/1066129.1066133
https://doi.org/10.1109/ICSE.2003.1201222
https://doi.org/10.1145/1833310.1833317
https://doi.org/10.1145/2372251.2372305

Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: 2012 34th international conference
on software engineering (ICSE), pp 386–396

Understand ™ (2017) Static Code Analysis Tool
Weyuker EJ, Ostrand TJ, Bell RM (2008) Do too many cooks spoil the broth? Using the number of developers

to enhance defect prediction models. Empir Softw Eng 13(5):539–559. https://doi.org/10.1007/s10664-
008-9082-8

Zimmermann T, Kim S, Zeller A, Whitehead EJ Jr (2006) Mining version archives for co-changed lines. In:
Proceedings of the 2006 international workshop on mining software repositories, MSR ’06. ACM, New
York, pp 72–75, https://doi.org/10.1145/1137983.1138001

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Caius Brindescu is a Computer Science PhD Candidate at Ore-
gon State University. He received a BS in Computer Science from
the “Politehnica” University of Timişoara, Romania. His research
focuses on understanding the problems developers face when work-
ing collaboratively, particularly while resolving merge conflicts. Prior
work has been published at top peer-review conferences (ICSE, FSE,
ESEM) and journals (EMSE). He has also served as a PC member
for the MSR’17 Data Mining Challenge, SCAM’15 Tool Demo track,
and the VL/HCC ‘17 Showpiece track.

Iftekhar Ahmed is an Assistant Professor of Informatics in the
Donald Bren School of Information and Computer Science at the
University of California, Irvine. His research focuses on software
engineering in general and combining software testing, analysis and
data mining to come up with better tools and techniques in partic-
ular. He finished his B.Sc. in Computer Science and Engineering
from Shahjalal University of Science and Technology, Bangladesh
and after working in the industry for 4 years, did his Ph.D. at Oregon
State University. He was advised by Carlos Jensen.

Empirical Software Engineering (2020) 25:562–590 589

https://doi.org/10.1007/s10664-008-9082-8
https://doi.org/10.1007/s10664-008-9082-8
https://doi.org/10.1145/1137983.1138001

Carlos Jensen is currently an associate dean in the College of
Engineering and an associate professor in the School of Electrical
Engineering and Computer Science (EECS) at Oregon State Univer-
sity (OSU). He received a B.S. in Computer Science from the State
University of New York (SUNY) Brockport, and a Ph.D. in Computer
Science from the Georgia Institute of Technology in 2005, where he
was a member of the Graphics, Visualization and Usability Center
(GVU).

His areas of research are in Usable Privacy and Security
(HCISec), with particular focus on making online decisions about pri-
vacy and security understandable and meaningful to users. As part
of this work he examines policies and business practices currently in
use, as well as the technologies available and their implications, and
users’ understanding and concerns. His main research project in this
area; iWatch, tracks website privacy practices, and how your online
information spreads online.

An emerging area of research is in the usability aspects of open
source systems and open source development. More specifically, he is interested in studying the barriers for
entry into open source, and finding ways we can get more people, including students, involved in open source.

Empirical Software Engineering (2020) 25:562–590590

Anita Sarma is an Associate Professor at Oregon State University.
Before this she was an Assistant Professor at University of Nebraska,
Lincoln; a post-doctoral scholar at Carnegie Mellon University, and
a doctoral student at University of California, Irvine. Dr. Sarma’s
research crosscuts Software Engineering and Human Computer Inter-
action and focuses on how software can be designed to support
developers and end user programmers in their development efforts.
Her work explores how socio-technical dependencies affect team
work, how onboarding barriers in OSS can be alleviated, and how
software can be made gender-inclusive. Overall, Dr. Sarma’s research
has resulted in 46 peer-reviewed publications (36 conferences, 10
journals), four of which have won awards. Her work has been funded
through NSF and Airforce (AFOSR). She has been the recipient of the
NSF CAREER award. She regularly serves on program committees
in software engineering conferences (ICSE, ASE, VL/HCC, ICGSE),
has been PC co-chair for ICGSE 2016, VL/HCC 2016, ICSE NIER
2019, ICSE SEIS 2020, ICSE Demo 2014, and is an Associate Editor
for TSE.

	An empirical investigation into merge conflicts and their effect on software quality
	Abstract
	Introduction
	Related Work
	Merge Conflicts
	Measuring Software Quality
	Tracking Code Changes and Conflicts

	Methodology
	Project Sampling
	Conflict Identification
	Conflict Types
	Conflict Type Classification
	Tracking Statements
	Commit Classification
	Core Authors Identification
	Regression Analysis
	Identifying Resolution Strategies

	Results
	Merge Conflict Characteristics (RQ1)
	Types of Merge Conflicts
	Change Types
	Merge Conflict Characteristics

	Merge Conflicts and Code Quality (RQ2)
	Factors Correlated with Bugs (RQ3)
	Resolution Strategies (RQ4)

	Discussion
	Threats to Validity
	Conclusions
	References

