
 1

Continuous Coordination: A New Paradigm to Support
Globally Distributed Software Development Projects
David Redmiles, André van der Hoek, Ban Al-Ani, Tobias Hildenbrand*, Stephen Quirk,
Anita Sarma, Roberto Silveira Silva Filho, Cleidson de Souza**, Erik Trainer

Donald Bren School of information and Computer Sciences
Department of Informatics, University of California, Irvine
Irvine, CA 92697-3430, USA
{redmiles, andre, balani, squirk, asarma, rsilvafi, etrainer}@ics.uci.edu

* Lehrstuhl für ABWL und Wirtschaftsinformatik
Universität Mannheim
D-68131 Mannheim, Germany
hildenbrand@uni-mannheim.de

** Departamento de Informática, Centro de Ciências Exatas e Naturais
Universidade Federal do Pará
Belém, PA 66075-110, Brazil
cdesouza@ufpa.br

Key Findings
We introduce and explicate a novel development paradigm for distributed software
engineering development tools, Continuous Coordination. Continuous Coordination
constitutes a paradigm for collaborative systems, which combines elements of traditionally
formal, process-oriented approaches with those of the more informal, awareness-based
approaches, thus addressing some of the issues of global software development:

- The lack of awareness and informal communication among developers are factors that
contribute to problems arising during global software development. The Continuous
Coordination paradigm improves awareness and enables a degree of self-coordination by
integrating existing tools (based on formal, process-oriented approaches) with awareness
for coordination (based on informal, peripheral and visual cues).

- Developers often face challenges when they attempt to integrate artifacts produced by
heterogeneous tools. Continuous Coordination is defined in terms of several general
design principles which are implemented in new and existing tools. Consequently,
practitioners can adopt the paradigm immediately and incrementally; moreover,
Continuous Coordination allows them to more readily integrate the artifacts produced.

Abstract (English)

Along with the rapid globalization of companies, the globalization of software development
has become a reality. Many software projects are now distributed in diverse sites across the
globe. The distance between these sites creates several problems that did not exist for
previously collocated teams. Problems with the coordination of the activities, as well as with
the communication between team members, emerge. Many collaborative software engineering
tools that have been used to date, in global software development projects, exhibit a
fundamental paradox: they are meant to support the collaborative activity of software
development, but cause individuals and groups to work more or less independently from one
another. The underlying issue is that existing software engineering tools, such as

 2

configuration management repositories, issue trackers, and workflow engines, separate time
and tasks in concrete but isolated process steps. Designing tools based on the premise that
human activities can be codified and that periodic resynchronization of tasks is an easy step
reflects poor understanding human nature. We therefore propose a new approach to
supporting collaborative work called Continuous Coordination. Underlying Continuous
Coordination is the premise that humans must not and cannot have their method of
collaboration rigidly dictated, but should be supported flexibly with both the tools and the
information to coordinate their activities and to collaborate in their activities as they see fit. In
this paper, we define the concept of Continuous Coordination, introduce our work to date in
building prototypes that support the Continuous Coordination paradigm in the context of
Global Software Development, and set out a further research agenda to be pursued.

Keywords
Global Software Development, Distributed Software Development, Collaboration,
Coordination, Awareness.

Abstract (German)

Im Zusammenhang mit der zunehmenden Globalisierung von Unternehmen ist auch die
Globalisierung der Softwareerstellung Realität geworden. Viele Softwareprojekte sind bereits
über mehrere Standorte rund um den Globus verteilt. Die Distanzen zwischen diesen
Standorten rufen viele neue Probleme hervor, die zuvor in räumlich nahe
zusammenarbeitenden Teams noch nicht beobachtet werden konnten. Es treten vor allem
Probleme bei der Koordination von Aktivitäten sowie in Zusammenhang mit der
Kommunikation innerhalb verteilter Teams auf. Die bisher in global verteilten Projekten
eingesetzten Werkzeuge zur gemeinsamen Softwareerstellung weisen ein fundamentales
Paradoxon auf: Sie sollen eigentlich die Zusammenarbeit im Rahmen der Softwareerstellung
unterstützen, führen jedoch dazu, dass Individuen und Teams mehr oder weniger unabhängig
voneinander arbeiten. Das grundlegenden Problem hierbei liegt darin, dass existierende
Werkzeuge, wie bspw. Konfigurationsmanagement-Repositories, Problemverfolgungs- und
Workflow-Managementsysteme, den Prozess zeitlich und aufgabenbezogen diskretisieren,
was isolierte Prozessschritte zur Folge hat. Dieser Ansatz enthält die Annahme, dass
menschliche Arbeit kodifiziert werden kann und dass die periodische Synchronisation der
einzelnen Aufgaben ein trivialer Schritt ist – diese widerspricht jedoch der Natur des
Menschen. Daher wird mit „Continuous Coordination“ ein neuer Ansatz zur Koordination von
Zusammenarbeitsprozessen vorgestellt. Hinter Continuous Coordination verbirgt sich das
Prinzip, dass Menschen die Art und Weise ihrer Zusammenarbeit weder vorgeschrieben
werden darf noch strikt vorgeschrieben werden kann. Sie sollten aber sowohl mittels
Werkzeugen und Informationen zur Koordination ihrer Aktivitäten als auch zur eigentlichen
Kollaboration flexibel unterstützt werden. Dieser Beitrag definiert das Continuous-
Coordination-Konzept, stellt unsere aktuellen Arbeiten zur Erstellung von Prototypen vor, die
dieses Paradigma im Kontext globaler Softwareentwicklung unterstützen, und präsentiert
einen Ausblick auf zukünftige Forschungsarbeiten.

Keywords (German)
Globale Softwareentwicklung, Verteilte Softwareentwicklung, Kollaboration, Koordination,
Umgebungsbewusstsein.

 3

1. Introduction
Globalization is a concept that applies in many contexts. Generally, it indicates that the
economic, cultural, and social boundaries of countries are transcended. Indeed, the co-authors
of this paper have come together from six different countries and from various backgrounds to
collaborate, most of us discovering one another's commonalities via the Web and
subsequently meeting for the first time via e-mail.

More formally, companies have sought to leverage globalization, especially in the software
industry [HeMo01]. To do so, these companies need to adapt their processes, tools, and
organizational culture to overcome the disparity among sites. As a consequence, they need to
solve a wide variety of problems, the most obvious being the physical distance [Grud94,
OlOl00]. In this case, the sense of working in a team decreases due to the lack of interaction
among the members of different sites and as a consequence of the reduction in trust among
members caused by software developers’ lack of knowledge about foreign cultures [JaLe99].
Moreover, relatively simple activities such as discussing requirements in meetings cannot be
performed [DCAC03]. Overall, many strategic, cultural, knowledge management, project
management (PM), as well as technical issues must be solved [HeMo01]. Existing software
tools address some of those problems by adopting more formal process-oriented approaches
such as workflow management systems and configuration management tools. Other tools
focus on bridging the distance gap between developers by facilitating their communication
through, for example, e-mail, instant messengers (IM), and teleconferencing.

In this paper, we introduce a novel paradigm for supporting distributed software development:
Continuous Coordination. Continuous Coordination combines aspects of formal, process-
oriented approaches, such as configuration management protocols and workflows (used to
guide users in their day-to-day high-level activities by coordinating their interactions), with
informal, awareness-based approaches such as e-mail and Instant messenger (IM)
communication (that provide communication channels to inform users of relevant, parallel
ongoing activities). Particularly in the context of global software development (GSD), this
paradigm can help to overcome some of the major coordination issues related to the lack of
communication, context, and awareness. Through the combined application of the Continuous
Coordination design principles of multiple perspectives, non-obtrusive integration,
combination of socio-technical factors and the integration of formal and informal coordination
approaches, we designed and implemented different software tools discussed in this paper.
Those tools allow globally distributed developers to better manage and understand the context
in which they perform their work (i.e., their organizational roles) and take action accordingly.
Our current empirical studies, involving some of our prototypes, show some improvements in
the way distributed users coordinate and manage their work. Users are not only better able to
organize and understand their respective tasks, but to also self-coordinate their activities to
avoid situations in which their work threatens to obstruct or interfere with the activities of
others. Moreover, because many of the same methods and tools are applied in both collocated
and globally distributed scenarios, the benefits of the Continuous Coordination paradigm are
not limited to GSD contexts and can be applied in collocated large organizations.

The rest of this paper is organized as follows: The next section presents an extended analysis
of current issues in GSD scenarios, in particular those related to coordination. Section 3
introduces the Continuous Coordination paradigm as one possible remedy to the issues
discussed previously. Section 4 presents an overview of current prototype tools we
implemented according to the Continuous Coordination paradigm as well as practical
experiences with those tools. This paper concludes with a summary of findings and an outlook
on future research.

 4

2. Current Issues in Global Software Development
Herbsleb and Moitra [HeMo01] classify the dimensions of the most frequent problems
encountered in GSD as follows: (a) strategic issues, (b) cultural issues, (c) inadequate
communication, (d) knowledge management, (e) project and process management, and (f)
technical issues (see also [CaAg01, HeMo03]). Each one of these problem dimensions
demands a different approach and tools. Our primary concern in this paper is addressing
coordination issues, particularly those related to communication, knowledge, and process
management. In doing so, we also address some tool integration issues.

2.1 Coordination Issues
Existing software engineering tools have been used to support GSD, but they also raise
several issues that hinder their use in such settings. Among the most distinctive issues are the
lack of flexibility and integration with other tools, poor role support, inadequate workplace
awareness [LaDO03], and the tension between formal and informal work [CuKI88, HeGr99,
HeMo03, SoHR07]. These issues and their impact are discussed in greater detail below.

1st issue – Lack of flexibility and integration: Globally distributed sites normally employ
software processes and development tools (editors, compilers, configuration management
repositories, and so on). Problems often arise when developer attempt to integrate the artifacts
produced by these tools. Developer find that the development tools have typically evolved
asynchronously (different versions of the same compiler, for example) and are specific to the
sites in which they are utilized. Such situations are common, and often originate from
acquisitions and mergers of companies [HMFG00].

2nd Issue – Poor role support: The lack of communication and organizational awareness
hinders proper coordination in a global organization. For example, developers are not always
aware of overseas team structure, policies, responsibility for certain pieces of code, expertise
in some API issues, and so on, which create communication barriers. Therefore, a system
supporting collaboration in GSD must be able to direct particular information to particular
people based on their roles [StJP99]. For example, the same bit of information that is highly
important for one user is often completely uninteresting for another user in the same situation.

3rd Issue – Lack of informal communication and workplace awareness: Empirical studies
suggest that informal communication is a very important factor that allow teams to cope with
the uncertainty of tasks such as those involved in software development in general [CuKI88,
KrSt95] and in GSD in particular [HMFG00]. The physical distance between sites makes it
more difficult for distributed team members to spontaneously and informally communicate
with one another. So-called serendipity encounters are an integral part of collocated team
communication (e.g., when handling exceptions, correcting mistakes, adjusting predictions,
and managing the effects of changes [HeGr99]). In addition, these informal communications
also raise mutual awareness in collocated teams, so developers in GSD settings find it difficult
to discern their colleagues’ current activity [DCAC03] and whether it is appropriate to
interrupt them at a certain time [BeBl96].

The 4th and final issue software engineers generally face (that our research is concerned
with) is the constraint that formal communication imposes during GSD. This issue is
discussed in the oncoming section within the context of current approaches to support
collaboration and coordination in GSD.

2.2 Current Approaches
Several software engineering tools are designed and developed to support the coordination
and collaboration issues discussed in the previous section. These tools generally either (1) rely

 5

on formal (process-oriented) approaches, such as locks in configuration management or
prescribed processes in workflow management systems, or (2) provide informal
communication channels, as in the case of e-mail, IM, and the Web in general.

Formal approaches [BaAn02] follow specific process models or policies, either implicitly or
explicitly defined by software tools. They promote the separation of work into multiple,
independent tasks that are periodically resynchronized. These approaches are illustrated in
row 1 of Table 1. The canonical example is a configuration management system by which a
developer checking out artifacts becomes insulated from other (parallel) activities in the
shared repository, whereas a developer checking in any modified artifacts resynchronizes his
or her work with the work of the group.

Even though essential for the coordination of GSD teams, this approach suffers from two
significant problems: First, formal processes can describe only parts of the activities of
software development. No matter how formal and well-defined a process may seem, there is
always a set of informal practices by which individuals monitor and maintain the process,
keep it on track, recognize opportunities for action, and acknowledge the necessity for
intervention or deviation [GeSt86]. Second, even when a process description attains a
relatively high degree of detail and accuracy, the periodic re-synchronization of activities
remains a difficult and error-prone task. In fact, the more parties are involved, the more
conflicts arise and the more faults are introduced in the software at hand [PeSV01]. These
problems are inherent in any tool that relies upon a formal encoding of collaborative work,
because formal processes are inevitably surrounded by a set of informal practices by which
the formal conditions are negotiated and evaluated. Moreover, tools designed for a specific
process can prove to be less effective when implemented within the context of informal
practices, introducing the challenge of overcoming heterogeneity [HMFG00].

Informal approaches usually rely on the notion of awareness – a concept that has become a
central element of Computer-Supported Cooperative Work (CSCW) research, especially
impacting the design of different collaborative systems [HeLu92, Schm02]. Awareness is an
informal understanding of the activities of others that provides a context for monitoring and
assessing group and individual activity [DoBe92, GiLT99]. An example is the mutual
awareness of activities that arises in shared physical environments, where we can see and hear
each other and “keep an eye out” for interesting or consequential events. Informal
coordination therefore needs to provide continual visibility, that is, awareness of concurrent
actions in order to foster self-coordination. The canonical example is the multi-user editor: by
continuously displaying the ongoing activities of others, users typically self-coordinate by
avoiding areas of the document in which others are currently working (see row 2 of Table
1)[ElGi91].

As with the formal, process-based approach, discussed in the previous section, the informal,
awareness-based approach suffers from a significant problem that makes it a less-than-
effective solution when it comes to coordination and collaboration. In particular,
implementations of awareness-based approaches scale poorly; they are largely of value for
small groups only. This is primarily caused by two factors: the users’ cognitive limitations and
the lack of process support. Although some mechanisms have been proposed for
“asynchronous awareness” that can more easily support large-group collaboration
[HHWM92], existing awareness technologies seem to work well for small groups, but break
down for large groups. Consequently, the developers are faced with either formal or informal
communications each of which presents its own limitations and advantages. The proposed
paradigm, Continuous Coordination, endeavors to provide an alternative means of
communication which combines the advantages of both formal and informal communication
(Table 1). Continuous Coordination is detailed in the oncoming section.

 6

3. Continuous Coordination
The formal and informal approaches discussed in the previous section have thus far always
been treated as opposites. Developers have either looked toward formal processes or informal
awareness to support coordination. Our research moves beyond this long-standing dichotomy
and proposes an integrated paradigm to supporting collaborative work that combines formal
and informal coordination strategies to provide both the tools and the information for users to
increase self-coordination. Specifically, Continuous Coordination is a paradigm for the design
of systems that provides mechanisms to support awareness sufficient to mediate coordination
between otherwise isolated synchronization points (see Table 1). Continuous Coordination
aims to combine the strengths of the formal and informal approaches while overcoming the
current shortcomings of either one. It retains the checkpoints and measures of the formal
approach to coordination (represented by circles in Table 1), but provides developers with a
view of each other’s relevant activities between these formal checkpoints (represented as
arrows in Table 1). In doing so, it provides developers with ways to understand the potential
relationships between their own work and the work of their colleagues. This is not a way to
step outside the bounds of formal coordination; rather, it allows developers to better judge
both the timing and the impact of formal coordination actions. We consider the occurrence of
conflicts and other hindrances a normal part of any process and believe that any approach
must integrally address them in a combined formal and informal way.

 Conceptual Visualization Strengths Weaknesses

Formal
Coordination

Prescribed synchronization points

Scalable;
Insulation from other
activities;
Control;
Group-centric

Reconciliation
problems;
Insulation becomes
isolation

Informal
Coordination

Constant awareness

Flexible;
Promotes synergy;
Raises awareness;
User-centric

Not scalable;
must be initiated and
managed manually

Continuous
Coordination

Awareness sufficient to mediate coordination
between synchronization points

Combines the
strengths of both
formal and informal
coordination

Some applications
specifically require
isolation of developers
(e.g., for security
reasons)

Table 1 An abstract summary of different coordination paradigms and their visualizations, strengths, and
weaknesses. Arrows indicate informal communication whereas circles indicate coordination points for

synchronization.

In terms of tool requirements, Continuous Coordination implies the integration of formal tools
such as configuration management, workflow, and other kinds of process-oriented tools with
awareness mechanisms, visualizations, and socio-technical aspects in order to improve
awareness and the coordination of both distributed and collocated teams. In particular, we
apply a combined set of design principles in the development of software tools that aim at
addressing the main issues in GSD (see sections 2.1 and 2.2). From a systems perspective, we
propose the use of multiple perspectives and tool integration; whereas from the collaborative
perspective, we employ the integration of social and technical relations as well as support for
formal and informal coordination. Those principles have been successfully applied separately

 7

in specific context in other domains (as discussed in section 2.2 and by [Kruc95] and [TM81],
among others), and now are being combined in the design of Continuous Coordination tools.
While several principles are reported, we adopted only those that can potentially address the
GSD issues that are the focus of our research. These principles are summarized below
together with the GSD issues they address:

1. Multiple perspectives: Rather than attempting to create a single, “one-size-fits-all” view of

either data or process, we continually attempt to represent information from multiple
perspectives. Examples include: (1) different perspectives on activity encoded by multiple
simultaneous process descriptions, (2) different perspectives on an information space
reflecting both the formal (checked-in, stable) and the informal (ongoing, active) states of
activity; and (3) different perspectives on current activity from the viewpoints of two
different members of a project team, to see their work in terms of each other’s current
state. Providing these multiple perspectives can increase the likelihood of developers
sharing common views of the project, which has been stated as a need in GSD [CaAg01]
and discussed in section 2.1 (issues 1 and 2).

2. Non-obtrusive integration: Through the use of event-based integration and Web-based

Collaborative Software Development Platforms (CSDP, [Robb05]), we sought to integrate
different tools and information sources either through synchronous messages (event-based
integration) or through the representation of links between different sites and artifacts
(hypermedia integration). Adopting this Continuous Coordination principle within a GSD
domain will enable traceability and transparency, which have previously been highlighted
as important aspects of GSD [HPB05] and discussed in section 2.1 (issue 1).

3. Combination of social and technical factors: By the explicit integration and

representation of socio-technical relations such as relations between artifacts (source code,
documentation, change requests) and authorship (developers, managers, users), distributed
developers can infer important context information that supports activities such as
expertise location, intra-group communication, issue resolution, and organizational role
support, among other issues discussed in section 2.1 (issues 2 and 3). Implementing this
design principle in a Continuous Coordination prototype can also provide a means to
detect and accurately document the socio-technical network to support GSD as it evolves
[HeMo03].

4. Integrated formal and informal coordination approaches: In keeping with our paradigm

to integrate rather than separate multiple coordination approaches, we combine
configuration management (for formal coordination) and change notification (for informal
coordination) through the use of visualizations and integrated software development
environments. For example, a shared change management system in GSD can enable
access to information detailing the number and the nature of outstanding problems and
necessary changes [HPB05]. Thus addressing issues identified in section 2.1 (issue 3) and
section 2.2 (issue 4).

 8

Lack of flexibility
and Integration

Poor Role
Support

Lack of Informal
Communication and
Workplace awareness

Constraints
from formal
approaches

GSD Team Issues

CC Principles

Multiple perspectives Non-obtrusive
integration

Combination of social
and technical factors

Integrated formal and
informal coordination
approaches

Section 2.1

Section 3

Figure 1 A summary of the relationship among the GSD team issues and
 Continuous Coordination (CC) principles.

Figure 1 provides a Summary of the GSD Team Issues we address and the Continuous
Coordination (CC) design principles adopted in our paradigm. Those principles were used in
the implementation of different tools as described in the next section.

4. Continuous Coordination Implementations
The Continuous Coordination paradigm was implemented through a series of tools rather than
a single tool or single integrated environment to permit easier exploration of individual
aspects of Continuous Coordination. Having multiple tools also separates tool usage from
particular processes, affording developers the flexibility to integrate the tools into existing
practices rather than introducing new ones. Despite the apparent diversity of our tools, they do
share common characteristics (see Figure 1). Note that the different prototypes presented here
are currently at varying stages of maturity. Each tool provides a different level of abstraction
in terms of granularity and type of information that can be useful to specific developer needs.
The prototypes are presented in an order according to their coverage of GSD activities,
namely: YANCEES, Palantir, Ariadne, TraVis, and finally WorldView. Each prototype’s
concise set of features and its relation to GSD issues and Continuous Coordination principles,
as well as present application experiences, are outlined in the following sections.

4.1 YANCEES Notification Service
The integration of information from different sources and their meaningful representation in
different visualizations and tools require a communication infrastructure (or middleware) that
supports heterogeneity – different data formats and network characteristics. In the Continuous
Coordination paradigm, event-based integration [BaCT96], provided by notification servers,
is used as the main communication and integration infrastructure that supports the
implementation of different awareness strategies of the applications previously described.

Notification servers are brokers for system events, generally following a publisher-subscriber
pattern [DGJN98]. In this communication style, different applications (information producers)
publish information in the form of messages or events to a logically centralized service.
Information consumers express interest in those events by means of subscriptions. This
loosely coupled integration approach increases the flexibility of a distributed system by
separating producers and consumers of information, thus enabling a “plug-and-play” approach
that allows the introduction of new producers or consumers in the system.

In the GSD context, end users (e.g., designers, programmers, testers, and others) use different
software tools. The end users’ interactions with those tools generate notifications (for
example, the check-in or check-out of artifacts to repositories, the implementation of a new
method in a class, the start of a chat session and so on). Those notifications are first captured
(by the monitoring of those tools) and then published to an event notification server.

 9

Visualizations subscribe to those notifications and present this information to distributed
developers or teams interested in that specific kind of information. For example, in the case of
Palantír (discussed in the following section), the user’s Integrated Development Environment
(IDE) is constantly being monitored for events such as the modification of a source code file
or check-in and out of artifacts in a Configuration Management repository. Those events are
then propagated to other IDEs that use this same information to inform users about parallel
artifact changes and activities. In WorldView (discussed in section 4.5), activities from
distributed sites are kept current by the continuous notification of organizational or artifact
changes.

The above description makes it seem straightforward that notification servers provide an
infrastructure for keeping users aware of events of interests. However, some issues arise in
practice: the generalization versus specialization dilemma: to design a one-size-fits-all
infrastructure that supports a large set of application domains, resulting in complex
implementations; or to develop an application-specific infrastructure, much simpler and more
efficient, but with a limited scope. Both approaches usually provide weak support for
customization; and poor support for extensibility (e.g., inability to support different
notification policies [SBR02]). To cope with the heterogeneous set of requirements from
different visualizations and the differences in events being produced by many information
sources, without over simplifying or complicating its implementation, a notification service
needs to be flexible. In other words, it needs to contract and expand its capabilities according
to the needs of the applications at hand. For example, it needs to support persistence of events
and pull notifications; to allow the retrieval of past event history in Palantír; and also to
support the integration of different event sources, and push notification as the case of
WorldView.

Such flexibility was one of the main challenges in our design of YANCEES, a
publish/subscribe infrastructure designed to fulfill this role, providing different extension
points around a common publish/subscribe model. YANCEES has been used to support
different applications [SiRe05]. Through the use of an event-based infrastructure, many of the
flexibility and integration issues demanded by our tools can be addressed, facilitating the
integration of configuration management and change notification, as well as synchronous
awareness mechanisms. In the context of Table 1, notification servers provide means by
which asynchronous notifications (dotted arrows in the diagram) are performed.

4.2 Palantír
Palantír is a workspace awareness tool, which provides developers with insight into ongoing
development activities in remote workspaces, providing them with context, and helping in
their coordination – an important aspect of collocated software development that is missing in
distributed development [SaNH03]. Palantír analyzes ongoing changes in artifacts from
different developer workspaces. Those changes include local editions to source code files,
Configuration Management operations such as check-ins and check-outs and
synchronizations). Notifications about those changes are propagated to distributed Palantír
peers through the use of notification servers (e.g. YANCEES) that collect and route
information from and to interested parties. Palantír also calculates a measure of magnitude
and the impact of those changes, and graphically displays this information in a configurable
and non-obtrusive manner (see Figure 2). Palantír thus breaks the isolation in workspaces by
continuously sharing information across GSD workspaces. The provision of information on
parallel activities and potential conflicts in the project enables the early detection of parallel
changes. Thus, even though the developers are notified of changes, the notification does not
interrupt their work or force them to take immediate action. This enforces the concept of
continues coordination (see Table 1, Row 3) where formal checkpoints (check-ins and check-

 10

outs of files in our case) are retained, but are enhanced with awareness information (dotted
lines in Table 1, Row 3); with the amount of information that is provided configurable by the
users.

Figure 2 represents how parallel change notifications are presented within the Eclipse
development environment in a way that minimizes users’ context switches. For example, in
the example of Figure 2, an artifact’s icon (Address.java) is annotated with a blue decorator
on its left, implying that it is being changed in parallel in another workspace. A text
annotation, “S:24”, is also provided, denoting the magnitude of the change. In this example,
24 lines have been changed in the artifact. The Address.java icon also has a red decorator on
its right, along with a text annotation of “I>>”, which implies that changes in Address.java are
affecting other artifacts in the workspace. On a similar note, red decorators and “I<<”
annotations on CreditCard.java indicate incoming conflicts in those artifacts (i.e., other users
made changes in that file in their workspaces, and those changes were not yet commented to
the repository). A log view (as seen on the bottom of the figure) presents which artifacts cause
conflicts in other artifacts, as well as the reasons for the conflicts.

Figure 2 Palantír screen shot: blue and red decorators indicate concurrent changes in documents

in different severity levels.

Palantír thus integrates multiple perspectives while it augments current configuration
management tools with change notifications, which allows users to better coordinate their
work during parallel software development. This approach prevents GSD conflicts due to
merges that are a consequence of the insulation prescribed by many configuration
management tool protocols.

Palantír has been evaluated through controlled laboratory experiments in which subjects
completed a set of tasks in Java in a limited amount of time and within a GSD scenario
[HMPR04]. As a result, the performance of the experimental group was found to be better
than the control group’s with respect to the amount of time taken per task and the number of
conflicts detected and resolved. Subjects in the experimental group consistently detected

 11

conflicts early on, as they were introduced, and coordinated with their team members to either
avoid or resolve them.

4.3 Ariadne
In another prototype, we exploit the use of visualizations that express the socio-technical
relation between artifacts. Source code is one of the most important artifacts in any software
development effort. Ariadne [SDRQ04] is a collaborative software development tool that
enhances developers’ awareness of the social dependencies present in their work by
seamlessly integrating such information with development activities in Eclipse. Ariadne
analyzes software development projects for source code dependencies (e.g., data and control
dependencies) and collects authorship information for the source code from a configuration
management repository. The tool then links the source code dependencies and authorship
information to create a social network of software developers. This social network describes
the dependencies among software developers that arise out of the dependencies in their code.
Through this novel approach, Ariadne allows the analysis and visualization of social
dependencies that surround the source code, which is crucial for informal coordination,
expertise location, role awareness, and change impact analysis.

Figure 3 Example of graphical representations of social dependencies in large GSD projects

produced by Ariadne

Figure 3 shows a social dependency graph for the open-source Java project “Tyrant,”
available on Sourceforge.net. Cyan-colored nodes represent developers in the project and
directed arrows from one developer to another indicate that the former depends on the latter.
Thicker edges between nodes represent stronger social dependencies, indicating the presence
of more technical dependencies between developers. Developers can selectively display
authors in the visualization by using the check boxes in the left column, and can view author
contact information in the right column by selecting a developer node in the graph. By
analyzing the social dependency graph, developers can see that dependencies in their source
code create social dependencies between them and their colleagues. Depending on the
strength of the social dependency, two developers may feel more compelled to begin
coordinating their work.

 12

In general, Ariadne combines the Continuous Coordination principles of integrating socio-
technical and social network visualizations that combine developers, artifacts, and the source
code dependencies. The developers can access these graphical representations of social
dependencies and actionable information at a time suitable to them, thus improving their
overall awareness about the social and technical dependencies of a distributed software
project.

We conducted semi-structured interviews with four software developers at a large software
development company (field study-based evaluation [HMPR04]). Questions in the interviews
explored the usefulness of Ariadne’s dependency information and the usefulness of the
information present in the social network visualization. The core members of the project
benefited less directly from Ariadne since they were located in the same building; however,
they acknowledged that Ariadne would be useful in their organization because of the larger
integration effort currently taking place that would lead several distributed and formerly
independent teams to work together.

4.4 TraVis
Collaborative software development platforms (CSDPs) are suites of tools that comprise and
unify multiple software development and knowledge management tools. These include source
code management, issue trackers, Wikis, and discussion forums – tools that often have been
successfully used in distributed open source software development projects [AuBS02,
Robb05].

The TraVis (Trace Visualization) tool goes beyond Ariadne by leveraging the use of
dependencies among different artifacts and their users (instead of source code authorship
only). For instance, a CSDP associates tracker items, which represent development tasks, with
different documents and their respective authors (see Figure 4, TSK-1195). This creates a rich
semantic network, the “traceability network”, with task-related entities, artifacts, and users
[LiSa96]. Also including code artifacts, CSDP provide a broader spectrum of artifact
dependencies and TraVis enables the visualization and analysis of the different relations that
might occur. Traceability and rationale information from CSDP is captured as users in GSD
projects develop and document their processes. Artifacts are annotated and connected with
their respective descriptions, discussions, and tasks represented as tracker items form a
heterogeneous network of information. Thus TraVis lays hold of the principles of non-
obtrusive integration, multiple perspectives, and the integration of socio-technical issues in a
CSDP, i.e. user-artifact relations (cp. section 4.3). Managing all this information on one single
CSDP allows creating the links necessary to establishing the actual traceability network
[LiSa96]. The networked project information facilitates advanced contextual analyses of
different kinds.

TraVis provides several filters for displaying certain aspects of the traceability network (e.g.,
particular artifact types, process categories, or user groups; see checkboxes on the left side in
Figure 4). Thus, different role-based views (for developers, designers, project managers, and
so forth), and different projections of the network, can be defined. Moreover, TraVis
visualizes networks originating from particular artifacts, activities, and users: For example,
Figure 4 shows the adjacency graph of task 1195 (i.e., all other related artifacts and users),
which allows distributed developers in the process of identifying group members and
understanding the relations and dependencies between artifacts, thus establishing context.
Therefore, TraVis also provides increased awareness within GSD projects based on a broad
range of information from CSDP, including source code. Through real-time graphical
representations and analysis, collaboration among stakeholders can improve, for example, by
facilitating impact analysis, e.g. when requirement change late in the project and the

 13

propagation of this change has to estimated, as well as informal team communication. The
increased process transparency also facilitates project management tasks. In order to provide a
better overview in complex GSD projects with hundreds of related artifacts, TraVis evaluates
artifacts according to their importance; this is represented by different vertex sizes in Figure 4
(for example REQ-1316 and TSK-1175). This importance metric is based on the value
assigned to the initial set of requirements as well as the task priorities set by the project
manager [GeHi06].

Figure 4 Traceability relations from a GSD project extracted by TraVis

To this point, TraVis has been evaluated by several CSDP vendors and their customers as well
as by open source software developers, i.e. domain experts. As with Ariadne, subjects were
asked about the usefulness and value the tool provides compared to off the shelf hypermedia-
based CSDP. Thus, the tool was evaluated through an empirical field study [HMPR04].
TraVis’ core features are based on observations from CSDP vendors’ change request lists, that
is, features customers were missing in their daily business. These include more purposeful
change propagation as well as multiple linking mechanisms and traceability [SoHR07]. After
implementing all projected features, TraVis will be systematically evaluated in controlled
GSD-like scenarios, such as globally distributed student programming projects [BGHR07].

4.5 WorldView
WorldView provides different visualizations in several levels of abstraction, which extends
from low-level artifact representation (design models) to high-level representation of team
interactions. This allows a comprehensive view of the team dynamics within a project,
geographical location of teams, time zones, and the interdependencies among teams
[SaHo06]. The ability to navigate through different levels of abstraction enables the support of
developers within different organizational roles. Similar to Ariadne and TraVis, the
visualization of the highest level of abstraction of development artifacts can help developers
(e.g. designers and managers) to identify global and local team members, interactions between

 14

subgroups, and other vital information such as how and when to contact global members of
teams. The world map view of the project context is particularly designed for GSD scenarios.

Figure 5 A representation of team structure, development tasks, and other essential information

about GSD projects in WorldView

In the example shown in Figure 5, one possible level of abstraction is presented. In this figure,
the teams are represented as “red balloons” on a world map, and interdependencies among
teams are represented as “lines” connecting them. Interdependencies among teams are
determined based on the number of shared artifacts, which are identified through program
analysis of their common code base. The thickness of the lines represents the extent of
sharing: the thicker the lines, the larger the number of shared artifacts. Through this view,
developers can discern, at-a-glance, which teams are tightly coupled through which artifacts.
It also supports organizational role awareness through the visualization of users and their
organizational roles (displayed by “mousing over” a site). By allowing team members to be
aware of interdependencies and by integrating organizational aspects in the same
visualization, this tool demonstrates the implementation of the Continuous Coordination
principles of non-obtrusive integration, socio-technical issues, and multiple views.

This tool is still in the exploratory phase of development, with descriptive evaluation plans in
place to develop supportive arguments for its utility. Future plans also include the realization
of black box and white box testing [HMPR04]. Finally, we intend to conduct an experimental
study of the tool within a simulated environment for evaluation [HMPR04].

5. Conclusions and Future Research
Software development performed by traditional collocated teams is an intrinsically difficult
task. It is difficult because of the complex nature of the activities being executed requiring
strong coordination and communication among developers. When performed in a globally
distributed setting, software development becomes even more challenging. In GSD, several
problems arise due to the physical, social, and cultural difference between the developers. In
particular, less informal communication among the team members results in a lack of mutual
awareness and difficulty in establishing trust.

The Continuous Coordination paradigm strives to address those issues by integrating and
enhancing existing formal and informal coordination strategies, implemented in current

 15

software engineering tools, as a way to improve the coordination in distributed settings. This
is achieved by the use of multiple perspectives, non-obtrusive integration, the combination of
social and technical factors, and the combination of configuration management and change
notification as design principles for corresponding tools.

Figure 6 summarizes the interrelationships of GSD team needs, the Continuous Coordination
design principles that strive to meet those needs, the prototypes that have been developed
based on those principles, and the infrastructure they use. The prototype tools we developed
allow us to explore our theory and open the door for further theoretical development and
evaluation.

Lack of flexibility
and Integration

Poor Role
Support

Lack of Informal
Communication and
Workplace awareness

Constraints
from formal
approaches

GSD Team Issues

CC Principles

CC Prototypes

Multiple perspectives Non-obtrusive
integration

Combination of social
and technical factors

Integrated formal and
informal coordination
approaches

WorldView TraVis Ariadne Palantír

CC Infrastructure

YANCEES Existing Configuration
Management Repositories

Collab. Software
Dev. Platform

Organizational
knowledge

Section 2.1

Section 3

Section 4

Section 4

Figure 6 A summary of the relationship between Continuous Coordination principles, prototypes and
strategies

WorldView supports the Continuous Coordination principles of multiple perspectives, non-
obtrusive integration, and the combination of social and technical factors in a shared
visualization of different organizational, technical-social aspects of GSD. It relies both on
event-based integration (YANCEES), as well as organizational knowledge and information
from CSDP. WorldView is current being extended to include alternate forms of team
interactions. It will display the impact of a specific change on teams. This aspect of the tool
will embody the social and technical factors of GSD by explicitly integrating and representing
of socio-technical relations (changes, impact, and authorship).

TraVis supports the Continuous Coordination principle of multiple perspectives through its
role-based view on the traceability network. Moreover, the tool provides transparency,
traceability, and awareness in a non-obtrusive way by using real-time data from CSDP used in
GSD projects. This allows, for instance, developers to establish adequate communication
based on the project’s context, e.g. when questions about dependent artifacts arise later in the
process.

Ariadne combines social (authorship) and technical (source code) dependencies in analysis
and visualization of social dependencies that support developers in their informal

 16

coordination, expertise location, role awareness, and change impact assessment. Ariadne is
being augmented to support different social network metrics that will provide developers with
insight into how their work affects other developers’ work and how the work of other
developers affects their own.

Palantír supports workspace awareness in parallel development scenarios by integrating
configuration management and change notification. It is built upon notification servers such as
YANCEES and existing CM repositories. So far, no major changes are scheduled and the
current functionality has already been evaluated through controlled laboratory experiments.

The tools demonstrate how the Continuous Coordination paradigm seeks to promote self-
coordination through continuous provision of information generated as a result of
development activities. The tools enable the developers to share an awareness of activities
carried out during development in such a manner that developers are not constrained by the
lack of information, nor is their work blurred by a high volume of information. We sought to
achieve a balance by enabling access to necessary information only at a time suitable to the
developers. Practical experiences within our research group and evaluations of particular tools
(Palantír, Ariadne, TraVis) in either experimental or field environments indicated the
usefulness of Continuous Coordination-based tools in distributed and GSD settings.

Continuous Coordination can be seen as a solution to several GSD issues (i.e., the lack of
informal communication and mutual awareness). Furthermore, because methods and tools
initially designed for distributed development teams are often adopted in “collocated” sites,
Continuous Coordination tools are useful in these contexts as well.

Acknowledgments
This research was supported by the U.S. National Science Foundation under grants 0534775,
0326105, 0093489, and 0205724, by the Intel Corporation, by two IBM Eclipse Technology
Exchange grants, an IBM Technology Fellowship, and by the Brazilian Government under
CAPES Grant BEX 1312/99-5. Part of this work is also a result of the project CollaBaWue
supported by the German state of Baden-Wuerttemberg. CollaBaWue is part of the research
association PRIMIUM. We thank the anonymous reviewers for their comments on an earlier
draft. We also thank our colleague Steve Abrams for helpful criticisms. Finally, we thank our
technical editor, Sandra Rush, who greatly improves the readability of our work for others.

 17

References
[AuBS02] Augustin, L.; Bressler, D.; Smith, G.: Accelerating Software Development through

Collaboration. In: Proceedings of the International Conference on Software Engineering 2002
(ICSE'02). Orlando, FL, USA, 2002, pp. 559-563.

[BaAn02] Barthelmess, P.; Anderson, K.M.: A View of Software Development Environments Based on
Activity Theory. In: Computer Supported Cooperative Work, Kluwer Academic Publishers, 11
(2002) 1-2, pp. 13-37

[BaCT96] Barrett, D.J.; Clarke, L.A.; Tarr, P.L.; Wise, A.E.: A Framework for Event-based Software
Integration. In: ACM Transactions on Software Engineering and Methodology, 1996, 5, pp.
378-421.

[BeBl96] Bellotti, V.; Bly, S.: Walking Away from the Desktop Computer: Distributed Collaboration and
Mobility in a Product Design Team. In: Proceedings of the 1996 ACM Conference on
Computer Supported Cooperative Work (CSCW '96), ACM Press, 1996, pp. 209-218

[BGHR07] Berkling, K.; Geisser, M.; Hildenbrand, T.; Rothlauf, F.: Offshore Software Development:
Transferring Research Findings into the Classroom. In: Proceedings of the First International
Conference on Software Engineering Approaches For Offshore and Outsourced Development
(SEAFOOD), Zuerich, Switzerland, 2007 (accepted).

[CaAg01] Carmel, E.; Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. In: IEEE Software, 18 (2001) 2, pp. 22-29.

[CuKI88] Curtis, B.; Krasner, H.; Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. In: Communications of the ACM, 31 (1988) 11, pp. 1268-1287.

[DCAC03] Damian, D.; Chisan, J.; Allen, P.; Corrie, B.: Awareness Meets Requirements Management:
Awareness Needs in Global Software Development. In: Proceedings of the International
Workshop on Global Software Development, Portland, Oregon, 2003.

[DGJN98] Dingel, J.; Garlan, D.; Jha, S.; Notkin, D.: Reasoning about Implicit Invocation. In: 6th
International Symposium on the Foundations of Software Engineering (FSE-6), Lake Buena
Vista, FL, USA, 1998.

[DoBe92] Dourish, P.; Bellotti, V.: Awareness and Coordination in Shared Workspaces. In: Proceedings
of the 1992 ACM Conference on Computer-Supported Cooperative Work (CSCW '92), ACM
Press, 1992, pp. 107-114.

[ElGi91] Ellis, C.A.; Gibbs, S.J.;Rein, G.: Groupware: Some Issues and Experiences. In:
Communications of the ACM, 34(1991) 1, pp. 39-58.

[GeHi06] Geisser, M.; Hildenbrand, T.: Agiles, verteiltes Requirements-Engineering mit Wikis und einer
kollaborativen Softwareentwicklungsplattform. In: OBJEKTSpektrum, 2006 (6), pp. 37-42.

[GeSt86] Gerson, E.M.; Star, S.L.: Analyzing Due Process in the Workplace. In: ACM Transactions on
Office Information Systems 4 (1986) 3, pp. 257-270.

[GiLT99] A. Girgensohn; A. Lee; T. Turner: Being in Public and Reciprocity: Design for Portholes and
User Preference. In: Proceedings of the Seventh IFIP Conference on Human-Computer
Interaction (INTERACT '99), IOS Press, pp. 458-465, 1999.

[Grud94] Grudin, J.: Computer-Supported Cooperative Work: History and Focus. In: IEEE Computer, 27
(1994) 5, pp. 19-26.

[HeGr99] Herbsleb, J.D.; Grinter, R.E.: Architectures, Coordination, and Distance: Conway's Law and
Beyond. In: IEEE Software, 16 (1999) 5, pp. 63-70.

[HeLu92] Heath, C.; Luff, P.: Collaboration and Control: Crisis Management and Multimedia
Technology in London Underground Control Rooms. In: Computer Supported Cooperative
Work, 1 (1992) 1-2, pp. 69-94.

[HeMo01] Herbsleb, J.D.; Moitra, D.: Global Software Development. In: IEEE Software 18 (2001) 2, pp.
16-20.

[HeMo03] Herbsleb, J.D.; Mockus, A.: An Empirical Study of Speed and Communication in Globally-
Distributed Software Development. In: IEEE Transactions on Software Engineering 29 (2001)
6, pp. 481-494.

[HHWM92] Hill, W.C.; Hollan, J.D.; Wroblewski, D.; McCandless, T.: Edit Wear and Read Wear. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '92),
ACM Press, 1992, pp. 3-9.

[HMFG00] Herbsleb, J.D.; Mockus, A.; Finholt, T.A.; Grinter, R.E.: Distance, dependencies, and Delay in
a Global Collaboration. In: Proceedings of the 2000 ACM Conference on Computer Supported
Cooperative Work (CSCW '00), ACM Press, 2000, pp. 319-328.

[HMPR04] Hevner, A.R.; March, S.T.; Park, J.; Ram, S.: Design Science Information Systems Research.
In: MIS Quarterly, 28 (2004) 1, pp. 75-105.

 18

[HPB05] Herbsleb, J.D.; Paulish, D.J.; Bass, M.: Global Software Development at Siemens: Experience
from Nine Projects. In: Proceedings of the International Conference on Software Engineering
(ICSE 05), St. Louis, MO, USA, May 15-21, 2005.

[JaLe99] Jarvenpaa, S.L.; Leidner, D.E.: Communication and Trust in Global Virtual Teams. In:
Organization Science, 10 (1999) 6, pp. 791-815.

[KrSt95] Kraut, R.; Streeter, L.A.: Coordination in Software Development. In: Communications of the
ACM, 38 (1995) 3, pp. 69-81.

[Kruc95] Kruchten, P. B.: The 4+1 View Model of architecture. IEEE Software, 1995, 12(6): 42-50.
[LaDO03] Lanubile, F.; Damian, D.; Oppenheimer, H.L.: Global Software Development: Technical,

Organizational, and Social Challenges. In: SIGSOFT Software Engineering Notes, 28 (2003) 6,
pp. 2-5.

[LiSa96] Lindvall, M.; Sandahl, K.: Practical Implications of Traceability. In: Software – Practice &
Expererience, 26 (1996) 10, 1161-1180.

[OlOl00] Olson, G.; Olson, J.: Distance Matters, In: Journal of Human-Computer Interaction, 15 (2000)
2-3, pp. 139-178.

[PeSV01] Perry, D.E.; Siy, H.P.; Votta, L.G.: Parallel Changes in Large-Scale Software Development:
An Observational Case Study. In: ACM Transactions on Software Engineering and
Methodology, 10 (2001) 3, pp. 308-337.

[Robb05] Robbins, J.: Adopting Open Source Software Engineering (OSSE) Practices by Adopting
OSSE Tools. In: Feller, J.; Fitzgerald, B.; Hissam, S.A.; Lakhani, K.R. (Hrsg.): Free/Open
Source Processes and Tools, MIT Press, Cambridge, MA, USA, 2005, pp. 245-264.

[SaHo06] Sarma, A.; van der Hoek, A.: Towards Awareness in the Large. In: First International
Conference on Global Software Engineering, Costão do Santinho, Florianópolis, Brazil,
October 2006.

[SaNH03] Sarma, A.; Noroozi, Z.; van der Hoek, A.: Palantír: Raising Awareness among Configuration
Management Workspaces, In: Proceedings of the Twenty-Fifth International Conference on
Software Engineering, Portland, Oregon, USA, 2003, pp. 444-453.

[SBR02] Souza, C. R. B. d.; Basaveswara, S.D.; Redmiles, D.F.: Using Event Notification Servers to
Support Application Awareness. In: IASTED International Conference on Software
Engineering and Applications, Cambridge, MA, USA, 2002, pp. 691-697.

[Schm02] Schmidt, K.: The Problem with “Awareness” – Introductory Remarks on “Awareness in
CSCW.” In: Journal of Computer Supported Cooperative Work, 11 (2002) 3-4, pp. 285-298.

[SDRQ04] de Souza, C.; Dourish, P.; Redmiles, D.; Quirk, S.; Trainer, E.: From Technical Dependencies
to Social Dependencies. In: Proceedings of the Social Networks Workshop at the 2004
International Conference on CSCW, Chicago, IL, USA, 2004.

[SoHR07] de Souza, C.; Hildenbrand, T.; Redmiles, D.: Towards Visualization and Analysis of
Traceability Relationships in Distributed and Offshore Software Development Projects. In:
Proceedings of the First International Conference on Software Engineering Approaches For
Offshore and Outsourced Development (SEAFOOD), Zuerich, Switzerland, 2007 (to appear).

[SiRe05] Silva Filho, R.S.; Redmiles, D.: Striving for Versatility in Publish/Subscribe Infrastructures. In
5th International Workshop on Software Engineering and Middleware (SEM'2005), ACM
Press, 2005, pp. 17-24.

[StJP99] Steinfield, C.; Jang, C.; Pfaff, B.: Supporting Virtual Team Collaboration: The TeamSCOPE
System. In: Proceedings of the International ACM SIGGROUP Conference on Supporting
Group Work (GROUP '99), ACM Press, 1999, pp. 81-90.

[TM81] Teitelman, W. and Manister, L.: The Interlisp Programming Environment. IEEE Computer.,
1981, 14: 25-33.

