Continuous Coordination: A New Paradigm to Support
Globally Distributed Software Development Projects

David Redmiles, André van der Hoek, Ban Al-Ani, TasHildenbrand*, Stephen Quirk,
Anita Sarma, Roberto Silveira Silva Filho, CleidsmSouza**, Erik Trainer

Donald Bren School of information and Computer Sciences
Department of Informatics, University of California, Irvine

Irvine, CA 92697-3430, USA

{redmiles, andre, balani, squirk, asarma, rsilvafi, etrainer}@ics.uci.edu

* Lehrstuhl fir ABWL und Wirtschaftsinformatik
Universitat Mannheim

D-68131 Mannheim, Germany
hildenbrand@uni-mannheim.de

** Departamento de Informatica, Centro de Ciéncias Exatas e Naturais
Universidade Federal do Para

Belém, PA 66075-110, Brazil

cdesouza@ufpa.br

Key Findings

We introduce and explicate a novel development digma for distributed software
engineering development tools, Continuous Coorginat Continuous Coordination
constitutes a paradigm for collaborative systemisiciv combines elements of traditionally
formal, process-oriented approaches with those hef hore informal, awareness-based
approaches, thus addressing some of the issuéshail goftware development:

- The lack of awareness and informal communicatiomregndevelopers are factors that
contribute to problems arising during global softevalevelopment. The Continuous
Coordination paradigm improves awareness and enabtiegree of self-coordination by
integrating existing tools (based on formal, prgeesented approaches) with awareness
for coordination (based on informal, peripheral arstial cues).

- Developers often face challenges when they attamphtegrate artifacts produced by
heterogeneous tools. Continuous Coordination isneéfin terms of several general
design principles which are implemented in new axisting tools. Consequently,
practitioners can adopt the paradigm immediatelyd ancrementally; moreover,
Continuous Coordination allows them to more reaiitggrate the artifacts produced.

Abstract (English)

Along with the rapid globalization of companiese thlobalization of software development
has become a reality. Many software projects ake distributed in diverse sites across the
globe. The distance between these sites createsasgwoblems that did not exist for
previously collocated teams. Problems with the doation of the activities, as well as with
the communication between team members, emergey balaborative software engineering
tools that have been used to date, in global softwdevelopment projects, exhibit a
fundamental paradox: they are meant to support cibi@aborative activity of software

development, but cause individuals and groups ttkkwore or less independently from one
another. The underlying issue is that existing veafé engineering tools, such as

1

configuration management repositories, issue trackand workflow engines, separate time
and tasks in concrete but isolated process stegsighing tools based on the premise that
human activities can be codified and that periodsgynchronization of tasks is an easy step
reflects poor understanding human nature. We tberepropose a new approach to
supporting collaborative work called Continuous €lmation. Underlying Continuous
Coordination is the premise that humans must nat eannot have their method of
collaboration rigidly dictated, but should be suged flexibly with both the tools and the
information to coordinate their activities and tlaborate in their activities as they see fit. In
this paper, we define the concept of Continuousrdioation, introduce our work to date in
building prototypes that support the Continuous r@omtion paradigm in the context of
Global Software Development, and set out a funtbsearch agenda to be pursued.

Keywords

Global Software Development, Distributed SoftwareevBlopment, Collaboration,
Coordination, Awareness.

Abstract (German)

Im Zusammenhang mit der zunehmenden Globalisienorg Unternehmen ist auch die
Globalisierung der Softwareerstellung Realitat gelea. Viele Softwareprojekte sind bereits
Uber mehrere Standorte rund um den Globus vertBik. Distanzen zwischen diesen
Standorten rufen viele neue Probleme hervor, dievorzuin rd¨ich nahe
zusammenarbeitenden Teams noch nicht beobachtelemédwnnten. Es treten vor allem
Probleme bei der Koordination von Aktivititen sowie Zusammenhang mit der
Kommunikation innerhalb verteilter Teams auf. Dishier in global verteilten Projekten
eingesetzten Werkzeuge zur gemeinsamen Softwaethenst weisen ein fundamentales
Paradoxon auf: Sie sollen eigentlich die ZusamniEnaim Rahmen der Softwareerstellung
unterstitzen, fuhren jedoch dazu, dass IndividuehTeams mehr oder weniger unabhangig
voneinander arbeiten. Das grundlegenden Problembéiidiegt darin, dass existierende
Werkzeuge, wie bspw. Konfigurationsmanagement-Repess, Problemverfolgungs- und
Workflow-Managementsysteme, den Prozess zeitlich anfgabenbezogen diskretisieren,
was isolierte Prozessschritte zur Folge hat. DieSesatz enthalt die Annahme, dass
menschliche Arbeit kodifiziert werden kann und ddss periodische Synchronisation der
einzelnen Aufgaben ein trivialer Schritt ist — diewiderspricht jedoch der Natur des
Menschen. Daher wird mit ,,Continuous Coordinatieirf neuer Ansatz zur Koordination von
Zusammenarbeitsprozessen vorgestellt. Hinter Cootis Coordination verbirgt sich das
Prinzip, dass Menschen die Art und Weise ihrer Ausanarbeit weder vorgeschrieben
werden darf noch strikt vorgeschrieben werden kaBie sollten aber sowohl mittels
Werkzeugen und Informationen zur Koordination ibAdttivitdten als auch zur eigentlichen
Kollaboration flexibel unterstiitzt werden. DiesereitBag definiert das Continuous-
Coordination-Konzept, stellt unsere aktuellen Arbeizur Erstellung von Prototypen vor, die
dieses Paradigma im Kontext globaler Softwareemiwig unterstitzen, und prasentiert
einen Ausblick auf zuktinftige Forschungsarbeiten.

Keywords (German)

Globale Softwareentwicklung, Verteilte Softwareeskhung, Kollaboration, Koordination,
Umgebungsbewusstsein.

1. Introduction

Globalization is a concept that applies in manytexts. Generally, it indicates that the
economic, cultural, and social boundaries of coestare transcended. Indeed, the co-authors
of this paper have come together from six diffex@intries and from various backgrounds to
collaborate, most of us discovering one anothedsnnoonalities via the Web and
subsequently meeting for the first time via e-mail.

More formally, companies have sought to leveragbalization, especially in the software
industry [HeMoO1]. To do so, these companies nee@ddapt their processes, tools, and
organizational culture to overcome the disparityoagsites. As a consequence, they need to
solve a wide variety of problems, the most obvitwesng the physical distance [Grud94,
OIOI0Q]. In this case, the sense of working in @medecreases due to the lack of interaction
among the members of different sites and as a goesee of the reduction in trust among
members caused by software developers’ lack of lkeuye about foreign cultures [JaLe99].
Moreover, relatively simple activities such as d&ging requirements in meetings cannot be
performed [DCACO03]. Overall, many strategic, cudiurknowledge management, project
management (PM), as well as technical issues mausblved [HeMoO01]. Existing software
tools address some of those problems by adopting feomal process-oriented approaches
such as workflow management systems and configuratianagement tools. Other tools
focus on bridging the distance gap between devedopg facilitating their communication
through, for example, e-mail, instant messengdi3, @nd teleconferencing.

In this paper, we introduce a novel paradigm fqpsuting distributed software development:
Continuous Coordination. Continuous Coordinatiombimmes aspects of formal, process-
oriented approaches, such as configuration managepretocols and workflows (used to
guide users in their day-to-day high-level actestiby coordinating their interactions), with
informal, awareness-based approaches such as e-amal Instant messenger (IM)
communication (that provide communication channelsnform users of relevant, parallel
ongoing activities). Particularly in the context gibbal software development (GSD), this
paradigm can help to overcome some of the majordonation issues related to the lack of
communication, context, and awareness. Througledh#ined application of the Continuous
Coordination design principles of multiple perspeed, non-obtrusive integration,
combination of socio-technical factors and thegrdéon of formal and informal coordination
approaches, we designed and implemented diffedtware tools discussed in this paper.
Those tools allow globally distributed developerdetter manage and understand the context
in which they perform their work (i.e., their orgaational roles) and take action accordingly.
Our current empirical studies, involving some of ptototypes, show some improvements in
the way distributed users coordinate and managewluek. Users are not only better able to
organize and understand their respective taskstdbatso self-coordinate their activities to
avoid situations in which their work threatens ftustouct or interfere with the activities of
others. Moreover, because many of the same metratiools are applied in both collocated
and globally distributed scenarios, the benefitshef Continuous Coordination paradigm are
not limited to GSD contexts and can be applieddlfocated large organizations.

The rest of this paper is organized as follows: mégt section presents an extended analysis
of current issues in GSD scenarios, in particukersé related to coordination. Section 3
introduces the Continuous Coordination paradigmoas possible remedy to the issues
discussed previously. Section 4 presents an owenoé current prototype tools we
implemented according to the Continuous Coordimatparadigm as well as practical
experiences with those tools. This paper concludgsa summary of findings and an outlook
on future research.

2. Current Issues in Global Software Development

Herbsleb and Moitra [HeMo01] classify the dimensioof the most frequent problems
encountered in GSD as follows: (a) strategic issyb¥ cultural issues, (c) inadequate
communication, (d) knowledge management, (e) ptagea process management, and (f)
technical issues (see also [CaAg0l, HeMo03]). Each of these problem dimensions
demands a different approach and tools. Our princarncern in this paper is addressing
coordination issues, particularly those related to communicatiarowledge, and process
management. In doing so, we also address sometegtlation issues.

2.1 Coordination Issues

Existing software engineering tools have been usedupport GSD, but they also raise
several issues that hinder their use in such gsttidimong the most distinctive issues are the
lack of flexibility and integration with other taml poor role support, inadequate workplace
awareness [LaDOO03], and the tension between foamalinformal work [CuKI88, HeGr99,
HeMo03, SoHRO07]. These issues and their impaatliareissed in greater detail below.

1% issue — Lack of flexibility and integrationGlobally distributed sites normally employ

software processes and development tools (editmspilers, configuration management
repositories, and so on). Problems often arise vdeseloper attempt to integrate the artifacts
produced by these tools. Developer find that theelbg@ment tools have typically evolved

asynchronously (different versions of the same atemdor example) and are specific to the
sites in which they are utilized. Such situatiome aommon, and often originate from

acquisitions and mergers of companies [HMFGOQ].

2" Issue — Poor role supportThe lack of communication and organizational awessn
hinders proper coordination in a global organizatiéor example, developers are not always
aware of overseas team structure, policies, redmbtysfor certain pieces of code, expertise
in some API issues, and so on, which create comratian barriers. Therefore, a system
supporting collaboration in GSD must be able tedimparticular information to particular
people based on their roles [StIJP99]. For exantipdiesame bit of information that is highly
important for one user is often completely uninsérg for another user in the same situation.

3 Issue — Lack of informal communication and workpta awarenessEmpirical studies
suggest that informal communication is a very intgoatr factor that allow teams to cope with
the uncertainty of tasks such as those involvesbitware development in general [CuKI88,
KrSt95] and in GSD in particular [HMFGO0]. The ploa distance between sites makes it
more difficult for distributed team members to sfameously and informally communicate
with one another. So-called serendipity encounsges an integral part of collocated team
communication (e.g., when handling exceptions, emiing mistakes, adjusting predictions,
and managing the effects of changes [HeGr99])dbiteon, these informal communications
also raise mutual awareness in collocated teanmdgwelopers in GSD settings find it difficult
to discern their colleagues’ current activity [DC®AE and whether it is appropriate to
interrupt them at a certain time [BeBI96].

The 4™ and final issue software engineers generally féicat our research is concerned
with) is the constraint that formal communication imposes durin@SD. This issue is
discussed in the oncoming section within the cdnt@xcurrent approaches to support
collaboration and coordination in GSD.

2.2 Current Approaches

Several software engineering tools are designeddaweéloped to support the coordination
and collaboration issues discussed in the pre\seagon. These tools generally either (1) rely

4

on formal (process-oriented) approaches, such @ssla configuration management or
prescribed processes in workflow management systears (2) provide informal
communication channels, as in the case of e-nMjlahd the Web in general.

Formal approaches [BaAn02] follow specific process modaelpolicies, either implicitly or
explicitly defined by software tools. They promdtee separation of work into multiple,
independent tasks that are periodically resynchezhi These approaches are illustrated in
row 1 of Table 1. The canonical example is a camGgon management system by which a
developer checking out artifacts becomes insuldttech other (parallel) activities in the
shared repository, whereas a developer checkimgmynmodified artifacts resynchronizes his
or her work with the work of the group.

Even though essential for the coordination of G8Bnts, this approach suffers from two
significant problems: First, formal processes cascdbe only parts of the activities of
software development. No matter how formal and \defined a process may seem, there is
always a set of informal practices by which indiuats monitor and maintain the process,
keep it on track, recognize opportunities for actiand acknowledge the necessity for
intervention or deviation [GeSt86]. Second, evenemha process description attains a
relatively high degree of detail and accuracy, peeiodic re-synchronization of activities
remains a difficult and error-prone task. In faitte more parties are involved, the more
conflicts arise and the more faults are introducethe software at hand [PeSV01]. These
problems are inherent in any tool that relies updiermal encoding of collaborative work,
because formal processes are inevitably surroubgleal set of informal practices by which
the formal conditions are negotiated and evaluatéateover, tools designed for a specific
process can prove to be less effective when impleedewithin the context of informal
practices, introducing the challenge of overcontiatgerogeneity [HMFGOO].

Informal approaches usually rely on the notion of awarereaconcept that has become a
central element of Computer-Supported CooperativerkM{CSCW) research, especially
impacting the design of different collaborative teyss [HeLu92, SchmO02]. Awareness is an
informal understanding of the activities of othérat provides a context for monitoring and
assessing group and individual activity [DoBe92LT®9]. An example is the mutual
awareness of activities that arises in shared phlysnvironments, where we can see and hear
each other and “keep an eye out” for interesting consequential events. Informal
coordination therefore needs to provide continusibility, that is, awareness of concurrent
actions in order to foster self-coordination. Tla@anical example is the multi-user editor: by
continuously displaying the ongoing activities dhers, users typically self-coordinate by
avoiding areas of the document in which otherscameently working (see row 2 of Table
1)[EIGi91].

As with the formal, process-based approach, digcliss the previous section, the informal,
awareness-based approach suffers from a signifipesttlem that makes it a less-than-
effective solution when it comes to coordinationdawollaboration. In particular,
implementations of awareness-based approaches poatly; they are largely of value for
small groups only. This is primarily caused by tfaoctors: the users’ cognitive limitations and
the lack of process support. Although some mechaishave been proposed for
“asynchronous awareness” that can more easily stppoge-group collaboration
[HHWM92], existing awareness technologies seem aokwvell for small groups, but break
down for large groups. Consequently, the developerdaced with either formal or informal
communications each of which presents its own étiohs and advantages. The proposed
paradigm, Continuous Coordination, endeavors tovidgeo an alternative means of
communication which combines the advantages of fwthal and informal communication
(Table 1). Continuous Coordination is detailedna bncoming section.

3. Continuous Coordination

The formal and informal approaches discussed inptegious section have thus far always
been treated as opposites. Developers have ettbleed toward formal processes or informal
awareness to support coordination. Our researclembgyond this long-standing dichotomy
and proposes an integrated paradigm to supporbtigborative work that combines formal
and informal coordination strategies to providehdthie tools and the information for users to
increase self-coordination. Specifically, Continsdoordination is a paradigm for the design
of systems that provides mechanisms to supporteagas sufficient to mediate coordination
between otherwise isolated synchronization poisee (Table 1). Continuous Coordination
aims to combine the strengths of the formal andrm&l approaches while overcoming the
current shortcomings of either one. It retains ¢theckpoints and measures of the formal
approach to coordination (represented by circle$ahle 1), but provides developers with a
view of each other’s relevant activities betweeasth formal checkpoints (represented as
arrows in Table 1). In doing so, it provides depels with ways to understand the potential
relationships between their own work and the wdrkheir colleagues. This is not a way to
step outside the bounds of formal coordinationhegtit allows developers to better judge
both the timing and the impact of formal coordioatactions. We consider the occurrence of
conflicts and other hindrances a normal part of process and believe that any approach
must integrally address them in a combined formdliaformal way.

Conceptual Visualization Srengths Weaknesses
Scalable; Reconciliation

Insulation from otheproblems;
Formal activities; Insulation becomes
Coordination Control; isolation

Group-centric

Prescribed synchronization points

Flexible; Not scalable;
PP F T b F 1 |Promotes synergy; |must be initiated and
Informal o0 o 1 |Raises awareness; |[managed manually
Coordination Y V ¥V V ¥V V V¥V V¥V V ¥V VvV ¥V Vv |User-centric
Constant awareness
Combines the Some applications
v A4y strengths of both specifically require
; ()‘<) —H ; P () |formal and informal |isolation of developers
gontg.luq[gs Wit w coordination (e.g., for security
oordination reasons)

Awareness sufficient to mediate coordination
between synchronization points

Table 1 An abstract summary of different coordinaton paradigms and their visualizations, strengths, rd
weaknesses. Arrows indicate informal communicatiowhereas circles indicate coordination points for
synchronization.

In terms of tool requirements, Continuous Coordaraimplies the integration of formal tools
such as configuration management, workflow, an@rokinds of process-oriented tools with
awareness mechanisms, visualizations, and sodmited aspects in order to improve
awareness and the coordination of both distribated collocated teams. In particular, we
apply a combined set of design principles in theettgpment of software tools that aim at
addressing the main issues in GSD (see sectiorend.2.2). From a systems perspective, we
propose the use of multiple perspectives and taebration; whereas from the collaborative
perspective, we employ the integration of socia technical relations as well as support for
formal and informal coordination. Those principhes/e been successfully applied separately

6

in specific context in other domains (as discusseskction 2.2 and by [Kruc95] and [TM81],
among others), and now are being combined in teegdef Continuous Coordination tools.
While several principles are reported, we adoptelg those that can potentially address the
GSD issues that are the focus of our research.eTpesciples are summarized below
together with the GSD issues they address:

1. Multiple perspectivesRather than attempting to create a single, “one-gts-all’ view of
either data or process, we continually attemptepresent information from multiple
perspectives. Examples include: (1) different peciges on activity encoded by multiple
simultaneous process descriptions, (2) differentsgextives on an information space
reflecting both the formal (checked-in, stable) #émel informal (ongoing, active) states of
activity; and (3) different perspectives on curretivity from the viewpoints of two
different members of a project team, to see tha@rkwn terms of each other’s current
state. Providing these multiple perspectives camease the likelihood of developers
sharing common views of the project, which has lstated as a need in GSD [CaAg01]
and discussed in section 2.1 (issues 1 and 2).

2. Non-obtrusive integration Through the use of event-based integration and-Bésed
Collaborative Software Development Platforms (CS[R®bb05]), we sought to integrate
different tools and information sources either tigio synchronous messages (event-based
integration) or through the representation of lirdetween different sites and artifacts
(hypermedia integration). Adopting this Continud@ordination principle within a GSD
domain will enable traceability and transparenclgiolv have previously been highlighted
as important aspects of GSD [HPBO05] and discusseddtion 2.1 (issue 1).

3. Combination of social and technical factarsBy the explicit integration and
representation of socio-technical relations sucteksions between artifacts (source code,
documentation, change requests) and authorshigl(@®sars, managers, users), distributed
developers can infer important context informatittrat supports activities such as
expertise location, intra-group communication, ésasolution, and organizational role
support, among other issues discussed in sectibisdues 2 and 3). Implementing this
design principle in a Continuous Coordination ptgpe can also provide a means to
detect and accurately document the socio-techne@bork to support GSD as it evolves
[HeMo03].

4. Integrated formal and informal coordination approd®s In keeping with our paradigm
to integrate rather than separate multiple cootiina approaches, we combine
configuration management (for formal coordinatianyl change notification (for informal
coordination) through the use of visualizations antkgrated software development
environments. For example, a shared change managesystem in GSD can enable
access to information detailing the number andrnhteirre of outstanding problems and
necessary changes [HPBO5]. Thus addressing isdertfied in section 2.1 (issue 3) and
section 2.2 (issue 4).

GSD Team Issues

Section 2.1 Lack of Inf | c)
Lack of flexibility Poor Role ack of Informa onstraints
. Communication and from formal
and Integration Support
Workplace awareness approaches
CC Princip|es m[\(l
Section 3 ; P ;
Multiple perspectives Non-obtrusive Combination of social Integrated formal and
integration and technical factors informal coordination
approaches
Figure 1 A summary of the relationshipamong the GSD team issues and

Continuous Coordination (CC) principles.

Figure 1 provides a Summary of the GSD Team Issuesaddress and the Continuous
Coordination (CC) design principles adopted in paradigm. Those principles were used in
the implementation of different tools as describethe next section.

4. Continuous Coordination Implementations

The Continuous Coordination paradigm was implentetiieough a series of tools rather than
a single tool or single integrated environment tynut easier exploration of individual
aspects of Continuous Coordination. Having multijgels also separates tool usage from
particular processes, affording developers theilflity to integrate the tools into existing
practices rather than introducing new ones. Despéapparent diversity of our tools, they do
share common characteristics (see Figure 1). Nhatietihe different prototypes presented here
are currently at varying stages of maturity. Eamtil provides a different level of abstraction
in terms of granularity and type of information ttlkan be useful to specific developer needs.
The prototypes are presented in an order accortintheir coverage of GSD activities,
namely: YANCEES, Palantir, Ariadne, TraVis, andafly WorldView. Each prototype’s
concise set of features and its relation to GSDeisand Continuous Coordination principles,
as well as present application experiences, atmedtin the following sections.

4.1 YANCEES Notification Service

The integration of information from different soascand their meaningful representation in
different visualizations and tools require a comioation infrastructure (or middleware) that
supports heterogeneity — different data formatsretdiork characteristics. In the Continuous
Coordination paradigm, event-based integration [B2], provided by notification servers,
is used as the main communication and integratioinastructure that supports the
implementation of different awareness strategigb®fapplications previously described.

Notification servers are brokers for system evegesierally following a publisher-subscriber
pattern [DGJIN98]. In this communication style, difint applications (information producers)
publish information in the form of messages or ¢vetio a logically centralized service.
Information consumers express interest in thosentevby means of subscriptions. This
loosely coupled integration approach increasesflérability of a distributed system by
separating producers and consumers of informatihus, enabling a “plug-and-play” approach
that allows the introduction of new producers anszamners in the system.

In the GSD context, end users (e.g., designergygnamers, testers, and others) use different
software tools. The end users’ interactions witlosth tools generate notifications (for
example, the check-in or check-out of artifactsdpositories, the implementation of a new
method in a class, the start of a chat sessiorsarah). Those notifications are first captured
(by the monitoring of those tools) and then puldshto an event notification server.

8

Visualizations subscribe to those notifications gmdsent this information to distributed
developers or teams interested in that specifid kininformation. For example, in the case of
Palantir (discussed in the following section), tiser’s Integrated Development Environment
(IDE) is constantly being monitored for events sashthe modification of a source code file
or check-in and out of artifacts in a Configuratidianagement repository. Those events are
then propagated to other IDEs that use this safeemation to inform users about parallel
artifact changes and activities. In WorldView (dissed in section 4.5), activities from
distributed sites are kept current by the contisuoatification of organizational or artifact
changes.

The above description makes it seem straightforvthed notification servers provide an
infrastructure for keeping users aware of eventggrests. However, some issues arise in
practice: the generalization versus specializatiblemma: to design a one-size-fits-all
infrastructure that supports a large set of apgioa domains, resulting in complex
implementations; or to develop an application-sjpeaifrastructure, much simpler and more
efficient, but with a limited scope. Both approashasually provide weak support for
customization; and poor support for extensibilitg.g(, inability to support different
notification policies [SBR02]). To cope with theteegeneous set of requirements from
different visualizations and the differences in r@gebeing produced by many information
sources, without over simplifying or complicatirtg implementation, a notification service
needs to be flexible. In other words, it needsdoti@act and expand its capabilities according
to the needs of the applications at hand. For el@nimeeds to support persistence of events
and pull notifications; to allow the retrieval ohgt event history in Palantir; and also to
support the integration of different event sourcasd push notification as the case of
WorldView.

Such flexibility was one of the main challenges aur design of YANCEES, a
publish/subscribe infrastructure designed to fulfilis role, providing different extension
points around a common publish/subscribe model. €ENS has been used to support
different applications [SiRe05]. Through the usawnfevent-based infrastructure, many of the
flexibility and integration issues demanded by towls can be addressed, facilitating the
integration of configuration management and changgfication, as well as synchronous
awareness mechanisms. In the context of Table tification servers provide means by
which asynchronous notifications (dotted arrowthimdiagram) are performed.

4.2 Palantir

Palantir is a workspace awareness tool, which gesvidevelopers with insight into ongoing
development activities in remote workspaces, piagidhem with context, and helping in
their coordination — an important aspect of coltedasoftware development that is missing in
distributed development [SaNHO03]. Palantir analypegioing changes in artifacts from
different developer workspaces. Those changesdaeclacal editions to source code files,
Configuration Management operations such as chesk-iand check-outs and
synchronizations). Notifications about those changee propagated to distributed Palantir
peers through the use of notification servers (&4NCEES) that collect and route
information from and to interested parties. Palaal$o calculates a measure of magnitude
and the impact of those changes, and graphicadlylalys this information in a configurable
and non-obtrusive manner (see Figure 2). Paldmis breaks the isolation in workspaces by
continuously sharing information across GSD worksga The provision of information on
parallel activities and potential conflicts in theoject enables the early detection of parallel
changes. Thus, even though the developers areedotif changes, the notification does not
interrupt their work or force them to take immediatction. This enforces the concept of
continues coordination (see Table 1, Row 3) whers&l checkpoints (check-ins and check-

9

outs of files in our case) are retained, but afeaaned with awareness information (dotted
lines in Table 1, Row 3); with the amount of infation that is provided configurable by the
users.

Figure 2 represents how parallel change notificati@are presented within the Eclipse
development environment in a way that minimizessisgontext switches. For example, in
the example of Figure 2, an artifact’s icokddress.java) is annotated with a blue decorator
on its left, implying that it is being changed imrgllel in another workspace. A text
annotation, “S:24”, is also provided, denoting thagnitude of the change. In this example,
24 lines have been changed in the artifact. Adidress.java icon also has a red decorator on
its right, along with a text annotation of “I>>" hich implies that changes Address.java are
affecting other artifacts in the workspace. On milsir note, red decorators and “I<<”
annotations oi€reditCard.java indicate incoming conflicts in those artifact®(j.other users
made changes in that file in their workspaces, tande changes were not yet commented to
the repository). A log view (as seen on the botadrthe figure) presents which artifacts cause
conflicts in other artifacts, as well as the reasfan the conflicts.

ava - a ava - K
File Edit Source Refactor MNavigate Search Project Run Window Help

i & B -0-0- o @ 4 |8 -3~ =1 B & aaya o
v 2 = = 2 2 F 1w ; =R
-—— o, = (I =
R S A i BAS ORI, =
=R private static int MINOR = O;
= i3 »Store[5:2] [palantir.ics.uci.edu] ~ private static int ADULT = 1:
= (8 >src[5:2] H
TH >dore [%2] - //custructor for credit card, para Customer
g : : i
*) Mdre-ss_]ava- [5:2‘1][“':\'} public CreditCard(Customer customer){)
1 | - payment = new Payment (Payment.creditCard, Payment.bankAccount, "1156");
.
+ o1y >CreditCard.java [1<<] 1. . hddress address = customer.getiddress():
e g accountHolderZip = address.getZip():
w01 kor dava 1.1 (8 = name = address.getName():
- [J] DebitCard.java 1.1 (ASCII-kk .
- mographics.java 1.1 (ASCD Demographics demo = customer.getDemographicsi():
e r Fhavd dsus 11 fASCIT LLoY 2 s - - N
- va 1.1 (ASCH kky) : int age = demo.getige():
Fe- 43 fava 1.1 (ASCI ke]| I8 if (mge 3= 18)
- [J) Ttem.java 1.1 (ASCI-Kev) . customerType = ADULT:
(1) ItemiD.java 1.1 (ASCII -kkv) S
& [J] Manager.java 1.1 (ASCII -kky
La T g ;
@ [1) Order.fava 1.1 (ASCIT Kkv) EpaouerType = SEROR
4
+ ':i_; Payment java [3:18] (1>>] 1.1 -
& 1) PreOrderjava 1.1 (ASCII Kk f }
-1} Review.java 1,1 (ASCII -kkv)
(1] Shipping.java 1.1 (ASCIL-Kkv; publio String getHame() i
R P return name;
< >
¥ v
B Outine 52 =iry
s - - =
«az \ w o w Problems | Javadoc | Palantir Connections }_’L Storefsrcjstore/CreditCard. java 02 =]
" TM:?_ Eit:ln»g‘ iy — Conflicting: 2, Warning: 1
& customerType | int
8 payment : Payment Author ‘ ImpactType ‘ Resource ‘ Re... |Chan eStatus Timest... | Reason
@ accountHolderZip : String f Pete IMPACTEDBY [Storefsrcistore/Address.javal.l Ellen Changes Committed FriSep... Modified class: Deleted method getName()
@ accountName : String &7 Pete IMPACTED BY [Storefsrc/store/Customer.javal.l Ellen Changes InProgress FriSep... Modified class: Deleted method getDemographics() and
o 5 MINOR : int & Pete IMPACTEDBY [Storefsrcfstore/Payment javal.l Ellen Change Added FriSep... Modfied class: Added new method init (cardType, int p
a5 ADULT : int
e° CreditCard(Customer) ~ < >
Writable Smart. Insert 20:45
Figure 2 Palantir screen shot: blue and red decotars indicate concurrent changes in documents

in different severity levels.

Palantir thus integrates multiple perspectives evhil augments current configuration
management tools with change notifications, whitbws users to better coordinate their
work during parallel software development. This rapgh prevents GSD conflicts due to
merges that are a consequence of the insulatioscnqivsed by many configuration
management tool protocols.

Palantir has been evaluated through controlledrédbry experiments in which subjects
completed a set of tasks in Java in a limited arhadfirtime and within a GSD scenario
[HMPRO4]. As a result, the performance of the ekpental group was found to be better
than the control group’s with respect to the amafrtime taken per task and the number of
conflicts detected and resolved. Subjects in theeamental group consistently detected

10

conflicts early on, as they were introduced, anordimated with their team members to either
avoid or resolve them.

4.3 Ariadne

In another prototype, we exploit the use of vizatlons that express the socio-technical
relation between artifacts. Source code is ond@fmost important artifacts in any software
development effort. Ariadne [SDRQO4] is a collaliwe software development tool that
enhances developers’ awareness of the social depeied present in their work by
seamlessly integrating such information with depelent activities in Eclipse. Ariadne
analyzes software development projects for souocke clependencies (e.g., data and control
dependencies) and collects authorship informatntfe source code from a configuration
management repository. The tool then links the sowode dependencies and authorship
information to create a social network of softwdexelopers. This social network describes
the dependencies among software developers tls&t auit of the dependencies in their code.
Through this novel approach, Ariadne allows thelymi® and visualization of social
dependencies that surround the source code, whiatrucial for informal coordination,
expertise location, role awareness, and changecinapalysis.

Graph Structure Graph Layout fiuthor Details
MHierarchical represertation of the dependency graph, Directed graph reflecting nades selected in the structure view, Views and edit Authar infarmation,

4 4
+HEL
|
v &
+ B2
'

£, (chrisgr) First Bame:
Last Name:

Update |

fump-ca

Figure 3 Example of graphical representations of soal dependencies in large GSD projects
produced by Ariadne

Figure 3 shows a social dependency graph for then-spurce Java project “Tyrant,”
available on Sourceforge.net. Cyan-colored nodesesent developers in the project and
directed arrows from one developer to another atdi¢hat the former depends on the latter.
Thicker edges between nodes represent strongeal stependencies, indicating the presence
of more technical dependencies between develof@selopers can selectively display
authors in the visualization by using the checkesom the left column, and can view author
contact information in the right column by selegtina developer node in the graph. By
analyzing the social dependency graph, developerssee that dependencies in their source
code create social dependencies between them amd dblleagues. Depending on the
strength of the social dependency, two developeay meel more compelled to begin
coordinating their work.

11

In general, Ariadne combines the Continuous Coaitthn principles of integrating socio-
technical and social network visualizations thanbmme developers, artifacts, and the source
code dependencies. The developers can access ghmsieical representations of social
dependencies and actionable information at a tim&atde to them, thus improving their
overall awareness about the social and technicpérdiencies of a distributed software
project.

We conducted semi-structured interviews with fooftwgare developers at a large software
development company (field study-based evaluatitMPR04]). Questions in the interviews
explored the usefulness of Ariadne’s dependencgrimétion and the usefulness of the
information present in the social network visudima. The core members of the project
benefited less directly from Ariadne since they evkrcated in the same building; however,
they acknowledged that Ariadne would be usefulhigirt organization because of the larger
integration effort currently taking place that wobuead several distributed and formerly
independent teams to work together.

4.4 TraVis

Collaborative software development platforms (CSDde suites of tools that comprise and
unify multiple software development and knowledganagement tools. These include source
code management, issue trackers, Wikis, and discussrums — tools that often have been
successfully used in distributed open source so&wdevelopment projects [AuBS02,
Robb05].

The TraVis (Trace Visualization) tool goes beyondiadne by leveraging the use of
dependencies among different artifacts and the#rsuginstead of source code authorship
only). For instance, a CSDP associates trackesit@rhich represent development tasks, with
different documents and their respective authars (8gure 4, TSK-1195). This creates a rich
semantic network, the “traceability network”, withsk-related entities, artifacts, and users
[LiSa96]. Also including code artifacts, CSDP pm®i a broader spectrum of artifact
dependencies and TraVis enables the visualizatidnaaalysis of the different relations that
might occur. Traceability and rationale informatiwam CSDP is captured as users in GSD
projects develop and document their processestadisi are annotated and connected with
their respective descriptions, discussions, an#istaspresented as tracker items form a
heterogeneous network of information. Thus Tra\dgsl hold of the principles of non-
obtrusive integration, multiple perspectives, anmel integration of socio-technical issues in a
CSDP, i.e. user-artifact relations (cp. sectior).AManaging all this information on one single
CSDP allows creating the links necessary to estaibly the actual traceability network
[LiSa96]. The networked project information faaliés advanced contextual analyses of
different kinds.

TraVis provides several filters for displaying @@nt aspects of the traceability network (e.qg.,
particular artifact types, process categories,sar groups; see checkboxes on the left side in
Figure 4). Thus, different role-based views (fovelepers, designers, project managers, and
so forth), and different projections of the netwodan be defined. Moreover, TraVis
visualizes networks originating from particularifatts, activities, and users: For example,
Figure 4 shows the adjacency graph of task 1185 @ll other related artifacts and users),
which allows distributed developers in the proce$sidentifying group members and
understanding the relations and dependencies betad#acts, thus establishing context.
Therefore, TraVis also provides increased awarengtssn GSD projects based on a broad
range of information from CSDP, including sourcedeo Through real-time graphical
representations and analysis, collaboration amtaigekolders can improve, for example, by
facilitating impact analysis, e.g. when requiremehiange late in the project and the

12

propagation of this change has to estimated, akageinformal team communication. The
increased process transparency also facilitatgeqinmanagement tasks. In order to provide a
better overview in complex GSD projects with hunidref related artifacts, TraVis evaluates
artifacts according to their importance; this isresented by different vertex sizes in Figure 4
(for example REQ-1316 and TSK-1175). This importamuetric is based on the value
assigned to the initial set of requirements as wsllthe task priorities set by the project
manager [GeHi06].

£ TraVis - Sandbox

File Project Options Help

Show =] || Rationale

W [AddRemove all N Toeon

== D Information
W [v]user © TestDokumentDirectory ¢ M TrackertemComme
M [| Tracker @ ic-321

== e O ¢ 1 Attachments

|| Trackeritems REC-1314 e @ scrloop_fehlerj
M [] TrackeritemComments ‘Iars ¢ & Documents

e ! Screenshot! JPG

|¥! Documents folder ," ¢ B Associations

[¥] Documents / O DC-37 el

- I O f.-‘ TSK1177

[Document Comments = / TSK-1175

@ rea1202 ISR TSK-1175
W [] Trackeritemattachments Screensholl PG o i
-
|| Forum 177 o TSK-1184
=177 #

M [Forum-Posts I ¢ B User

A Modifier: lars

W [] Wiki-Pages .’l A Subrnitter: hilden
TSK-1195
TSK-1175

W [] wiki-Page Comment remote
[[] Sourcefiles

Associations

H [] AddRemove all O
B [Tracker <> Trackerlterm TSK-1185

O TSK-1176 O TSK-1194

B [| Trackerltem <> Documents f

B [| Trackerltem <> Documents

B [|user <> Trackeritem] x|
< i I R [Ii D] |« I [I»

Figure 4 Traceability relations from a GSD projectextracted by TraVis

To this point, TraVis has been evaluated by sev@&DP vendors and their customers as well
as by open source software developers, i.e. doewerts. As with Ariadne, subjects were
asked about the usefulness and value the toolgesviompared to off the shelf hypermedia-
based CSDP. Thus, the tool was evaluated througkngpirical field study [HMPRO4].
TraVis’ core features are based on observatioms f£&DP vendors’ change request lists, that
is, features customers were missing in their dauginess. These include more purposeful
change propagation as well as multiple linking naaidms and traceability [SOHRO7]. After
implementing all projected features, TraVis will bgstematically evaluated in controlled
GSD-like scenarios, such as globally distributedisht programming projects [BGHRO7].

45 WorldView

WorldView provides different visualizations in se&klevels of abstraction, which extends
from low-level artifact representation (design misji¢o high-level representation of team
interactions. This allows a comprehensive view loé team dynamics within a project,
geographical location of teams, time zones, and ititerdependencies among teams
[SaH006]. The ability to navigate through differéatels of abstraction enables the support of
developers within different organizational rolesimiar to Ariadne and TraVis, the
visualization of the highest level of abstractidndevelopment artifacts can help developers
(e.g. designers and managers) to identify globdllacal team members, interactions between

13

subgroups, and other vital information such as lamd when to contact global members of
teams. The world map view of the project contextadicularly designed for GSD scenarios.

Team Gontrol Display Pt Map || satelite |[Hybrid
Information Ocean
UC Irvine GUI Development Team
B [Jehn Dos
idoe / doe@uci.edu
(949) 8245302
Lead Developer
|Jane Thomson James Burke Grasnland
litho / f@ics.uci.edu jBur / jpur@uci edu
(949) 824-7562 (949) 824-9538
Ul Developer Usabilty Testing
|manager Suomi
Firland
q 555 E Peltason Dr, Irvine, CA 92617 . Sverige Poceua
; 7
:
ing Polska e
- BiEchiand ux. s § - il
angolia ; Francd e, o LEESkE Mangalia
. T 1 Italia, B s J \ F
B : Ecpafia e N b
5 a Narth, Hohic o € = a
shina 5220 Adlantic G 1 tlrad, iridgghanSteg China S22
d RN it .
A . Moena | Lty legyoty saud ¥ e k‘ ¢
g ' T > ¢ Arabia Indiz®hlyanmar - o
Y Mauritania Mali Thiger = e
g ¢ — e Chad g g, L / Thailanc
ienezuela R LN iogias :
Indonesias Pagua 5 Ingonesias Papua
ania
New Guinea = Brazil ; New Guinea
Boliviax,
reerEmEr Namba) (acogascer Indian
GDUSIL’ Australia (@) = —) Lnant, Ocean Australia . e
Figure 5 A representation of team structure, develpment tasks, and other essential information

about GSD projects in WorldView

In the example shown in Figure 5, one possiblel lezabstraction is presented. In this figure,
the teams are represented as “red balloons” onrld wiap, and interdependencies among
teams are represented as “lines” connecting thenerdependencies among teams are
determined based on the number of shared artifadigsh are identified through program
analysis of their common code base. The thickndsthe lines represents the extent of
sharing: the thicker the lines, the larger the nemtf shared artifacts. Through this view,
developers can discern, at-a-glance, which teamsigintly coupled through which artifacts.
It also supports organizational role awarenessutfitothe visualization of users and their
organizational roles (displayed by “mousing oversig). By allowing team members to be
aware of interdependencies and by integrating Gzgtonal aspects in the same
visualization, this tool demonstrates the impleragoh of the Continuous Coordination
principles of non-obtrusive integration, socio-teidal issues, and multiple views.

This tool is still in the exploratory phase of dieyement, with descriptive evaluation plans in
place to develop supportive arguments for itstytikuture plans also include the realization
of black box and white box testing [HMPRO4]. Fiyallve intend to conduct an experimental
study of the tool within a simulated environmentdéwaluation [HMPRO4].

5. Conclusions and Future Research

Software development performed by traditional cled teams is an intrinsically difficult

task. It is difficult because of the complex natofethe activities being executed requiring
strong coordination and communication among dewskpWhen performed in a globally

distributed setting, software development beconves enore challenging. In GSD, several
problems arise due to the physical, social, antuall difference between the developers. In
particular, less informal communication among &t members results in a lack of mutual
awareness and difficulty in establishing trust.

The Continuous Coordination paradigm strives toreskl those issues by integrating and
enhancing existing formal and informal coordinatistrategies, implemented in current

14

software engineering tools, as a way to improvecti@dination in distributed settings. This
is achieved by the use of multiple perspectives;olatirusive integration, the combination of
social and technical factors, and the combinatibeomfiguration management and change
notification as design principles for correspondiogls.

Figure 6 summarizes the interrelationships of G&& needs, the Continuous Coordination
design principles that strive to meet those ne#us,prototypes that have been developed
based on those principles, and the infrastructueg tise. The prototype tools we developed
allow us to explore our theory and open the doorfimther theoretical development and
evaluation.

GSD Team Issues

Section 2.1 Lack of Inf | c)
Lack of flexibility Poor Role ack of Informa onstraints
. Communication and from formal
and Integration Support
Workplace awareness approaches
cc Principles m \l
Section 3 ; ; Non-obtrusive Combination of social Integrated formal and
Multiple perspectives . X) integ L
integration and technical factors informal coordination
approaches
CC Prototypes \
Section 4 M _ _
WorldView TraVis Ariadne Palantir
CC Infrastructure J
Section 4 v
Organizational Collab. Software YANCEES Existing Configuration
knowledge Dev. Platform Management Repositories

Figure 6 A summary of the relationship between Corimuous Coordination principles, prototypes and
strategies

WorldView supports the Continuous Coordination principlesmuiitiple perspectives, non-
obtrusive integration, and the combination of slb@ad technical factors in a shared
visualization of different organizational, techrisacial aspects of GSD. It relies both on
event-based integratioty ANCEES), as well as organizational knowledge and inforamat
from CSDP. WorldView is current being extended twlude alternate forms of team
interactions. It will display the impact of a sgecichange on teams. This aspect of the tool
will embody the social and technical factors of Gi3explicitly integrating and representing
of socio-technical relations (changes, impact, authorship).

TraVis supports the Continuous Coordination principlenafitiple perspectives through its
role-based view on the traceability network. Moremvthe tool provides transparency,
traceability, and awareness in a non-obtrusive yaysing real-time data from CSDP used in
GSD projects. This allows, for instance, developersestablish adequate communication
based on the project’s context, e.g. when questabosit dependent artifacts arise later in the
process.

Ariadne combines social (authorship) and technical (sogome) dependencies in analysis
and visualization of social dependencies that suppevelopers in their informal

15

coordination, expertise location, role awarenessl, eéhange impact assessment. Ariadne is
being augmented to support different social netwoelrics that will provide developers with
insight into how their work affects other develogework and how the work of other
developers affects their own.

Palantir supports workspace awareness in parallel developmeenarios by integrating
configuration management and change notificatibis. built upon notification servers such as
YANCEES and existing CM repositories. So far, no majornges are scheduled and the
current functionality has already been evaluateoutph controlled laboratory experiments.

The tools demonstrate how the Continuous Coordinaparadigm seeks to promote self-
coordination through continuous provision of infation generated as a result of
development activities. The tools enable the depet® to share an awareness of activities
carried out during development in such a manndrdbsaelopers are not constrained by the
lack of information, nor is their work blurred byhagh volume of information. We sought to
achieve a balance by enabling access to necesgarynation only at a time suitable to the
developers. Practical experiences within our resegroup and evaluations of particular tools
(Palantir, Ariadne, TraVis) in either experiment@l field environments indicated the
usefulness of Continuous Coordination-based tootsstributed and GSD settings.

Continuous Coordination can be seen as a soluticseveral GSD issues (i.e., the lack of
informal communication and mutual awareness). euniore, because methods and tools
initially designed for distributed development teaare often adopted in “collocated” sites,
Continuous Coordination tools are useful in thesgtexts as well.

Acknowledgments

This research was supported by the U.S. Nation@n8e Foundation under grants 0534775,
0326105, 0093489, and 0205724, by the Intel Cotmoraby two IBM Eclipse Technology
Exchange grants, an IBM Technology Fellowship, Bgdthe Brazilian Government under
CAPES Grant BEX 1312/99-5. Part of this work isoadsresult of the project CollaBaWue
supported by the German state of Baden-Wuerttemi@ollgBaWue is part of the research
association PRIMIUM. We thank the anonymous reviswer their comments on an earlier
draft. We also thank our colleague Steve Abramsépful criticisms. Finally, we thank our
technical editor, Sandra Rush, who greatly imprdiaeseadability of our work for others.

16

References

[AUBS02]

[BaAn02]

[BaCT96]

[BeBI96]

[BGHRO7]

[CaAgO1]

[CuKI88]

[DCACO3]

[DGINOS]

[DoBe92]

[EIGi91]
[GeHi06]
[GeSt86]

[GILT99]

[Grud94]
[HeGr99]

[HeLu92]

[HeMoO01]

[HeMo03]

[HHWM92]

[HMFGO0]

[HMPRO4]

Augustin, L.; Bressler, D.; Smith, G.: Accelerating Software Development through
Collaboration In: Proceedings of the International Conferenc&oftware Engineering 2002
(ICSE'02). Orlando, FL, USA, 2002, pp. 559-563.

Barthelmess, P.; Anderson, K.M.: A View of Software Development Environments Based
Activity Theory. In: Computer Supported Cooperatiwerk, Kluwer Academic Publishers, 11
(2002) 1-2, pp. 13-37

Barrett, D.J.; Clarke, L.A.; Tarr, P.L.; Wise, A.E.: A Framework for Event-based Software
Integration. In: ACM Transactions on Software Emgiring and Methodology, 1996, 5, pp.
378-421.

Bellotti, V.; Bly, S:: Walking Away from the Desktop Computer: DistribdtCollaboration and
Mobility in a Product Design Team. In: Proceedinfithe 1996 ACM Conference on
Computer Supported Cooperative Work (CSCW '96), ARidss, 1996, pp. 209-218
Berkling, K.; Geisser, M.; Hildenbrand, T.; Rothlauf, F.: Offshore Software Development:
Transferring Research Findings into the ClassrdanProceedings of the First International
Conference on Software Engineering Approaches Fish@re and Outsourced Development
(SEAFOOD), Zuerich, Switzerland, 2007 (accepted).

Carmel, E.; Agarwal, R.: Tactical Approaches for Alleviating Distance itoBal Software
Development. In: IEEE Software, 18 (2001) 2, pp282

Curtis, B.; Krasner, H.; Iscoe, N.: A Field Study of the Software Design Procesd fange
Systems. In: Communications of the ACM, 31 (198B)dp. 1268-1287.

Damian, D.; Chisan, J.; Allen, P.; Corrie, B.: Awareness Meets Requirements Management:
Awareness Needs in Global Software Developmen®taceedings of the International
Workshop on Global Software Development, Portlabidigon, 2003.

Dingdl, J.; Garlan, D.; Jha, S; Notkin, D.: Reasoning about Implicit Invocation. In: 6th
International Symposium on the Foundations of SafeAEngineering (FSE-6), Lake Buena
Vista, FL, USA, 1998.

Dourish, P.; Bellotti, V.: Awareness and Coordination in Shared WorkspdoeProceedings
of the 1992 ACM Conference on Computer-Supportedpéoative Work (CSCW '92), ACM
Press, 1992, pp. 107-114.

Ellis, C.A.; Gibbs, SJ.;Rein, G.: Groupware: Some Issues and Experiences. In:
Communications of the ACM, 34(1991) 1, pp. 39-58.

Geisser, M.; Hildenbrand, T.: Agiles, verteiltes Requirements-Engineering miki/und einer
kollaborativen Softwareentwicklungsplattform. INB@EKTSpektrum, 2006 (6), pp. 37-42.
Gerson, E.M.; Sar, SL.: Analyzing Due Process in the Workplace. In: ACMiisactions on
Office Information Systems 4 (1986) 3, pp. 257-270.

A. Girgensohn; A. Lee; T. Turner: Being in Public and Reciprocity: Design for Paitfs and
User Preference. In: Proceedings of the Sevenfh Geinference on Human-Computer
Interaction (INTERACT '99), 10S Press, pp. 458-46999.

Grudin, J.: Computer-Supported Cooperative Work: History &odus. In: IEEE Computer, 27
(1994) 5, pp. 19-26.

Herbdeb, J.D.; Grinter, R.E.: Architectures, Coordination, and Distance: Conwayaw and
Beyond. In: IEEE Software, 16 (1999) 5, pp. 63-70.

Heath, C.; Luff, P.: Collaboration and Control: Crisis Management Bhdtimedia

Technology in London Underground Control Rooms Qomputer Supported Cooperative
Work, 1 (1992) 1-2, pp. 69-94.

Herbdeb, J.D.; Moitra, D.: Global Software Development. In: IEEE Software(2801) 2, pp.
16-20.

Herbdeb, J.D.; Mockus, A.: An Empirical Study of Speed and CommunicatioGlnbally-
Distributed Software Development. In: IEEE Trangatw on Software Engineering 29 (2001)
6, pp. 481-494.

Hill, W.C.; Hollan, J.D.; Wraoblewski, D.; McCandless, T.: Edit Wear and Read Wear. In:
Proceedings of the SIGCHI Conference on Human FaacComputing Systems (CHI '92),
ACM Press, 1992, pp. 3-9.

Herbsleb, J.D.; Mockus, A.; Finholt, T.A.; Grinter, RE.: Distance, dependencies, and Delay in
a Global Collaboration. In: Proceedings of the 26@M Conference on Computer Supported
Cooperative Work (CSCW '00), ACM Press, 2000, d@-328.

Hevner, A.R,; March, ST.; Park, J.; Ram, S:: Design Science Information Systems Research.
In: MIS Quarterly, 28 (2004) 1, pp. 75-105.

17

[HPBO5]

[JaLe99]
[KrSt95]
[Kruc95]
[LaDO03]

[LiSag6]
[010I00]

[PeSVO01]

[Robb05]

[SaHo006]

[SaNHO03]

[SBRO2]

[Schm02]

[SDRQO4]

[SOHR07]

[SiRe05]

[StIP99]

[TM81]

Herbdleb, J.D.; Paulish, D.J.; Bass, M.: Global Software Development at Siemens: Expegen
from Nine Projects. In: Proceedings of the Inteioral Conference on Software Engineering
(ICSE 05), St. Louis, MO, USA, May 15-21, 2005.

Jarvenpaa, SL.; Leidner, D.E.: Communication and Trust in Global Virtual Tearms.
Organization Science, 10 (1999) 6, pp. 791-815.

Kraut, R.; Sreeter, L.A.: Coordination in Software Development. In: Comnuations of the
ACM, 38 (1995) 3, pp. 69-81.

Kruchten, P. B.: The 4+1 View Model of architecture. IEEE Softwat895, 12(6): 42-50.
Lanubile, F.; Damian, D.; Oppenheimer, H.L.: Global Software Development: Technical,
Organizational, and Social Challenges. In: SIGS@Bftware Engineering Notes, 28 (2003) 6,
pp. 2-5.

Lindvall, M.; Sandahl, K.: Practical Implications of Traceability. In: Sofive — Practice &
Expererience, 26 (1996) 10, 1161-1180.

Olson, G.; Olson, J.: Distance Matters, In: Journal of Human-Computéeraction, 15 (2000)
2-3, pp. 139-178.

Perry, D.E.; Sy, H.P.; Votta, L.G.: Parallel Changes in Large-Scale Software Devetpgm
An Observational Case Study. In: ACM TransactionsSoftware Engineering and
Methodology, 10 (2001) 3, pp. 308-337.

Robbins, J.: Adopting Open Source Software Engineering (OSSfa}tices by Adopting
OSSE Tools. In: Feller, J.; Fitzgerald, B.; Hiss&rA.; Lakhani, K.R. (Hrsg.): Free/Open
Source Processes and Tools, MIT Press, Cambridge U8A, 2005, pp. 245-264.

Sarma, A.; van der Hoek, A.: Towards Awareness in the Large. In: First Intéoral
Conference on Global Software Engineering, Costa8ahtinho, Floriandpolis, Brazil,
October 2006.

Sarma, A.; Norooz, Z.; van der Hoek, A.: Palantir: Raising Awareness among Configuration
Management Workspaces, In: Proceedings of the Tyafeifth International Conference on
Software Engineering, Portland, Oregon, USA, 2@p3,444-453.

Souza, C. R. B. d.; Basaveswara, SD.; Redmiles, D.F.: Using Event Notification Servers to
Support Application Awareness. In: IASTED Interoaial Conference on Software
Engineering and Applications, Cambridge, MA, USB02, pp. 691-697.

Schmidt, K.: The Problem with “Awareness” — Introductory Reksaon “Awareness in
CSCW.” In: Journal of Computer Supported Coopeeatvork, 11 (2002) 3-4, pp. 285-298.
de Souza, C.; Dourish, P.; Redmiles, D.; Quirk, S; Trainer, E.: From Technical Dependencies
to Social Dependencies. In: Proceedings of theabdi@tworks Workshop at the 2004
International Conference on CSCW, Chicago, IL, U3804.

de Souza, C.; Hildenbrand, T.; Redmiles, D.: Towards Visualization and Analysis of
Traceability Relationships in Distributed and Ofish Software Development Projects. In:
Proceedings of the First International Conferent&oftware Engineering Approaches For
Offshore and Outsourced Development (SEAFOOD), iébheBwitzerland, 2007 (to appeatr).
Slva Filho, RS;; Redmiles, D.: Striving for Versatility in Publish/Subscribe taktructures. In
5th International Workshop on Software Engineeand Middleware (SEM'2005), ACM
Press, 2005, pp. 17-24.

Seinfield, C.; Jang, C.; Pfaff, B.: Supporting Virtual Team Collaboration: The Teant8tE
System. In: Proceedings of the International ACMGGROUP Conference on Supporting
Group Work (GROUP '99), ACM Press, 1999, pp. 81-90.

Teitelman, W. and Manister, L.: The Interlisp Programming Environment. IEEE Canep.,
1981, 14: 25-33.

18

