
Palantír:
Increasing Awareness in Distributed Software Development

Anita Sarma André van der Hoek

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425 USA
{asarma,andre}@ics.uci.edu

ABSTRACT
Distributed software development, just like regular software
development, typically involves developers working in par-
allel on the same set of artifacts. Unlike regular software
development, however, distributed software development is
limited since developers are unable to easily coordinate
their efforts in person due to the presence of physical
boundaries. While configuration management systems pro-
vide some automated coordination support in the form of
locking and merging, the high cost of conflict resolution in
distributed software development requires even higher lev-
els of support to ensure as few integration problems as pos-
sible. In this paper, we introduce Palantír, a system that
complements existing configuration management systems
by providing distributed awareness of project progress. In
particular, Palantír provides each developer with a graphical
display that not only shows which remote artifacts are
changing, but also presents them with a measure of both the
severity and the impact of the changes. As a result, develop-
ers are provided with an increased level of awareness that
allows them to detect and resolve problems much earlier.

1. INTRODUCTION
A large number of software development organizations have
subsidiaries or branches located in different geographical
locations. In these settings, work tends to be carefully parti-
tioned to minimize the number of conflicts. Nonetheless, it
is often unavoidable that, at times, developers have to si-
multaneously change the same set of artifacts. As a result of
such parallel development, conflicts [1] arise both directly
and indirectly. Directly, parallel changes to the same artifact
may lead to conflicts if the changes involve modifications to
the same parts of the artifact. Indirectly, mutually exclusive
changes can individually be working properly, but com-
bined lead to a non-working version of the system under
development.

Consider, for example, a situation in which one change in
the program logic leads to a different value of a global vari-
able and a second change modifies the behavior of the main

control loop of the program. While each change individually
does not lead to problems, the fact that the behavior of the
main loop of the program depends on the value of the global
variable may lead to an overall failure of the program. Thus,
while both changes are syntactically and semantically cor-
rect in their own right, they indirectly conflict by influenc-
ing the overall semantics of the program in an undesirable
manner.

Typically, a configuration management (CM) system [2] is
used to help coordinate the activities of developers such that
the number of conflicts resulting from parallel change is
reduced. By providing capabilities that either avoid parallel
development altogether (e.g., locking) or assist in resolving
conflicts (e.g., merging), these systems certainly have suc-
ceeded in reducing the number of conflicts [3]. Nonetheless,
merge conflicts do occur and often must be manually re-
solved, a time-consuming and sometimes difficult task.
Furthermore, the issue of indirect conflicts remains unad-
dressed by CM systems [4]. At best, they provide a histori-
cal trace of changes. While useful in identifying what
changes may have caused a problem and which developers
may have been involved, no further information is provided
and the problem has to be manually resolved. Especially
when the developers involved reside in geographically dif-
ferent locations, this may be a rather unpleasant exercise.

As a complement to existing configuration management
systems, we are developing Palantír, a system that is spe-
cifically designed to provide distributed project awareness
targeted at reducing both direct and indirect conflicts.
Palantír is based on the observation that it is not only perti-
nent for developers to know what artifacts are being
changed by other developers, but also what the severity and
impact of those changes are with respect to the specific task
at hand. Palantír provides each developer with a graphical
display that shows the relevant set of artifacts, illustrates
which artifacts have already been and are being modified by
other developers, and, based on an analysis of the changes,
calculates and highlights the severity and impact of each
change. In doing so, Palantír deliberately but non-
intrusively breaks the isolation that currently exists when a
developer is performing a task in their CM workspace. As a
result, a developer can proactively resolve potential prob-
lems and thereby reduce the number, and significance, of
direct and indirect conflicts.

In the remainder of this paper, we discuss the details of
Palantír. We first describe its architecture in Section 2. Sec-
tion 3 discusses our implementation thus far. In Section 4

we present related work and we conclude the paper in Sec-
tion 5 with an outlook at our future work.

2. Conceptual Architecture
Figure 1 shows the conceptual architecture of Palantír,
which consists of four different types of components inter-
linked via a generic event notification service [5]. The first
component is the CM system, which serves as the source of
all information used by Palantír. To drive updates to its
visualizations, Palantír assumes that the CM system sends
out notifications upon check-out or check-in of an artifact.
A check-out represents the beginnings of a change activity.
Since it is important for developers to be aware of which
other developers are changing which artifacts, Palantír re-
cords this fact and displays it in its visualizations. A check-
in signals the end of a change activity (or, at least, a check-
point that is being made by a developer). Again, it is impor-
tant for other developers to be aware of this fact and Palantír
updates its visualizations accordingly. In addition, it calcu-
lates and shows the severity of the change (e.g., the differ-
ence according to some measure between the old version
and the new version of the artifact) and the impact of the
change (e.g., the potential conflict according to some meas-
ure between the change and the artifacts that another devel-
oper has in their workspace). Whereas the severity can be
calculated once for all developers, it is important to note
that the impact is calculated per developer since each devel-
oper may have a different set of artifacts in their workspace
and the impact of the change can vary accordingly.

Figure 1. Conceptual Architecture of Palantír.

It is important to note that the architecture is purposefully
generic. Not only do we want Palantír to interoperate with
many different CM systems, we also want to experiment
and understand the effectiveness of different severity and
change impact analysis algorithms as well as of different
visualizations. It is also important to note that the architec-
ture is inherently distributed. Different components can (and
sometimes must) execute in different locations since they
are all connected via a distributed event notification service.

The heart of Palantír is formed by the severity analysis
component, the change impact analysis component, and the
visualization component. The severity analysis component
basically attempts to answer the question of how much has
changed between the newly checked-in and previous ver-
sion of an artifact. Different measures can be useful at dif-

ferent times. Some of the measures that we intend to explore
are the following.

• Relative number of lines of code that has been
changed. Although a remarkably trivial measure, it can
be important to understand how many lines of code ac-
tually have been altered by a developer. The rationale
is simple: the more lines of code that have been
touched, the more faults that could have been intro-
duced [6]. There are two drawbacks to using this meas-
ure. First, an action such as renaming a variable
throughout a file may indicate a severe change whereas
in reality it is a rather simple change that deserves little
to no attention. The other drawback is that the measure
is language dependent, and means much more for, for
example, a Cobol program than a Prolog program.

• Relative number of token-based differences. Some
algorithms used to detect and report similarities be-
tween two files are token-based and replace each key-
word and variable name throughout a file with a unique
token before applying a differencing algorithm. The
advantage of this kind of measure is that it takes into
account such simple changes as renaming a variable.
The disadvantage is that the token replacement algo-
rithm is dependent on the implementation language and
requires specific language plug-ins.

• Relative number of changes in the abstract syntax
tree. It is possible to analyze the differences between
the abstract syntax trees of the two different versions of
an artifact. This has the distinct advantage that the
measure is as closely as possible related to the imple-
mentation language, which results in a rather accurate
assessment of the severity of the change. At the same
time, however, this approach is extremely language
dependent and requires the construction of abstract
syntax trees before the measure can be calculated.

While a severity analysis can be performed solely based on
artifacts in the CM repository, the change impact analysis is
dependent on the artifacts that a developer has in their
workspace. The measures that we intend to explore, there-
fore, are different from those used in the severity analysis.

• Relative number of overlapping lines of code that
have changed. A crude measure of impact, this meas-
ure basically attempt to assess the impact by calculat-
ing the number of lines of code that have changed in
the artifact and are present in the workspace of a de-
veloper. The more overlap exists, the more impact the
change is likely to have.

• Relative number of interfaces that have changed.
This measure is based on the assumption that changes
that do not change the interface of an artifact have no
further influence beyond the realm of the artifact itself.
While certainly accurate if the information hiding prin-
ciple is strictly followed, the measure certainly does
not apply to all software artifacts.

• Relative size of dependency analysis graph. This
measure adapts established dependence analysis tech-
niques [7] to basically calculate the “reach” of a
change (e.g., how much of the code in the workspace

might be affected). The larger the reach, the higher the
impact. A drawback of this method is that computa-
tionally it can be very expensive.

It should be noted that none of the severity or change impact
measures is completely accurate. Rather, most provide a
conservative estimate of severity or impact. This is by de-
sign since it is neither necessary nor possible to provide
completely accurate severity or change impact analyses.
Nonetheless, it is useful for any developer to have a “feel”
for the severity or impact of a change, allowing them to
make a judgment call and undertake preventive action as
they see fit.

It should also be noted that these algorithms should not only
operate on single artifacts, but also have to be adapted to
operate on compound artifacts. Many a time, Palantír will
show a set of compound rather than individual artifacts. The
severity and change impact of these compound artifacts has
to be communicated to the developer as much as those of
individual artifacts. In fact, often Palantír will be used in a
setting in which a developer monitors several compound
artifacts and only when the severity or change impact of one
of those rises above a certain threshold will the developer
examine the individual artifacts that make up that com-
pound artifact to understand the reason for the high severity
or change impact.

The last component in the Palantír architecture is the visu-
alization component. This component is responsible for
presenting to the developers, the information that is gener-
ated by the CM system and the analyzers. At a minimum,
the visualization component will show which artifacts are
being checked-out and checked-in and the severity and im-
pact of each change. In doing so, developers are presented
with an increased level of awareness of other developers’
activities.

We intend to develop different visualizations that each
strikes a different balance among the amount of information
that is displayed, usability of the interface, and intrusiveness

of the interface. Clearly, large graphical displays can con-
vey more information, but are much more intrusive than, for
example, a small ticker tape. The ticker tape, on the other
hand, can only convey a minimal amount of information.
We intend to develop a range of visualizations from which
each developer can choose the one they prefer.

3. Implementation Details
We are currently implementing Palantír. Our focus, thus far,
has been on creating one of the main visualization compo-
nents. Shown in Figure 2, the visualization presents a devel-
oper with a hierarchical view of a compound artifact and its
constituent artifacts. Each constituent artifact itself may
consist of other artifacts, and each artifact in the view may
consist of multiple versions (as indicated by a stack of arti-
facts). For example, in the figure, developer Anita is view-
ing the artifact “par.c” version 1.0, which consists of the
artifacts “foo.c” and “bar.c”. Since Anita started monitoring,
the artifact “bar.c” has been checked out by Andre (as indi-
cated by the question mark). The artifact “foo.c” version 1.0
has been checked in by Anita (as indicated by the exclama-
tion mark), version 1.1 is currently checked out by Anita,
and version 2.0 has been checked in by Andre. The artifacts
are labeled such that changes made by other developers are
discernable from those made by the user of the workspace.
Color coding (green for changes made by the user of the
workspace and red for others) further enhances this separa-
tion (though not visible in this black and white print).

The two vertical bars indicate severity and change impact.
Note that atomic artifacts (artifacts that are not partitioned
into smaller artifacts) that have not been checked in yet do
not have any severity or change impact, since the potential
changes are still “hidden” in the workspace.1 Compound
artifacts that are not checked in yet, on the other hand, will

1 Typically, however, a developer will periodically create
snapshots, which will lead to new versions that exhibit se-
verity and change impact.

Figure 2. Palantír Main Visualization.

have severity and change impact since their constituent
artifacts already may have been changed and checked in.

The visualization allows for zooming in and zooming out.
Double-clicking on a particular version of an artifact makes
that the primary artifact being viewed. A back button allows
a developer to go back up the hierarchy to view the artifacts
from a higher point of view. Note also that more detailed
information on an artifact can be requested and that “hid-
den” artifacts can be brought to the foreground with a sim-
ple click.

The next step of our implementation effort involves creating
several of the severity and change impact components and
linking those to the visualization component using the Siena
event notification service [5]. We have chosen to use Siena,
because it operates in a distributed setting and allows filter-
ing of notifications. Specifically, a visualization component
can register the artifacts they are interested in, and Siena
will only deliver those events that are of pertinence to those
artifacts, thereby optimizing much of the network traffic.

4. Related Work
Most configuration management systems ignore awareness
altogether [2, 8]. At best, developers can query the CM
system for new changes and synchronize their workspace
with those changes. Other than that, a developer is com-
pletely isolated from the changes being performed by oth-
ers. One exception is Coven [9], which requires developers
to specify beforehand which artifacts they will be modify-
ing. Unfortunately, only direct conflicts are avoided this
way and, furthermore, developers usually do not know be-
forehand the complete set of artifacts they will be changing.

The area of software visualization has produced a number of
visualizations, including matrix views [6], 3-D colored
graphs [10], bar graphs [11], and ticker tapes [12], that pro-
vide insight in the way a software system evolves over time.
As compared to Palantír, these systems tend to focus on
project management rather than awareness among develop-
ers. As a result, the visualizations are not dynamic (e.g.,
they only provide a view of the system evolution at one
particular moment in time) and focus on severity, not
change impact.

Hill et al. [13] created an extension to the Zmacs editor that
shows how often a particular section in a document has
been read or modified. Similar to Palantír, this extension
provides developers with an increased level of awareness.
Unfortunately, the visualization only provides an indication
of change severity, not change impact. Moreover, use of the
system requires developers to know a-priori who is chang-
ing which artifact and, more importantly, requires continu-
ous network connectivity, something that is simply not fea-
sible in a geographically distributed setting. TUKAN [14],
another collaborative editor that augments the editor’s inter-
face with an indication of changes being performed by other
developers, suffers from similar drawbacks.

5. Conclusion
Palantír is a system that we are currently developing to
bring project awareness to developers. Palantír is explicitly
designed to operate in a distributed setting and is aimed at

reducing the number of occurrences of both direct and indi-
rect conflicts. As such, it represents a departure from current
philosophy in configuration management in breaking the
traditional notion of isolated workspaces. Although changes
can still be made in isolation and developers are not imme-
diately influenced by other changes, they most certainly
must be aware of the changes in order to avoid problems
when they check in their artifacts. Especially in a geo-
graphically distributed setting, such awareness allows them
to avoid and resolve conflicts early, which has the potential
of saving a tremendous amount of cost and effort.

Clearly, we are not finished developing Palantír. Now that
we have nearly completed the visualization component, our
focus is shifting to implementing the severity and change
impact analysis components. Once those components are
completed, we intend to experiment significantly in a case
study involving an Open Source project to understand the
effectiveness of a tool like Palantír in supporting distributed
software development. We specifically want to determine
which analyses and visualizations are most effective in
which situations. In addition, we would like to explore the
potential role of Palantír in project management. For that
purpose, we are looking into the possibility of extending
Palantír with a graphical view of all artifacts (rather than the
small subset it currently supports) and using a movie-like
capability in which we replay events from a CM archive to
visually show project progress.

6. Acknowledgements
This research is supported by the National Science Founda-
tion under grant number CCR-0093489. The authors would
like to thank David Redmiles and Paul Dourish for their
valuable input that shaped the project in its early phases.

7. References
[1] Easterbrook, S.M., et al., A Survey of Empirical Stud-

ies, in S. M. Easterbrook (ed) CSCW: Cooperation or
Conflict? 1993: London,Springer-Verlag. p. pp. 1-68.

[2] Conradi, R. and B. Westfechtel, Version Models for
Software Configuration Management. ACM Comput-
ing Surveys, 1998. 30(2): p. 232-282.

[3] Perry, D.E., H.P. Siy, and L.G. Votta. Parallel
Changes in Large Scale Software Development: An
Observational Case Study. in Proceedings of the 1998
International Conference on Software Engineering.
1998.

[4] Grinter, R., Supporting Articulation Work Using Con-
figuration Management Systems. Computer-Supported
Cooperative Work, 1996. 5(4): p. 447-465.

[5] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, De-
sign and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems,
2001.

[6] Lanza, M. The Evolution Matrix: Recovering Software
Evolution using Software Visualization Techniques. in
Proceedings of the Fourth International Symposium on
the Principles of Software Evolution. 2001.

[7] Dwyer, M. and L.A. Clarke, A Flexible Architecture
for Building Data Flow Analyzers, in Proceedings of
the Eighteenth International Conference on Software
Engineering. 1996, ACM. p. 554-564.

[8] Burrows, C. and I. Wesley, Ovum Evaluates Configu-
ration Management. 1998, Burlington, Massachusetts:
Ovum Ltd.

[9] Chu-Carroll, M.C. Supporting Distributed Collabora-
tion through Multidimensional Software Configuration
Management. in Proceedings of the Tenth Interna-
tional Workshop on Software Configuration Manage-
ment. 2001.

[10] Jazayeri, M., C. Riva, and H. Gall. Visualizing Soft-
ware Release Histories: The Use of Color and Third
Dimension. in Proceedings of the International Con-
ference on Software Maintenance. 1999: IEEE Com-
puter Society.

[11] Baker, M.J., and Eick,S.G., Space-Filling Software
Visualization. Journal of Visual Languages and Com-
puting, 1995. 6: p. 119-133.

[12] Fitzpatrick, G., et al. Instrumenting and Augmenting
the Workaday World with a Generic Notification Ser-
vice called Elvin. in Proceedings of the Sixth European
Conference on Computer Supported Cooperative
Work. 1999. Copenhagen, Denmark.

[13] Hill, W.C., Hollan, J. D., Wroblewski, D., and McCan-
dless,. Edit wear and read wear. in Proceedings of the
1992 ACM Conference on Human Factors in Com-
puter Systems. 1992.

[14] Schümmer, T., and J.M. Haake. Supporting Distributed
Software Development by Modes of Collaboration. in
Proceedings of the Seventh European Conference on
Computer Supported Cooperative Work. 2001.

