
Using Development Experience to Calculate Congruence

Anita Sarma and Jim Herbsleb
Institute for Software Research International

Carnegie Mellon University
Pittsburgh, PA - 15213

{asarma, herbsleb}@cmu.edu

CMU Technical Report CMU-ISR-08-105
April 2008

ABSTRACT

Coordination congruence has been defined as the match between

coordination requirements and the actual coordination behavior of

a team, where requirements are calculated based on underlying

task dependencies and behavior based on communication patterns.

In this paper we propose to expand the notion of congruence in

two distinct ways. First, we use the concept of shared mental

model as a determinant of coordination behavior, where shared

mental model is defined as the common conceptualization of arti-

facts, tasks, and team members shared among developers who

have worked together in the past. Second, we create a measure of

expertise congruence that determines the match between the ex-

pertise that is required and that which is allocated to a project. We

also present some issues that need careful investigation as we

expand the notion of congruence.

Keywords
Coordination, congruence, development experience.

1. INTRODUCTION
Software development involves a large number of developers

working together with a large, common set of highly interdepend-

ent artifacts. The underlying technical dependencies among soft-

ware artifacts create social dependencies among team members,

which necessitate coordination in the team. However, identifying

with who should one coordinate and regarding what is nontrivial.

Despite the use of sophisticated coordination tools (e.g., configu-

ration management system, issue trackers, and communication

portals), a majority of teams typically subsist on suboptimal coor-

dination. Ethnographical studies have shown the lack of proper

coordination can be a major cause of software defects and prob-

lems [1, 2].

Cataldo et al., [1] have put forth the concept of coordination con-

gruence, which calculates how well an organization’s coordina-

tion patterns match their coordination requirements. Such a meas-

ure brings the attention of an organization to the state of their

coordination patterns and if incongruence exists, they can take

steps to reduce the gaps. Cataldo et al., compute coordination

requirements of a team based on the underlying task dependencies

in the project. These dependencies are then compared with the

actual coordination behavior of the team to provide a measure of

coordination congruence. In their work, they primarily determined

coordination behavior from the communication patterns in the

team.

The need for coordination arises generally because of the follow-

ing reasons: (1) interdependent tasks, (2) conflicting changes to

the code base, (3) common resources for the team, and (3) experi-

ence of team members. While Cataldo had specifically investi-

gated congruence as a match between coordination requirements

(because of interdependent tasks) and coordination behavior (rep-

resented by communication patterns), here, we expand the concept

of congruence to consider the experience of individual developers

– both their work experience on software artifacts and their

knowledge of skill sets and experiences of their team members.

More specifically, we propose the investigation of past experi-

ences of developers to create a measure of: (1) shared mental

models as a determinant of coordination behavior and use this

measure to calculate coordination congruence, and (2) expertise

congruence to determine the match between expertise that is re-

quired and which is currently allocated to a team.

The first contribution of the paper is the concept of the use of

shared mental models as a determinant of coordination behavior.

Past empirical work has found that when developers have worked

together in the past they possess a shared understanding of the

nature of software artifacts and their fellow team members’ skills,

which facilitates coordination amongst them [3]. Building on this

research, we propose to identify shared mental models among

developers based on their past experience and use this information

as a measure for coordination behavior, which can then be used to

calculate coordination congruence in a team. Possible sources of

data for information of when developers have worked together in

the past can be coding experiences (e.g., version control logs or

Modification Request (MR) records) or design experiences (e.g.,

design records or team meeting logs)..

The second contribution of the paper is the concept of expertise

congruence. Possessing the “right” knowledge to implement a

task is a critical factor and when an individual lacks the knowl-

edge they have to seek others who have the requisite knowledge.

Developers in a project have been shown to spend a significant

portion of their coordination activities in seeking (or providing)

help. Not surprisingly, there exists a significant body of work on

expertise recommenders (e.g., EEL [4], Expertise Browser [5],

Hipikat [6]), these systems focus on recommending experts to

individual developers who need help in their particular task. Our

work differs from these tools, as it is our goal to identify how well

the expertise allocated to a project matches with the expertise

required for the project. The required expertise for a project can

be determined by its constituent software artifacts and the past

experience of developers in those or related artifacts. A measure

of expertise congruence can be determined by comparing the re-

quired expertise and the allocated expertise to a project.

Research into congruence is in its initial stages and as we begin to

expand the concept of congruence to include other coordination

behaviors and development metrics, two important research ques-

tions need to be addressed. First, how should we present congru-

ence information to make it useful to developers or managers?

Second, how can we validate whether the different congruence

measures that we are proposing have an actual effect on the pro-

ductivity of a team. In this paper, we briefly discuss the necessity

for answering these questions and some possible solutions.

The rest of the paper is arranged as follows. Section 2 discusses

shared mental model as a form of coordination behavior. Section

3 introduces the concept of expertise congruence followed by a

discussion of possible next steps in Section 4. We present our

concluding remarks in Section 5.

2. Coordination Congruence
Coordination is critical to software development. However, de-

spite the use of the state-of-art coordination technology and

spending significant amounts of time and efforts, in many cases

teams perform with suboptimal coordination. Prior work has

shown that mismatches between the coordination requirements

and behaviors of a team can lead to lower productivity and in-

creased costs [1].

Cataldo et al. introduced a novel methodology for computing

coordination congruence – a measure of the “fit” between the

coordination requirements and the actual coordination patterns of

a team [1]. More specifically, they identify the set of dependen-

cies among tasks to identify which sets of individuals should co-

ordinate with whom. They created a set of two matrices. The first

matrix – Task Assignments, a people by task matrix with elements

TA[i,j] representing assignment of an individual to a particular

task. TA[i,j] can either be a 1 or 0 to indicate whether developer i

is assigned to task j). Following the same approach, they created a

set of dependencies among tasks as a square matrix – Task De-

pendencies, with elements TD[i,j] can either be a 0 or 1 to indicate

dependency between task i and task j based on the underlying

dependencies between software artifacts. Interdependency is com-

puted when artifacts have been edited together in the past. These

matrices can then be used to create a Coordination Requirements

(CR) matrix that determines which pairs of developer should coor-

dinate based on the underlying (logical) task dependencies.

Cataldo et al., then use data on communication patterns – primar-

ily chat messages or log messages left in the Modification Request

(MR) – to create a matrix of actual Coordination Behavior (CB).

The coordination requirements and coordination behavior matri-

ces are then compared to identify the coordination congruence of

the team. That is, how well the coordination behavior matches the

coordination requirements.

2.1 Shared Mental Model
Traditionally coordination in a team is determined by the extent of

communication, however, studies have shown there are other

ways of coordination through team cognition mechanisms, such as

shared mental models or shared work familiarity [2, 7, 8]. Particu-

larly, past empirical work has shown that developers possessing

shared team knowledge have a positive effect on team coordina-

tion, especially in distributed settings [9, 10], presumably because

these experiences have allowed developers to develop a shared

mental model (from now referred to as SMM) of the software and

of the tasks involved in working on it. We, therefore, expand the

concept of coordination behavior from just communication pat-

terns to the use of shared mental models for calculating coordina-

tion congruence.

Consider an example scenario, where two teams are working to-

gether to implement a new version of a software system. Further,

let us assume that Alice and Bob from Team-A and Team-B, re-

spectively, have worked together in the past on an earlier version

of the system. As a result of their past experience, both Alice and

Bob are aware of an interface issue in the software, where in spite

of a module functionality that is assigned to Team-B, can be ide-

ally implemented by Team-A. During the reimplementation of that

interface for the new version, Bob, because of his past experience,

can now simply assign the implementation of the interface to

Team-A (say Alice, because she possesses the requisite skill set)

and Alice also aware of the quirks of the system accepts the task.

However, if Alice and Bob had not worked in the past, the com-

munication required to reassign the task between the team would

have been much greater. In this example, the shared mental model

of the system and the team members’ expertise as shared between

Alice and Bob affects their coordination behavior.

Shared mental models can be defined as a conceptualization of the

work, the people performing the tasks, and the individual’s own

place in the process [3, 10]. Such knowledge can be created when

team members work or train together on similar tasks. Shared

mental models are also developed when individuals shared a

common team experiences and organizational familiarity. We note

that different kind of activities can create shared mental models.

As a first step towards investigating shared mental models, we

consider developers to possess a shared understanding of the

structure and the complexity of the software when they have

worked together in the past on the same or similar project. The

hypothesis is that because of the shared understanding of the pro-

ject they can coordinate better.

Towards this goal, we create a Shared Mental Model matrix where

each element SMM[i,j] represents the condition when developer i

has worked with developer j in the past (in implementing a MR)

and, therefore, have had an opportunity to develop a common

mental model1. Elements SMM[i,j] can be either (1) a 1 or 0 to

show a dependency or (2) a weighted measure that represents the

number of projects, artifacts, or work items in which the two indi-

viduals have worked together in the past. Weights can also be

used to represent the recency of their collaboration.

This shared mental model matrix can then be used in two ways.

First, the shared mental model can be used as a determinant of

coordination behavior and then compared with the coordination

requirement matrix (as computed using Cataldo et al.’s methodol-

ogy of using underlying task dependencies) to compute coordina-

tion congruence. Second, the shared mental model matrix can be

compared with the actual communication patterns in the organiza-

tion as evidenced by chat messages or discussion threads in MRs

to understand the nature of communication patterns when devel-

1 A similar SMM matrix can be created by identifying developers who

have worked on the same artifact within a specified window of time.

opers share common mental models as opposed to when they do

not have a common reference base.

Following such an approach raises several interesting questions.

1. What activities should be considered to create the SMM ma-

trix? A first step, but a coarse measure, is to identify develop-

ers who have shared programming experience (e.g., worked

together on the same MR). However, it is possible that shared

mental models are created from other activities such as design

planning or consulting. We shall explore other such measures

to refine how and when shared mental models are created.

2. What are the effects of shared mental models on communica-

tion efforts? Past work has identified that shared mental mod-

els help developers coordinate better [3], we would like to in-

vestigate whether such models act as a substitute for actual

communication. Further, in real life settings, it is possible that

only a small pair of developers have worked together, in such

cases we will investigate whether the effect of shared mental

models is nullified or if it propagates through the team.

3. What effect does the passage of time and turnover have on

shared mental model? Shared mental models are created when

individuals possess a shared conceptualization of the structure

of the system and how each developer fits in the project. With

the passage of time, it is intuitive that this mental model dete-

riorates and becomes inaccurate. How rapidly does deteriora-

tion happen, and how can we address it?

4. Do shared mental models enable efficient coordination across

distributed teams? Coordination costs across geographically

distributed team members are much higher than collocated

teams because of the lack of shared context. We will investi-

gate whether shared mental models can create the needed con-

text and thereby alleviate some of the problems with distrib-

uted development.

3. Expertise Congruence
Expertise can be considered to be either the knowledge of a par-

ticular technology, tool, or domain, or the knowledge about soft-

ware artifacts in the project. Obtaining the right expertise to sup-

port the implementation or design is a critical factor to the success

of a team. Research has shown that developers often spend a sig-

nificant amount of their time either locating or collaborating with

experts [6]. However, finding the right expertise in a team is often

not easy and depends on an individual’s knowledge of their team

members activities.

Prior work on recommender systems rely on the past development

efforts to create a measure of expertise. Ackerman and Halverson

[11] in their study observed that past experience was the primary

criterion that developers ordinarily used to determine expertise.

More specifically, developers often referred to the change version-

ing system to identify developers who had experience with a par-

ticular file, generally assuming that the last person to have

changed an artifact was most likely the ‘expert”.

The primary goal of existing work on expertise recommendation

systems (e.g., EEL [4], ExpertiseBrowser [5], Hipikat [6]) is to

help a developer locate expertise for their particular task. Here, we

propose a slightly different concept. Instead of recommending

experts for individuals who need assistance in their particular

task, we compute the match between the expertise that is allocated

and the expertise that is required for the project. By doing so,

managers can analyze if there exists any incongruence (or gaps) in

their team and take appropriate measures. For example, knowl-

edge about a wide gap in the expertise in a team can prompt the

manager to adjust the team composition to include more experts

when possible. This in turn can then reduce the amount of time

developers spend in looking for expertise outside the team. Alter-

natively, managers would be able to track whether their develop-

ers are becoming too highly specialized; meaning that they have

little breadth of knowledge of the system, and that there is little

knowledge redundancy to mitigate the risk of expert loss. A ca-

veat is that expertise congruence should not be considered as a

substitution for coordination, but as a complimentary concept [7].

We propose to extend the concept of “congruence measure” pre-

sented by Cataldo et al. to create a measure for expertise congru-

ence. More specifically, we compare the level of expertise of a

MR team assigned to a particular MR to the level of expertise

required for that MR. To do this, we look at the past development

experience of individual team members with individual software

artifacts that have to be modified for the MR in question. This

assessment of a set of current MRs then provides feedback on the

congruence of team assignment on the project management level.

To describe the relationship between the MR, software artifacts

and developers, we introduce a set of following matrices: (1) Ex-

perience matrix, (2) Task Allocation matrix, and (3) MR matrix.

"Experience matrix”, with elements E[i,j] represents the past ex-

perience of developer i in implementing or modifying artifact j in

the change management repository. E[i,j] can, for example, repre-

sent the number of lines of code that a developer has written for a

particular software artifact. The “Task Allocation matrix”, with

elements T[i,j] represents the current allocation of developers to

particular MRs. T[i,j] matrix can be either 0 or 1 depending on

whether developer j is allocated to MR i. Finally, we create the

“MR matrix”, a MR by artifact matrix, which represents the soft-

ware files that need modification for a particular MR (cell ij can

be 0 or 1 based on the fact whether MR i contains artifact j).

Multiplying E[i,j] and T[i,j] provides the “Expertise matrix”,

where each cell represents the aggregate experience of a MR team

i with software artifact (file) j in the project. The numbers in the

Expertise matrix are to be compared with the desired level of ex-

perience (this level can be set separately for different artifacts

and/or MR, as preferred by the organization). The Expertise ma-

trix can then be rewritten in a binary form, where 1s would corre-

spond to MR artifacts for which the required level of expertise has

been met, and 0s otherwise. The Expertise matrix elements corre-

sponding to artifacts that are not to be modified in a particular

MR are set to zero. Expertise congruence can then be determined

as a ratio of the number of 1s in the Expertise matrix to the num-

ber of 1s in the MR matrix. For example, if the team assigned to a

particular MR has expertise on 5 out of the 10 files in which the

MR requires modification, we determine the expertise congruence

to be 0.5. Congruence represents the proportion of expertise re-

quirements that were satisfied and hence its value falls between 0

and 1.

We note that on first appearance it seems that preferentially creat-

ing a team of experts (e.g., experience on a project in the past or

skill set) with a high “expertise congruence” is a good solution.

However, while such a policy would assist coordination and in-

crease productivity of the team in the short term, in the long term

such a policy would suffer from two setbacks. First, it would cre-

ate a team with a high level of redundancy reflecting a low diver-

sity in the team’s skill set, which might lead to a lower productiv-

ity of the team [12]. Second, it would lead to developers repeat-

edly working on the same project, which might make the task

unchallenging and lead to employee turnover. Additionally, such

a preferential policy for only assigning experts to a team might be

infeasible because of changes in geographic locations and em-

ployee turnover.

We also note that the ability to evaluate the expertise congruence

can be potentially useful for team allocation instead of just retro-

spective analysis. However, allocation of team members to a pro-

ject does not merely involve selecting developers who have the

most experience, but is a complex task that requires, in addition to

expertise congruence, optimization of additional variables such as

team load and priority of the project as compared to other ongoing

projects to which a developer might be currently assigned.

4. Discussion
Currently, research on congruence is in its infancy and research

potentials in this area abounds. Thus far, the concept of congru-

ence has been used for retrospective analysis of a project to un-

derstand and validate the concept of coordination congruence.

Here we have discussed two distinct ways (shared mental models

as a determinant of coordination behavior and expertise congru-

ence) in which to expand congruence into new directions. For the

purposes of this paper, we have relied heavily on the concept of

MR.to determine a developers’ past experience (both for creating

shared mental models and as a determinant of expertise). As part

of future research, we need to investigate other activities and ar-

chives to support our hypothesis. Further, we have broadly used

the notion of lines of code produced as a determinant of experi-

ence. We note that such a metric may not always accurately reflect

a developers’ expertise or the amount of interest vested in a pro-

ject. We will investigate other sources that provide more accurate

measure or are complementary to the lines of code measure.

While, it is important to extend the concept of congruence from

the state of current research [1, 13] to investigate different coordi-

nation congruence measures, it is imperative to facilitate the adop-

tion of this research by the software industry. Towards this goal, it

is critical that we (1) validate whether these congruence measures

are actually useful in real life and (2) provide intuitive ways for

managers or developers to understand congruence and take ap-

propriate steps.

To facilitate the adoption of congruence in real-life projects, we

must first demonstrate the feasibility and use of congruence

through retrospective analysis of development archives (code

repositories, communication logs, version logs), and surveys to

identify the coordination requirements and behaviors in a team.

Currently, congruence is measured as a number between 0 and 1.

While this is an accurate measure of the state of congruence, it is

non intuitive and does not help the user in understanding where

the incongruence lies and what steps must one take to close the

gap. We believe that visualizations that intuitively display: (1)

interdependencies among developers, (2) communication patterns

among the team, and (3) gaps in the network which lead to incon-

gruence are useful and can provide assistance in making the team

more congruent.

5. CONCLUSIONS
We proposed extending the concept of coordination congruence

to include past experience of developers. More specifically, we

proposed the use the shared mental model of developers who have

worked in the past as a determinant of coordination behavior and

proposed expertise congruence which provides a measure of the

match between the expertise required and that which is actually

allocated to a team. Finally, we discuss future directions for our

research as well as for congruence research in general.

6. ACKNOWLEDGMENTS
This effort is partially funded by the National Science Foundation

under grant number IIS-0329090, and the Software Industry Cen-

ter and its sponsors, particularly the Alfred P. Sloan Foundation.

Effort also supported by a 2007 Jazz Faculty Grant.

7. REFERENCES
[1] Cataldo, M., et al. 2006. Identification of Coordination Re-

quirements: Implications for the Design of Collaboration and

Awareness Tools. in ACM Conference on Computer Supported

Cooperative Work. Banff, Alberta, Canada. p. 353-362

[2] Curtis, B., H. Krasner., and N. Iscoe.,1988. A Field Study of

the Software Design Process for Large Systems. Communications

of the ACM, 31(11): p. 1268-1287.

[3] Espinosa, J.A., et al. 2002. Shared Mental Models, Familiar-

ity, and Coordination: A Multi-Method Study of Distributed

Software Teams. in International Conference in Information Sys-

tems. Barcelona, Spain. p.425-433.

[4] Minto, S. and G.C. Murphy, Recommending Emergent

Teams, in Fourth International Workshop on Mining Software

Repositories. 2007. p. 5.

[5] Mockus, A. and J. Herbsleb. 2002. Expertise Browser: A

Quantitative Approach to Identifying Expertise. International

Conference on Software Engineering. Orlando, FL. p. 503-512.

[6] Cubranic, D., et al.,2005. Hipikat: A Project Memory for

Software Development IEEE Transactions on Software Engineer-

ing, 31(6): p. 446-465.

[7] Faraj, S. and L. Sproull,2000. Coordinating Expertise in

Software Development Teams. Management Science, 46(12): p.

1554-1568.

[8] Walz, D.B., J.J. Elam, and B. Curtis,1993. Inside a Software

Design Team: Knowledge Acquisition, Sharing, and Integration.

Communications of the ACM, 36(10): p. 63-67.

[9] Espinosa, A., et al.,2007. Team Knowledge and Coordina-

tion in Geographically Distributed Software Development. Jour-

nal of Management Information Systems, 24(1): p. 5-12.

[10] Espinosa, A., et al.,2007. Familiarity, Complexity and Team

Performance in Geographically Distributed Software Develop-

ment. Organization Science, 18: p. 613-630.

[11] Ackerman, M.S. and C.A. Halverson,2000. Reexamining

organizational memory. Communications of the ACM, 43(1): p.

58-64.

[12] Dattero, R., S.D. Galup, and J. Quan,2007. The knowledge

audit: Meta-Matrix analysis. Knowledge Management Research &

Practice, 5(3): p. 212-221.

[13] Valetto, G., et al., Using Software Repositories to Investigate

Socio-technical Congruence in Development Projects, in Work-

shop on Mining Software Repositories. 2007. p. 27.

