
Designing Software Cockpits for Coordinating Distributed  
Software Development 

 
1,2 Isabella da Silva, 1 Marcelo Alvim, 1 Roger Ripley, 1 Anita Sarma, 2 Cláudia Werner,  

1 André van der Hoek 
 

1Department of Informatics 
University of California, Irvine 
Irvine, CA 92697-3440, USA 

{ialmeida, malvim, rripley, asarma, 
andre}@ics.uci.edu 

2COPPE/UFRJ - Systems Engineering and 
Computer Science Program  

Federal University of Rio de Janeiro 
Rio de Janeiro, RJ, Brazil 

{isabella, werner}@cos.ufrj.br 

Abstract 

Coordination of global software development is 
particularly difficult as it involves teams that are dis-
tributed across different locations and time zones. One 
of the key issues is a lack of understanding of how ac-
tivities of different teams (and team members) relate to 
one another. To provide situational awareness for dis-
tributed teams, software cockpits, at-a-glance com-
puter-controlled displays of data collected from multi-
ple sources, have been proposed. In this paper, we in-
troduce a set of design decisions that need to be con-
sidered for building software cockpits, present our ap-
proach to realizing such a cockpit based on three ex-
ploratory visualizations of distributed software devel-
opment projects, and conclude with a discussion of 
lessons learned so far. 

1. Introduction 

Software development is defined as a multi-team 
construction effort of a multi-version system consisting 
of highly interdependent artifacts [1]. Development 
activities, therefore, need to be properly coordinated to 
enable the implementation of complex software. Dis-
tributed development makes coordination, an already 
difficult task [2], more difficult, since developers can 
no longer talk face-to-face to resolve issues. And when 
such distributed development starts crossing geo-
graphical time zones, and teams use separate tool 
suites and different development processes, it becomes 
even harder to properly coordinate work [3, 4]. 

One way to deal with this complexity is to modular-
ize the software into separate units, assign different 
roles to different teams, establish agreed-upon inter-
faces, and define specific synchronization points [5]. 
Unfortunately, even then, conflicts are known to occur, 

often frequently so. Some of the reasons behind these 
breakdowns are the following: (1) it is not always pos-
sible to discretize work into independent modules [6], 
(2) developers cannot always correctly estimate the 
modules they require for their tasks [7], and (3) inter-
faces are changed without appropriate communication 
to other teams [8, 9]. 

This lack of situational awareness – dynamic 
knowledge and understanding of a complex and evolv-
ing task situation – is a key problem. As a result, team 
members typically work in an isolated manner in their 
development environments, only obtaining information 
about potential coordination breakdowns (and their ef-
fects) during synchronization points [10]. Duplicated 
efforts or emerging conflicts stay undetected until 
changes are completed, a time when conflicts are 
harder to resolve [11]. 

To create situational awareness, teams need to be 
informed of ongoing project activities, so they can 
place their work in the context of others’ and more ef-
fectively coordinate their efforts [12]. To do so, teams 
need to share project-related information, such as 
which developer is responsible for the maintenance of 
a specific module, which developer should be con-
tacted when an integration test fails, the number of 
teams that are dependent on a particular interface, and 
many other kinds of information that help developers 
and managers in better performing their tasks. 

To present this information in a meaningful way, 
we propose to examine various visualizations in the 
context of software cockpits, at-a-glance computer-
controlled displays of development-related data col-
lected from multiple sources. Just as airplane cockpits 
display information regarding an aircraft’s situation, 
position, and progress, software cockpits can be used 
to display information regarding software projects’ 
status. 



The remaining of the paper is organized as follows. 
In Section 2, we describe a set of key design decisions 
for building software cockpits. Section 3 presents our 
proposed approach in terms of three different visuali-
zations of a software project. We conclude in Section 4 
with a discussion of our current status and future plans. 

2. Design Decisions 

For a software cockpit to be successful, it is impor-
tant that the “right” information is presented to the 
“right” user at the “right” time. This means that differ-
ent cockpits can be designed for different purposes. 
Maletic et al. [13] have described a set of five dimen-
sions that can define software visualizations in general: 
tasks (why is the visualization needed); audience (who 
will use it); target (what is the data source to repre-
sent); representation (how to represent it) and medium 
(where to represent the visualization). In this section, 
we extend this set to nine dimensions that are targeted 
more specifically at software cockpits: 
- Target audience: The primary users of a software 

cockpit are one of the main influences on its design. 
Cockpits can be equally useful for different people 
in the project, such as managers, team leaders, de-
velopers, testers, etc. However, the specific types of 
information that are required by these people differ 
and the software cockpit should be carefully aligned 
accordingly. For instance, managers usually require 
an overview of the entire project and its progress, 
while testers and developers require more detailed 
information about specific software modules and re-
lated artifacts, including code errors and failed tests. 

- Supported task: One may need different information 
while performing different tasks. For instance, when 
developers are integrating code, they might need to 
know about conflicting changes and who generated 
them. When debugging, on the other hand, they 
might need to know in which version the bug first 
appeared and why. Therefore, software cockpits can 
be designed to support a specific task or can be con-
figured to support different tasks at different times. 

- Data collection: To present a holistic view of the en-
tire project, software cockpits need to collect data 
from multiple sources (e.g., CM systems, issue-
trackers, build systems). Further, in multi-team pro-
jects this information needs to be collected from dif-
ferent teams. Software cockpit designers have to de-
cide which data sources will be used and learn how 
to access those. 

- Data analysis: Collected data in its rough form 
might not be immediately ready for presentation. Its 
format may not be sufficiently meaningful for end 
users, and the amount of data might also be over-

whelming. Therefore, some data processing may be 
required to filter, aggregate and/or combine data 
from multiple sources. For instance, combining data 
about check-ins in the CM system and bug fixes in 
the issue tracker enables a historical view of which 
version of the artifact contained the bug, who was 
responsible for it, when was it fixed, and by whom. 

- Data presentation: Different kinds of data represen-
tations can be used to display information in soft-
ware cockpits. Depending on the desired level of ab-
straction, one can use text, tables, charts or different 
types of visualizations to show the data. For exam-
ple, visualizing project metrics through charts is usu-
ally simpler to understand than through long textual 
descriptions. Often, new visualizations rely on an 
underlying metaphor to help humans in interpreting 
the data that is presented. The city metaphor is an 
example [14]. 

- Timeliness: Software cockpits have to collect and 
display information in a timely manner. Some infor-
mation is more time-critical than other, and should 
therefore be updated more frequently. For instance, 
when one needs to contact someone, it is more useful 
to know which developers are online at this moment 
than to know who was an hour ago. Then again, past 
online status data can be analyzed to infer when 
specific developers will be available next. Thus, 
critical decisions in the design of software cockpits 
are the recency of data, whether to be as up to date 
as possible, and whether to store and leverage his-
torical data for other purposes. 

- Sensitivity of data: Individual privacy and data con-
fidentiality are important issues that need to be ad-
dressed by cockpit designers. Care should be taken 
to disclose personal information only with the ap-
propriate permission from the involved individual. 
Beyond this, additional attention has to be paid to the 
sharing of data across teams, especially in multi-
company projects. Each organization’s policies 
about confidential, proprietary, and sensitive infor-
mation should be properly respected. Finally, a cer-
tain amount of organizational maturity is required 
with respect to public software cockpits that reveal 
detailed information about individuals and their per-
formance. The “coding to the metric” phenomenon 
must be avoided. 

- Display modes: Software cockpits can be used either 
as passive displays or as media for interactive explo-
rations. In addition to simply displaying project data, 
most software cockpits should be designed to allow 
users to configure the displays through filters. Ap-
propriate search capabilities generally also should be 
included to help users explore relevant information 
rapidly. For instance, on noticing a build failure, a 



manger may wish to investigate the problem by que-
rying the cockpit about the latest changes to the arti-
facts causing the build failure, the dependencies that 
were affected or the developers responsible for the 
artifacts, etc. 

- Display devices: The kinds of display devices that 
constitute the software cockpit need to be carefully 
chosen with respect to their size, their resolution, 
and the modes of interaction they support. For ex-
ample, if a cockpit will be used as an “information 
radiator” [15] presenting data for the entire team, it 
needs to be visualized through a large screen placed 
in a shared room. To facilitate exploration of infor-
mation, an interactive display media is more appro-
priate. Alternatively, regular size monitors can serve 
as customized cockpits for individual developers. 

3. Approach 

We are developing an exploratory software cockpit 
through three prototype visualizations of global soft-
ware development projects, each organized from a dif-
ferent perspective. The first visualization uses the 
metaphor of locality to show high-level information 
about teams and dependencies among them in an inter-
active world map. The second one displays the system 
design through a self-updating view of the current state 
of the software implementation using the metaphor of 
the system. Finally, the last prototype, based on a task 
activity metaphor, is a 3D visualization that presents an 
overview of current and past activities in individual 
workspaces. 

3.1. World View 

World View (see Figure 1) is built in the metaphor 
of locality, using a world map to present team dynam-
ics in a globally distributed project [16]. It is targeted 
at project managers and team leaders, who need an 
overview of project status in different levels of detail. 
At its higher level of abstraction, World View shows 
physical locations of teams and the relationships 
among them, such as code calls from one team to an-
other, shared artifacts, and issues opened by one team 
to the other. World View also enables one to zoom into 
a team, so as to visualize finer grained details, like de-
pendencies among members, their contact information, 
availability status and current tasks. This data is col-
lected from multiple sources, such as IDEs, CM sys-
tems and issue-tracking systems. While it is important 
that this information is kept up-to-date, the tool also 
maintains archival data, which can be used for future 
reference and help in understanding project evolution. 

 
Figure 1 – World View. 

By using this view, managers can quickly identify 
which teams are tightly coupled and may require 
higher levels of communication. Moreover, World 
View can be used to visualize project history in terms 
of changes in dependencies over time. An increasingly 
strong dependency between two teams may warn man-
agers of coordination problems if the teams were not 
intended to be tightly coupled. 

World View is ideally suited to a large, interactive 
display, so as to facilitate and encourage exploration of 
the information it presents. Such displays could be in a 
manager’s office or in a shared space, where develop-
ers could gather and explore project-related data, to 
better coordinate amongst themselves.  

3.2. Lighthouse 

Lighthouse [17] provides a finer-grained view of 
software projects for developers and managers using 
the metaphor of the system design. It does so by auto-
matically building an abstraction of the software as a 
UML-like class diagram that is updated in real time as 
developers code (see Figure 2). All information about 
changes made to the code are collected directly from 
the developers’ workspaces and propagated immedi-
ately to all project members. Through Lighthouse, one 
can visualize the current system design as it is directly 
emerging from the collaboratively built source code 
and watch it evolve as implementation advances. 

This dynamic view supports early detection of de-
sign decay by allowing users to identify unintended, 
undiscovered and unauthorized design changes. 
Problems like conflicting changes in shared artifacts 
and duplicate work can also be spotted as soon as they 
surface. Furthermore, Lighthouse presents authorship 
information for each element in the diagram, identify-
ing which developers are responsible for each step of 
the design evolution. This information can be used to 
identify collaboration opportunities for developers  
working in related artifacts, to find potential “experts” 
in specific parts of the system or understanding who 
was responsible for breaking an interface contract. 



 
Figure 2 – Lighthouse view of emerging design. 

For developers, Lighthouse can help in understand-
ing how their tasks are related to others’. It is explicitly 
designed to support coordination of ongoing coding 
efforts and, as such, should be used on a second moni-
tor. This promotes peripheral awareness and helps de-
velopers focus on the specific parts of the system that 
they are working on. For managers, Lighthouse can be 
used in a larger display with the view of the entire 
emerging design in order to assess overall implementa-
tion progress and current developers’ activities. 

3.3. Workspace Activity Viewer 

 Workspace Activity Viewer (WAV) [18] is a 3D 
visualization based on the metaphor of task activities. 
It was developed for managers to have an overview of 
ongoing activities in a project, using information ex-
tracted directly from developers’ workspaces. WAV 
provides two different views: artifact centric and de-
veloper centric. In the first view (see Figure 3a), stacks 
of cylinders represent changes made to an artifact; 
each cylinder representing a change by a specific de-
veloper. Thus, the height of the stacks of cylinders 
represents the amount of changes to the artifact. As 
artifacts become dormant, the stacks of cylinders 
slowly move to the back of the display. The further to 
the back a stack is, the more time that artifact has been 
dormant. In the developer centric view (see Figure 3b) 
stacks represent developers, while each cylinder repre-
sents a change to a specific artifact. In both views, the 
magnitude of a change (currently calculated as the 
relative number of lines of code that have changed) is 
conveyed by the width of its cylinder. 

Through WAV, managers can obtain an overview 
of the state of a project at a glance. For instance, one 
can quickly discern concurrent modifications to the 
same artifact; detect artifacts that had numerous edits 
and, thus, are prone to problems; identify experts based 
on their past development efforts, and so on. Addition-
ally, WAV provides a playback feature that enables 
users to visualize both the current status and the evolu-
tion of the project. 

Figure 3 – Workspace Activity Viewer’s (a) Artifact View 
and (b) Developer View. 

WAV is ideally suited for a high-resolution large 
display in a central location, where users can discern at 
a glance the status of their project. However, as with 
any awareness tool, displaying activity related data 
raises privacy concerns and, though WAV provides no 
accommodations for it yet, should be appropriately 
dealt with. 

3.4. Physical Setting 

Currently, we are exploring our prototype software 
cockpit in a dedicated room with a cluster of six 30” 
Apple cinema displays and a 55” Hitachi interactive 
board. Figure 4 shows an example usage: a team of 
developers uses the Apple cluster displaying Work-
space Activity Viewer (Figure 4a), World View (Figure 
4b), and Lighthouse (Figure 4c) for their status meet-
ing, while the other team explores dependency con-
flicts through World View by using the interactive 
board (Figure 4d). 

4. Discussion 

 While not always specifically targeted at building 
software cockpits, there has been significant work 
done in software projects data collection, analysis and 
visualizations. For instance, Hackystat, a software met-
ric tool, unobtrusively collects and analyzes data from 
different development tools (e.g., test coverage tools, 
bug trackers, IDEs) to generate graphs and reports 
[19]. With a different focus, the War-room Command 
Console [20] uses different display techniques to pro-
vide awareness of ongoing workspace activities. 

(a) 
 
 
 
 
 
 
(b) 
 



Our prototype software cockpit combines both ag-
gregation of project data from multiple sources and the 
use of different metaphors (locality, system design, and 
task activity) to visualize the collected data in a cen-
tralized manner. Our experience so far is of using open 
source projects as usage examples, but we also intend 
to explore global software development projects in in-
dustry in the future. 

5. Acknowledgments 

Effort partially funded by the National Science Founda-
tion under grant numbers CCR-0093489, IIS-0205724, and 
IIS-0534775. Effort also supported by an IBM Eclipse Inno-
vation grant and an IBM Technology Fellowship. 

6. References 

[1] D.L. Parnas, Some Software Engineering Principles. 
Infotech State of the Art Report on Structured Analysis and 
Design, Infotech International, 1978. 
[2] G.M. Olson, J.S. Olson, Distance Matters. Human-
Computer Interaction, 2000. 15(2&3): p.139-178. 
[3] R.E. Grinter, J.D. Herbsleb, D.E. Perry. The Geography 
of Coordination: Dealing with Distance in R&D Work. ACM 
Conference on Supporting Group Work. 1999. p.306-315. 
[4] J. Herbsleb, et al. An Empirical Study of Global Software 
Development: Distance and Speed. 23rd International Con-
ference on Software Engineering. 2001. p.81-90. 
[5] D.L. Parnas. On the Criteria to Be Used in Decomposing 
Systems into Modules. Communications of the ACM, 1972. 
15(12): p.1053-1058. 
[6] D.E. Perry, H.P. Siy, L.G. Votta. Parallel Changes in 
Large Scale Software Development: an Observational Case 
Study. 20th International Conference on Software Engineer-
ing. 1998. p.251. 
[7] B. Curtis, H. Krasner, N. Iscoe. A Field Study of the 
Software Design Process for Large Systems. Communica-
tions of the ACM, 1988. 31(11): p.1268-1287. 

[8] B. Sengupta, S. Chandra, V. Sinha. A Research Agenda 
for Distributed Software Development. 28th International 
Conference on Software Engineering. 2006. p.731-740. 
[9] C.R.B. de Souza, D. Redmiles, P. Dourish. "Breaking the 
Code", Moving between Private and Public Work in Collabo-
rative Software Development. International Conference on 
Supporting Group Work. 2003. p.105-114. 
[10] R.E. Grinter. Supporting Articulation Work Using Soft-
ware Configuration Management Systems. ACM Conference 
on Computer Supported Cooperative Work. 1996. p.447-465. 
[11] A. Sarma, A. van der Hoek. A Conflict Detected Earlier 
is a Conflict Resolved Easier. 4th Workshop on Open Source 
Software Engineering. 2004. p.82-86. 
[12] C. Gutwin, S. Greenberg. Workspace Awareness for 
Groupware. Conference Companion on Human Factors in 
Computing Systems. 1996. p.208-209. 
[13] J.I. Maletic, A. Marcus, M.L. Collard. A Task Oriented 
View of Software Visualization. 1st International Workshop 
on Visualizing Software for Understanding and Analysis. 
2002. 
[14] R. Wettel, M. Lanza. Visualizing Software Systems as 
Cities. 4th IEEE International Workshop on Visualizing 
Software for Understanding and Analysis. 2007. 
[15] A. Cockburn, Agile Software Development. 1 ed. 2001: 
Addison-Wesley Professional. pp.256. 
[16] A. Sarma, A. van der Hoek. Towards Awareness in the 
Large. 1st International Conference on Global Software En-
gineering. 2006. p.127-131. 
[17] I. da Silva, et al. Lighthouse: Coordination through 
Emerging Design. OOPSLA Workshop on Eclipse Technol-
ogy eXchange. 2006. p.11-15. 
[18] R. Ripley, A. Sarma, A. van der Hoek. A Visualization 
for Software Project Awareness and Evolution. 4th Interna-
tional Workshop on Visualizing Software for Understanding 
and Analysis. 2007. 
[19] HackyStat, http://www.hackystat.org/hackyDevSite/  
[20] C. O'Reilly, D. Bustard, P. Morrow. The War Room 
Command Console: Shared Visualizations for Inclusive 
Team Coordination. ACM Symposium on Software Visuali-
zation. 2005. p.57-65.  

Figure 4 – Prototype software cockpit showing (a) Workspace Activity Viewer, (b) World View and (c) Light-
house on the Apple display cluster and (d) World View (zoomed in) on the interactive board. 

(a)             (b) 
 
 
                  (c) 
 
 

(d) 


