
Chapter 8
Continuous Coordination Tools
and their Evaluation

Anita Sarma, Ban Al-Ani, Erik Trainer, Roberto S. Silva Filho, Isabella A. da
Silva, David Redmiles, and André van der Hoek

Abstract This chapter discusses a set of co-ordination tools (the Continuous
Co-ordination (CC) tool suite that includes Ariadne, Workspace Activity Viewer
(WAV), Lighthouse, Palantír, and YANCEES) and details of our evaluation frame-
work for these tools. Specifically, we discuss how we assessed the usefulness and
the usability of these tools within the context of a predefined evaluation framework
called DESMET. For example, for visualization tools we evaluated the suitability
of the level of abstraction and the mode of displaying information of each tool.
Whereas for an infrastructure tool we evaluate the effort required to implement co-
ordination tools based on the given tool. We conclude with pointers on factors to
consider when evaluating co-ordination tools in general.

8.1 Introduction

Co-ordination has been studied in different domains and within different contexts,
as any kind of group work entails co-ordination [1, 32]. For our purposes, we focus
on co-ordination efforts that are required to understand interdependencies among
artifacts and developers in a software project, and to take appropriate steps to pro-
duce results with minimal conflicts. We recognize that co-ordination is not a static
process, but one that needs continuous adjustments. This means that concerned indi-
viduals have to have the ability to respond to ongoing changes in the project and the
effects of these changes on their work. Furthermore, co-ordination efforts occur at
multiple levels: among developers, between managers and their teams, among mul-
tiple teams working together, and so on. The information required by an individual
strongly correlates with their role in the team and their perspective of the project.
Therefore, tool support for co-ordination needs to ensure that the right information

A. Sarma (B)
Department of Computer Science & Engineering, University of Nebraska, Lincoln,
NE 68588-0115, USA
e-mail: asarma@cse.unl.edu

153I. Mistrík et al. (eds.), Collaborative Software Engineering,
DOI 10.1007/978-3-642-10294-3_8, C© Springer-Verlag Berlin Heidelberg 2010

154 A. Sarma et al.

is presented to the right individual at the right time using appropriate presentation
techniques. To achieve this goal, we created a suite of co-ordination tools that meets
the different needs of different kinds of software development activities.

Evaluation of co-ordination tools is both critical and challenging [29]. In this
chapter, we discuss the strategies we used to evaluate our co-ordination tool suite
as well as results from the evaluation. In particular, we discuss our goals when
evaluating the tools with respect to their usefulness and usability. Generally, the
usefulness and functionality of our tool set has been largely motivated by our own
ethnographical studies of multiple software development teams [11, 15].

This chapter discusses our approach to evaluate the usability, as well as, in some
cases, the usefulness of each tool based on DESMET, Kitchenham et al.’s frame-
work for evaluating software engineering tools [29]. The evaluation of each tool
followed a subset of the nine evaluation types listed by DESMET, which was based
on the nature/features of the tools as well as their maturity level. We found that
evaluation should be iterative in nature as has been recommended for prototyping in
software development [27].

The rest of the chapter is organized as follows. The next section provides a brief
introduction to our approach. Section 8.1.2 provides a review of related work in
which we discuss interdependencies and the need for co-ordination in addition to
evaluation methodologies. This background section is followed by a description of
the DESMET framework and our extension of this framework. We then present an
outline of the Continuous Coordination (CC) principles, the origin of the CC tools,
the evaluation approaches adopted for each, and the lessons learned as a result.
The chapter concludes with a discussion of threats to the validity of our work and
conclusions regarding the evaluation of the usefulness and usability of the CC tools.

8.2 Research Context

In software development the need for co-ordination among developers generally
arises because of the underlying technical dependencies among work artifacts; as
well as the structure of the development process [13, 7, 8]. Researchers in the
software engineering as well as Computer-Supported Co-operative Work (CSCW)
communities have recognized this problem and created a host of tools to improve
team co-ordination. However, evaluating the usability and usefulness of such
tools has proven to be extremely difficult. Here we focus on different evaluation
approaches that are applicable for co-ordination tools.

There exists a diverse range of approaches to evaluating collaborative tools,
e.g., [41, 4, 35, 56, 18, 31, 50]. Adopting a combination of empirical evaluation
approaches is perceived as means to meet the challenges typically encountered [49].
The diversity of existing tools and evaluation approaches reflect the many challenges
of facilitating co-ordination in teams [24].

Further, several evaluation frameworks have been proposed to support software
tool evaluation, e.g., [29, 10, 30], among others. We base our evaluations of the

8 Continuous Coordination Tools and their Evaluation 155

CC tool suite based on the DESMET framework [29]. We chose DESMET because
it provides the desired level of abstraction that readily lends itself to adoption and
matches our research objectives. This framework has also been successfully adopted
by other researchers to evaluate software tools, e.g., [34, 36, 25].

8.3 The CC Evaluation Framework

The DESMET evaluation methodology separates evaluation approaches into two
broad classes: (1) quantitative evaluations aimed at establishing measurable effects
of using a tool, and (2) qualitative evaluations aimed at establishing method tool
appropriateness, i.e., how well a tool fits the needs and cultures of an organization.
These two methods are further subdivided into experiments, case studies, surveys,
feature analyses, and screening to form nine distinct evaluation approaches. We used
six of the evaluation approaches listed by Kitchenham et al. Note, we did not use
all the approaches for each tool; rather a different combination of approaches was
used based on the particular features, level of maturity, and the goal of the tool,
i.e., usefulness or usability factors. Some of the factors that we considered when
evaluating usefulness or usability were the effort that users’ expended to utilize
and/or understand a CC tool together with the perceived benefits. Moreover, we
considered issues relating to the appropriateness of information that a tool shares
with the development team (e.g., level of abstraction and mode of display).

We used the DESMET framework to determine which evaluation methodology
to use per tool. Here, we present an overview of the evaluation approaches that we
adopted, within the context of the framework as defined by Kitchenham et al.:

1. Qualitative screening is defined as a feature-based evaluation done by a sin-
gle individual (or cohesive group) that not only determines the features to be
assessed and their rating scale, but also performs the assessment. In the initial
screening, the evaluations are usually based on literature describing the software
method/tools rather than actual use of the methods/tools. We conducted such a
screening by surveying existing tools and their features as reported in literature.
Consequently, we surveyed related work for each one of our tools.

2. Hybrid method 1: Qualitative effects analysis is defined as a subjective assess-
ment of the quantitative effect of methods and tools, based on expert opinion.
We have used this analysis approach repeatedly at different phases of tool devel-
opment. All our tools followed iterative prototyping and at the end of each
prototyping cycle, we demonstrated our tools to industry experts as well as
researchers to get their feedback on both usability and usefulness.

3. Qualitative experiment is defined as a feature-based evaluation done by a group
of potential users who are expected to try out the tools on typical tasks before
evaluating them. The tasks are performed by staffs that have used the tool on
a real project. We requested that participants also “think out loud” during the
experiment to get an idea of which features are difficult to understand in addition

156 A. Sarma et al.

to gaining insights into the reasoning behind their actions [19]. Another subcat-
egory in this approach is the “feature analysis” experiment which is typically
adopted when a tool’s impact is not directly measurable on one project and is
thus evaluated across multiple projects. We conducted such experiments with
mature tools.

4. Quantitative case study is defined as an investigation of the quantitative impact
of tools organized as a case study. This mode of evaluation can be used to
understand the usefulness of a tool when applied to a real project as well as
the scalability of the tool. We utilized data made available in open-source soft-
ware projects repositories as case study data. This data was collected from a real
and ongoing large scale project.

5. Hybrid method 2: Benchmarking is defined as a process of running a number
of standard tests usually comparing one tool to alternative tools and assessing
the relative performance of the tools against those tests. We selected a set of
open source infrastructures to be compared with our tool as a benchmark in this
instance of evaluation.

6. Quantitative experiment is defined as an investigation of the quantitative impact
of tools organized as a formal experiment. We used a large enough sample size
in our experiments to overcome the anticipated effects of individual and team
differences. We typically adopted this methodology to evaluate mature tools
because of the extensive effort and time required.

A detailed description of each tool is presented in the following section together
with details of the evaluation approaches adopted. Appendix presents a summary of
the tools and the evaluation approaches we utilized within the context of DESMET.

8.4 Continuous Coordination (CC) Tools: Their Origin
and Evaluation

Co-ordination occurs at different levels and involves different stakeholders (e.g.,
developers, managers, testers, clients), who may have differing co-ordination
requirements. Our suite of co-ordination tools attempts to meet different require-
ments among different stakeholders.

The CC tool suite was designed while keeping four critical questions in mind
[42]. The first involves identifying when the tool should provide information.
Providing a constant stream of information can overwhelm users, whereas infre-
quent sharing of information may lead to some users lacking information critical
to completing their tasks. The information provided to the user depends on their
role within the team. “What kind of information does the user need?” is the sec-
ond question that guides our work. For example, a manager would typically need
to be aware of team structure and work products to co-ordinate a project. A pro-
grammer, however, would generally need to be aware of changes to the design.
These considerations lead us to ask, “Who should information be provided to?” For

8 Continuous Coordination Tools and their Evaluation 157

example, should information be provided to all programmers, to managers, or to a
sub-set of these? Finally, how information is presented should also be considered.
In general, our tools visualize graphical representations of co-ordination informa-
tion because it can be more efficient and easier to understand information presented
graphically than textually [52, 5].

In the following sections, we discuss a subset of the CC tool suite we subjected
to more than one type of evaluation approach and the lessons we learned.

8.4.1 Ariadne

Ariadne is a visual tool that infers dependencies between people based on the
modules they author. Our field studies led us to conclude that the management of
dependencies becomes a daunting task as a project evolves and grows in the number
of artifacts and contributors [14, 16]. These studies gave us insight into several types
of communication and co-ordination problems, which helped us develop several
representative scenarios that revealed the different types of dependency relation-
ships managers and developers need to understand [14]. We call these relationships
“socio-technical” because they involve both artifacts and the people who work on
them.

Ariadne visualizations allow developers and managers to identify relevant socio-
technical relationships central to their co-ordination needs. First, Ariadne creates
a call-graph representing dependencies between source-code modules. Second, the
tool annotates this graph with authorship information by connecting to a project’s
configuration management repository. Finally, Ariadne calculates a sociogram [54]
representing dependencies between developers through the modules with which
they work. The visualization is designed to take advantage of available screen real
estate and thus occupies the entire screen.

Ariadne visualizations were designed to make the most of available screen real
estate (shown in Fig. 8.1). Ariadne lays out called code units on the horizontal axis
and developers on the vertical axis. It draws connections from a dependent author
to the code unit they are dependent upon and back to the author responsible for that
code unit and repeats this for each code unit in the project. Further details on its
visualization and its advantages have been reported elsewhere [51].

8.4.1.1 Objective of Evaluation Process and Steps Taken

Ariadne visualizes socio-technical relationships using highly abstract representa-
tions of dependency information, such as shapes, colors, and axes. As such, effort is
required to learn how to use the tool to accomplish specific tasks. We thus decided
upon an evaluation strategy that would allow us to evaluate this effort in early stages
of the tool’s design.

A survey, or qualitative screening, of literature and existing socio-technical tools
revealed the general need to support awareness of dependencies and identifying

158 A. Sarma et al.

Fig. 8.1 An overview and zoomed in view of a project’s socio-technical dependencies using
Ariadne

developers of interest via visual interpretation. Literature in the information visu-
alization field identified usability as one important barrier to tool adoption by
end-users [2, 3, 40]. Moreover, evaluating tools in real settings and with real users
(in our case, developers and managers) is expensive in terms of the effort required,
especially in the early stages of design. In an effort to get usability feedback
“cheaply”, we applied multiple inspection usability inspection methods: Nielsen’s
Heuristic Evaluation [37] Lewis and Polson’s Cognitive Walkthrough [55] and
Thomas Green’s Cognitive Dimensions of Notations [22]. In addition, we applied
Edward Tufte’s general principles of information presentation [52, 53]. We per-
formed each inspection method with a team comprised of four colleagues. They
had no experience using the new visualization. This unfamiliarity helped us to
identify problematic design assumptions about new users’ expectations and assump-
tions about interacting with and drawing conclusions from the visualization. Further
information of our evaluations is detailed elsewhere [51].

After this qualitative inspection, we performed a case study where we selected
several open-source projects from Sourceforge.net to visualize. These projects had
been active for several years, and were active at the time of our evaluation. Thus
they represented a test-bed from which to confirm the scalability of the visualization
to real-world projects. In parallel to the previous study, with the help of industry
partners and open-source developers, we assessed the usefulness of current features
and incorporated suggested feedback into the tool. These activities, in combination
with the application of usability inspection methods, constituted a qualitative effects
analysis in terms of DESMET.

8 Continuous Coordination Tools and their Evaluation 159

8.4.1.2 Lessons Learned with Respect to the Tool

We were able to tease out commonly occurring problems with respect to usabil-
ity through the combined application of evaluation approaches. For example, the
use of color to indicate individual developers and the directionality of dependencies
proved to be more difficult than we originally thought, especially as we visualized
larger projects. The Cognitive Walkthrough, Tufte’s principles, and the Cognitive
Dimensions analyses highlighted this issue. The Heuristic Evaluation and Cognitive
Dimensions revealed the potential need to allow users to undo certain filtering
actions in order to trace back their steps, as well as the option to view different
configurations of developers, e.g., aggregating them into teams. All three methods
suggested the need to improve feedback (e.g., to indicate that specific dependencies
have not been created instead of displaying no search results).

Ariadne allows users to identify patterns in the way developers call different parts
of code in the system that form a general overview of a project’s socio-technical
dependencies. Throughout the course of applying the usability inspection methods
discussed above, we realized that these patterns would heavily depend on the way
the different axes were ordered. For example, a pattern generated from a tempo-
ral ordering of the code units (arranged by date last modified) might not show up
if the code units were arranged in alphabetical order instead. Thus, the ordering
makes a difference in the patterns that users will see, identify, and flag for future
identification.

8.4.1.3 Lessons Learned with Respect to Evaluation

The usability inspection methods we applied to Ariadne thus far have allowed us
to make certain corrections to Ariadne’s visualization before deploying the tool
to real users in real settings. However, evaluations of this sort cannot account for
organizational issues relating to adoption. This is one limitation of our evaluation
strategy. Publicly exposing sensitive information normally stored in software repos-
itories may have effects on the way developers work or even Ariadne’s results. In
one instance, we showed some of our early visualizations to several open source
developers who commented that they would avoid “touching” certain classes to
avoid breaking dependent code. To an extent, Ariadne can be used by managers and
supervisors to gauge developer’s progress, or lack thereof. Further, as speculated
by our interviewees, individuals may “game” the tool to show an increase in their
contributions, especially if they feel that a lack of activity may be used against them.

Some researchers claim that new evaluation approaches for visualizations are
needed because current approaches test the wrong users and unconventional user
interface components hurt user performance [2, 3]. We have described the imprac-
ticality of deploying Ariadne to our intended end-users in early design. To address
the second point, the results from our evaluation indicate that usability inspection
methods can be usefully applied to abstract visualizations instead of traditional inter-
face components such as methods and drop-down menus. Moreover, despite the fact
that Tufte’s principles of information are general rather than domain-specific; our

160 A. Sarma et al.

work serves as one of the few examples of the application of these rules-of-thumb
to novel, interactive socio-technical visualizations for software engineering. Thus,
traditional evaluation approaches are still useful for incremental prototyping and
iterative design of our research tools. As we continue to develop and refine Ariadne,
visualization-specific evaluation heuristics like those suggested by other researchers
[57] will become more useful. We expect the aforementioned evaluation to be used
as a point-of-comparison for researchers evaluating socio-technical visual interfaces
in early design.

8.4.2 Workspace Activity Viewer

Workspace Activity Viewer (WAV) provides a highly scalable view of all ongoing
parallel development activities in a software project [43]. WAV visualizes informa-
tion in 3D to illustrate changes to a software project over time, the types and sizes
of the changes, and provides various filters to examine aspects of workspace activ-
ities in more detail. WAV reveals social evolution via a movie-like playback of the
state of the project, showing what developers are active when, and to which types of
artifacts they contribute (Fig. 8.2). As such, WAV can benefit both developers and
managers, and provides two different views: artifact-centric and developer-centric,
accordingly. Both views use a cylinder metaphor to represent workspace changes,
where the width of the cylinder represents the size of a change. In the artifact-centric
view, cylinders represent artifacts, with each segment of a cylinder denoting a devel-
oper who has made changes to that artifact. In the developer-centric view, cylinders
represent developers, with each segment of a cylinder denoting an artifact that devel-
oper has touched. As stacks (artifacts or developers) become dormant, the associated
stack of cylinders slowly moves to the back of the display. A more detailed account
of the tool is reported elsewhere [43].

8.4.2.1 Objective of Evaluation Process and Steps Taken

The objective of our evaluation of WAV was to confirm the accuracy of the tool’s
playback of the activities occurring in real software development projects and to
test the visualization’s capacity to scale to large software projects [43]. In terms of
display technique, we wanted to see if all relevant workspace events could be clearly
visualized using the screen real-estate WAV requires. As we have seen in the case of
Ariadne, deploying tools in real settings is a difficult challenge, especially in early
prototyping. Thus, we decided to evaluate WAV through a case study and report
results to project managers and developers.

We applied WAV to five open-source projects: ArgoUML, GAIM, Freemind,
jEdit, and Scarab. In addition, we analyzed project data from a local company that
collaborates with our research group. Since we used archived data for our case
study, we did not gather information of real-time workspace edits. To overcome this
problem, we simulated workspace data based on CVS change metadata (e.g., who
checked the file in, when they did it, and how much changed). This metadata

8 Continuous Coordination Tools and their Evaluation 161

F
ig

.8
.2

D
ev

el
op

er
-c

en
tr

ic
m

od
e

on
si

x
m

on
ito

rs
(l

ef
t)

an
d

ar
tif

ac
t-

ce
nt

ri
c

m
od

e
w

ith
us

er
-d

efi
na

bl
e

fil
te

rs
on

th
e

(r
ig

ht
)

162 A. Sarma et al.

allowed us to establish known states for each artifact and subsequently generate
events correlating to workspace activity before the commit occurred. The evaluation
we performed constitutes a qualitative-effects analysis and a quantitative case study.

8.4.2.2 Lessons Learned with Respect to the Tool

Visualizing the collective activity in a project can allow managers to choose and
identify patterns that may lead to co-ordination breakdowns. For example, the
movie-like playback feature of WAV allows one to see periods of stagnation which
may indicate insufficient progress. Whereas spurts of activity as artifacts and devel-
opers’ piles expand upward and move to the front may indicate conflicts. These
patterns can then be used as potential “red flags” to indicate the possibility of
problems over the lifecycle of a project.

An important concern is the visualization’s ability to scale to large software
projects caused by the amount of workspace events captured [43]. Over this range,
the filters available on WAV’s interface and the ability to rotate the visualization’s
axes provided sufficient support to manage the problem of scalability, as reported
by the managers to whom we showed the data. The evaluation method we chose
for WAV allowed us to validate the accuracy of the events captured by the tool by
correlating them with actual events over the course of development. It was further
validated by a project manager who confirmed our observations.

8.4.2.3 Lessons Learned with Respect to Evaluation Methods

Our evaluations are not a substitute for assessment in real settings. However,
they come close by looking at real project data from real development teams.
Unlike costly evaluation approaches such as talk-aloud methods or human sub-
jects tests, case-study data can be collected relatively cheaply from existing, (often)
publicly available project repositories. While we were not able to gain access to
real workspace activities, we were able to simulate them based on randomizations
of the patterns between known check-ins and check-outs. As such, we could still
make observations about the evolution of the projects. The most expensive part of
the process is reflecting findings back to the original participants.

One aspect that evaluations of this type leave out is usability for the end-user,
which is typically one of the main barriers to visualization adoption [2, 3, 40].
Usability is especially important in the context of the work discussed here because of
the upfront costs associated with human subjects testing. Future WAV evaluations
involves the application of usability inspection methods such as those applied to
Ariadne [51]. These evaluations can reveal patterns of interest and compare activity
between both developers and artifacts.

8.4.3 Lighthouse

Lighthouse is an awareness tool that supports team co-ordination by providing each
developer with information of ongoing activities in the project [9]. The goal of the

8 Continuous Coordination Tools and their Evaluation 163

Fig. 8.3 Lighthouse emerging design

tool is to improve a developer’s understanding about others’ activities and how one’s
own activities affect the others. The tool builds an Emerging Design diagram, an
always up-to-date abstraction of the source code components, dependencies, author-
ship and current changes. The diagram consists of a UML-like class representation
of the code as it exists on the developers’ workspaces (Fig. 8.3). All information
about changes made to the code is collected automatically by Lighthouse from the
IDE and the SCM system and is propagated immediately to all project members.

Lighthouse visualization supports early detection of design decay by allowing
users to identify unintended design changes. Problems like conflicting changes in
shared artifacts and duplicate work can also be spotted as soon as they surface. A
detailed account of the tool’s features and the nature of the support it provides is
reported elsewhere [9].

8.4.3.1 Objective of Evaluation Process and Steps Taken

Lighthouse has been evaluated both via qualitative effects analysis and qualita-
tive experiments. We demonstrated Lighthouse to various industry experts and
academic researchers, obtained and incorporated their feedbacks. Later we evalu-
ated Lighthouse via a qualitative observational study to investigate its usefulness
in warning participants of emerging conflicts, as well as the effort required by an
individual to investigate and resolve conflicts.

This study recruited four graduate student volunteers who had sufficient knowl-
edge about the Java programming language, the Eclipse IDE, and the software
configuration management (SCM) tool (preferably Subversion). These volunteers
used the prototype to execute small programming tasks on a simulated software
development team. More specifically, participants were told that they would be
joining a pre-existing team, substituting a developer who recently left the project.

164 A. Sarma et al.

They were also informed that the rest of the team was distributed and available
for communication solely by Instant Messaging (IM). Each participant was asked
about their background, given a brief tutorial on Lighthouse, assigned a set of five
programming tasks involving online store software, and asked to fill out an exit
questionnaire. In reality, each participant was working by themselves; the other
two team members being virtual entities (confederates) that were controlled by the
experimenters [44]. The confederate’s programming tasks were simulated with auto-
mated scripts that introduced changes in the software source code at pre-defined
time intervals. Some of these tasks introduced conflicts in the source code that were
supposed to be detected and dealt with by the participants. The experimenter also
controlled the communication via IM between participant and confederates. The use
of confederates allowed for control over the number of conflicts and co-ordination
opportunities introduced in the experiment which facilitated the comparison of
results across experiments.

8.4.3.2 Lessons Learned with Respect to the Tool

For the experiment, we introduced two direct conflicts (concurrent changes to the
same artifact) and two indirect conflicts (conflicting changes to dependent artifacts).
We observed that the timing of conflict introduction was a decisive factor on
detecting direct conflicts; developers who had already started coding a task before
the confederate created the duplicated effort did not detect the conflict. We also
observed that changes made by confederates were either noticed as soon as they
surfaced or not until the end of the task, when participants faced merge problems
because of the SCM system. All changes detected on time, though, were quickly and
appropriately addressed. When indirect conflicts were introduced during the experi-
ment, only half of the participants recognized the conflict in one task and none could
complete the other task in the given time.

We designed the experiment to understand the role of “emerging design” is help-
ing participant’s co-ordinate their work. At the end of the study participants reported
that they found that the emerging design served as a reference for understanding the
software structure, which were corroborated by our observations on how partici-
pants explored the diagram during the study. We also found that participants by
using filters that highlighted recent changes to the emerging diagram were able to
use the diagram as a way of identifying ongoing changes in the project. Finally, in
many cases the emerging design stimulated communication in a team. For example,
when trying to contact a confederate to resolve a conflict, participants always first
looked for the author of conflicting changes using the emerging design diagram. In
all cases, participants contacted the most adequate confederate to address the issue.
Further, changes that were unrelated to the tasks being performed were correctly
ignored, thereby showing that Lighthouse streamlines communications in a project.
However, we observed that participants were sometimes confused regarding which
changes were local and which remote. Consequently, this usability problem might
hinder users from responding to remote emerging conflicts. Our future work will

8 Continuous Coordination Tools and their Evaluation 165

provide means to differentiate between local and remote changes, which will help
overcome this problem.

8.4.3.3 Lessons Learned with Respect to the Evaluation of Tool

Our study suffered from threats to validity common for user experiments. The total
time of 1 h was insufficient for subjects to complete all the tasks and a simple walk-
through of Lighthouse’s features was insufficient for them to appropriately learn all
the tool features. We found that the complexity of Lighthouse’s different interactive
features meant participants required more time to learn how to use them. Further,
to understand how the software code was evolving and its effect on the given tasks
required a much longer experiment involving a more complicated code base. Such
an experiment would allow independent changes made in different parts of the code
to interact and create more intricate conflicts. Finally, the pressure of having to com-
plete all the tasks within a limited period of time might have made participants spend
less time observing and understanding the emerging design. We plan to follow this
study with a more detailed in situ study of real developers working on their projects.

8.4.4 Palantír

Palantír is a workspace awareness tool that automatically and unobtrusively inter-
cepts local edits as well as all CM operations in a workspace and transmits these
events across relevant workspaces to inform developers of ongoing changes in the
project [46]. Each workspace summarizes the events it receives and communicates
these to a developer via subtle awareness cues.

The purpose of these cues is to unobtrusively draw the user’s attention to emerg-
ing conflicts, both direct and indirect, without undue distractions or overwhelming
the user with too much information (Fig. 8.4). Palantír currently detects indirect
conflicts that arise because of changes to public methods and variables [45]. Palantír
was integrated into the Eclipse development environment such that annotations in
the package explorer view inform developers of activities in other workspaces (top
inset in Fig. 8.4) and a new Eclipse view, the conflict view, allows users to obtain
further details of changes causing conflicts (bottom inset in Fig. 8.4). The goal is
for the textual annotations to warn developers of impending conflicts and when the
users need further information, they can investigate the conflict via the Palantír con-
flict view, where various kinds of icons provide additional information about the
state of a conflict.

8.4.4.1 Objective of Evaluation Process and Steps Taken

Palantír is one of the more mature prototypes in the CC tool suite. Therefore it has
iteratively undergone several evaluation approaches. Qualitative screening by sur-
veying other tools via literature survey and iterative qualitative effects analysis, to
get feedback from experts, helped us determine its specific awareness and display

166 A. Sarma et al.

Fig. 8.4 Palantír workspace awareness

features early on in the project. We then validated the feasibility of our approach
via feature analysis experiments, where we integrated Palantír with three SCM
systems – CVS, RCS, and Subversion. We subsequently performed initial qualita-
tive experiments to validate and obtain feedback on our experimental setup before
performing our quantitative user experiments. These experiments were designed to
test the usefulness of Palantír in enabling participants discover potential conflicts
and test its ease of use and the effort required by participants to notice, investigate,
and resolve conflicts in their tasks.

The experiments were specifically designed to observe a participant making edits
in a group setting with (and without) using Palantír to co-ordinate their changes.
Particular individual differences that concern our experiment are differences in how
a team member interacts in the group and a programmer’s technical skills. We
controlled for differences in group interaction by using confederate based design,
similar to Lighthouse evaluations, where a participant could interact with the two
other team members via IM.

We controlled individual differences that stem from technical skills by conduct-
ing stratified random assignment. Further, we benchmarked the non-programming
tasks evaluations with our results from an analogous experiment with programming
tasks. In “textual” experiment, we chose a sample text that was neither too complex
nor too interesting to overwhelm or distract the participants. The text reflected some
key properties of software, primarily modularity and dependency. Modularity was

8 Continuous Coordination Tools and their Evaluation 167

attained by using text which was comprised of separate files (chapters). Whereas,
dependency was simulated by text containing references that linked text across
modules and which had to be kept consistent. The textual experiment was fol-
lowed by a “Java” experiment to evaluate Palantír in the programming domain. This
experiment sought to confirm results from the first experiment. However, here we
sought to take into account the limitation of the programmer’s individual differ-
ences becoming visible, especially in the time it takes for them to complete change
tasks.

8.4.4.2 Lessons Learned with Respect to the Tool

The evaluation of Palantír sought answers to three principle questions regarding the
tool’s usefulness and usability. First, does workspace awareness help users in their
ability to identify and resolve a larger number of conflicts? We found with statis-
tical significance that participants in the Experiment group detected and resolved a
larger number of conflicts for both conflict types (direct and indirect). We found that
participants typically noticed information provided by Palantír before embarking on
their task or right after finishing it. Second, does workspace awareness affect the
time-to-completion for tasks with conflicts? An obvious effect of workspace aware-
ness tools is the fact that they incur some extra overhead as developers must spend
time and effort to monitor the information that is provided to them. Further, if they
suspect a conflict then they spend time and effort to investigate and resolve it. We
examine this overhead by comparing the average time, which includes the time to
detect, investigate, co-ordinate, and resolve a conflict that participants in each of
the treatment groups took to complete tasks. We found that on average participants
using Palantír detected a larger number of conflicts without significant overheads.
Finally, does workspace awareness promote co-ordination? We observed that on
detecting a conflict participants generally took one of the following actions: syn-
chronize, update, chat, skip the particular task, or implement the task by using a
placeholder. In general, we saw a comparable number of co-ordination actions for
direct conflicts between the control and experiment groups, but a sharp increase in
the number of co-ordination actions for indirect conflicts for the experiment group.

8.4.4.3 Lessons Learned with Respect to the Evaluation of Tool

Our experiments led us to conclude that evaluating co-ordination tools that require a
group of people to understand and use the information provided to co-ordinate with
each other is extremely complex. While we took great care to control individual dif-
ferences between participants we still found large enough variances in the time to
completion of tasks. Another way of controlling individual differences would have
been to perform a between subject test, i.e., test the same participant in both the
control and experiment conditions using two very similar projects. Additionally, in
our experiment we seeded the same type of conflicts in the same order. It is possible
that participants may learn from past conflicts and change their behavior with how
they react to new conflicts; therefore, changing the order in which we introduced

168 A. Sarma et al.

the direct and indirect conflicts may produce different results. Finally, in the Java
experiment, participants were not required to integrate their changes and build the
entire project. Therefore, nearly all participants in the control group and some in the
experiment group did not detect the conflicts remaining in the code base. This fact
combined with the fact that we did not penalize the task with unresolved conflicts
precluded us from quantifying the benefits of workspace awareness with respect
to the time and effort saved in co-ordination. While this experiment design deci-
sion was disadvantageous, finding the perfect balance between the amounts of time
required for participants to learn about the tool, complete tasks, and the complexity
of the project is not trivial.

8.4.5 YANCEES

Notification servers (or publish/subscribe infrastructures) support the continuous co-
ordination requirements of disseminating information from distributed information
producers to different information consumers in a timely fashion [39]. They provide
mechanisms for publishing, routing, filtering and disseminating information in the
form of events. As such, publish/subscribe infrastructures have been used in support
of different event-driven applications [12, 17, 26, 46]. Whenever a new event-driven
application is conceived, developers face two alternatives: build a publish/subscribe
infrastructure from scratch, or reuse one of many existing research and indus-
trial systems. A qualitative screening of existing publish/subscribe infrastructures
revealed different architectural patterns adopted by industrial and research publish/
subscribe infrastructures in the support of the evolving and heterogeneous require-
ments of different application domains [48]. For example: minimal core, one-size-
fits-all, co-ordination languages and compositional models. Most of these patterns
are neither extensible nor configurable in the set of features they provide, making
their adaptation and reuse a difficult endeavor. This observation motivated the devel-
opment of YANCEES, which is an extensible and configurable publish/subscribe
infrastructure based on plug-ins [47]. As such, our goal in the development of
YANCEES was twofold. First, from the infrastructure developers’ perspective, we
sought the reduction of the development effort. Second, from the point of view of
infrastructure consumers, we sought an infrastructure that can reduce the devel-
opment effort of event-driven applications. In order to evaluate these goals, we
designed the following evaluation.

8.4.5.1 Objective of Evaluation Process and Steps Taken

Our evaluation had three major objectives. First, we sought to assess the usefulness
of YANCEES i.e., its ability to support the performance and application-specific
requirements of different application domains. Second, we sought to evaluate its
usability, which is measured as the development effort of both infrastructure devel-
opers and consumers. Finally, our evaluation compares these measures with existing

8 Continuous Coordination Tools and their Evaluation 169

approach in both the literature and industry. We took the following steps to achieve
these goals:

1. We performed qualitative screening of industrial and research infrastructures
with the goal of identifying major architectural patterns adopted by these tools
in the support of different application domains requirements. The screening
revealed four new alternatives which included: (a) employing generalization in
the construction of minimal APIs; (b) supporting extensibility through the use
of co-ordination languages; (c) employing variation in the construction of one-
size-fits-all infrastructures; (d) or supporting flexibility by the use of component
frameworks as is the case with YANCEES.

2. We selected a set of open source infrastructures, one for each category to be
compared in a benchmark. These included Siena [6] representing generalized
minimal APIs; Sun JavaSpaces [20] representing co-ordination languages;
CORBA Notification Service (or CORBA-NS) [38] representing one-size-fits-all
infrastructures, and YANCEES [47] representing flexible compositional infras-
tructures.

3. We selected three feature-rich event-driven application domains as the source
of requirements for our study. These were usability monitoring represented by
EDEM, awareness represented by CASSIUS and collaborative environments
represented by Impromptu [17, 28]. These infrastructures were selected first for
their diversity of requirements, and second, for the previous experience of the
authors in their development, which provides both access to the source code, and
expertise in their set of requirements.

4. The requirements of each application were then abstracted into a set of ref-
erence APIs representing ideal features that a publish/subscribe infrastructure
must support in each domain. We implemented each one of these tree reference
APIs using the four selected infrastructures. We also implemented each API from
scratch, as a control implementation.

5. Finally, we performed a quantitative evaluation of the resulting implementations,
measuring their average responsiveness and the total development effort of each.
The development effort is calculated as the product of the number of lines of
code (LOC) and the McCabe Cyclomatic Complexity (or McCabeCC) of the
code required to adapt each infrastructure in the implemnetatoin of each API
[33]. The goal of the performance benchmark in our study is to determine the
usefulness of the infrastructure, in serving its purpose within the requirements of
each application domain.

8.4.5.2 Lessons Learned with Respect to the Tool

In our performance benchmarks, we compared responsiveness of an infrastructure
implemented with YANCEES with the same infrastructure implemented reusing
the other infrastructures. The results of one of the three benchmarks are shown in
Fig. 8.5 (left). The results show that YANCEES performance is comparable to that

170 A. Sarma et al.

Fig. 8.5 YANCEES performance benchmark (left) and comparative development effort (right)

obtained by reusing existing infrastructures or even to the cases where the APIs are
built from scratch.

This demonstrates YANCEES ability to support the requirements of differ-
ent application domains and its usefulness in supporting the development of
application-specific infrastructures, with no significant performance penalty.

We also compared the total development effort (measures at the product of LOC
and McCabeCC) to determine the usability of YANCEES when the other infras-
tructures are used to support the three application domains Fig. 8.5 (right). It is
important to note that infrastructures (e.g., Siena, CORBA-NS, etc.,) are reused as
black-boxes. They are extended “from the outside”, by building the required func-
tionality around their provided APIs. YANCEES, on the other hand, is configurable
and extensible “from the inside”, allowing the modification of the set of features its
supports. This fundamental difference is reflected in the graphs of (Fig. 8.5) where
both client and server side development efforts are shown, together with combined
effort (client + sever) in a separate bar.

Figure 8.5 (right) demonstrates that while the total cost of reuse of YANCEES in
all the three scenarios (client + server) is comparable with existing approaches, its
ability to separate client and server-side development has two important advantages.
First, it allows the separation between publish/subscribe infrastructures producers
and consumers, dividing the development effort (the two bars: YANCEES client
and YANCEES server in Fig. 8.5). Second, it reduces the application develop-
ment effort, since the infrastructure can be configured and extended to support
the exact application-specific set of features required by the application domain.
This is made evident by the lower YANCEES client effort (Fig. 8.5). Contrary to
our expectations, the total (server + client) side development effort when using
YANCEES was not significantly lower than the other approaches. This can be the
consequence of the additional effort devoted to configuration and extension of the
infrastructure.

8 Continuous Coordination Tools and their Evaluation 171

8.4.5.3 Lessons Learned with Respect to the Evaluation

When comparing different software infrastructures, developed with different origi-
nal goals, it is important to strive for a fair evaluation process. Different strategies
were adopted in the design of our benchmark to increase equitable comparison
between the different approaches. First, we chose to implement the benchmark
ourselves to eliminate the variance that may come by the use of different devel-
opers at different levels of expertise. Second, we adopted best of breed design
practices in all implementations [21] and modularized common features into
components that were reused throughout the different implementations. We also
adopted the same algorithms used by the original applications (EDEM, CASSIUS,
Impromptu) we emulated. Finally, we aligned the different implementations to
follow the same task structure. This facilitates our data collection and analysis.
These strategies collectively increase the likelihood that code style, algorithms
and overall software architecture were similar throughout our experiments. Finally,
the benchmark tests were conducted in the same set of machines (one client and
one server), connected via a 100 Mbps local Ethernet, thus providing a constant
environment.

While the overall comparison of different infrastructures reusability based on the
number of LOC and McCabeCC allows the comparison of the total development
effort of these infrastructures, they do not reveal important details about the indi-
vidual concerns and costs involved in each approach. For example, the costs of
adaptation, extension and configuration. In order to investigate these costs in more
details, we are currently conducting a finer-grained analysis of the code uses in our
benchmark.

8.5 Discussion

Our goal was to evaluate the usability and usefulness of different co-ordination tools
constituting our CC tool suite. Our tools were motivated by findings from a set
of ethnographic studies on co-ordination in software teams [14, 16] and a qualita-
tive screening of existing co-ordination tools. While these studies formed the basis
on which we determined the usefulness of the tool features, each tool’s usefulness
and usability was further evaluated using the DESMET evaluation framework. The
particular approach used for a particular tool was determined based on its function-
ality, the specific aspect that was being evaluated (usefulness or usability), and the
maturity level of the tool.

The majority of our tools strive to provide appropriate information of ongoing
project activities to the user, therefore, a primary goal of our evaluations was to
study the usefulness of the tools based on whether a tool achieved an appropriate
level of abstraction. Depending on the desired functionality of a co-ordination tool
and the target audience, different levels of data abstraction are required, which can
then be visualized via text, tables, charts, or other visualization metaphors. Most of
our CC tools have a visualization component. These components vary, from being

172 A. Sarma et al.

completely unobtrusive and subtle, such as information display as extensions to
the development editor, or more intensive displays requiring separate stand alone
visualizations that work best in auxiliary display units (second monitor or ambi-
ent devices) or as large scale visualization that acts as a command control center.
Thus, a key evaluation criterion was to assess the usefulness of a tool’s display
technique. In particular, we investigated the tradeoff between the amounts of infor-
mation that was displayed and the obtrusiveness of the display. Towards this goal,
we observed that qualitative effects analysis and usability inspections served as a
good first level of analysis to obtain user feedback. Further, most software projects
are large, which requires that our tools can scale well to large data sets. Towards
assessing the scalability of our tools, we used quantitative case studies, namely,
using our tools to visualize large scale open source projects and then interviewing
developers or managers from those projects to obtain their feedback.

The next important criterion for our evaluation was to test the usability of our
tools. We primarily evaluated the usability of a tool by investigating the trade-offs
between the efforts users are willing to expend in operating and/or learning a tool,
versus the estimated benefits gained. Moreover, since many visualization tools rely
on novel metaphors to help users interpret and navigate the vast information space
generated by software, it is important to evaluate the time and effort it takes users
to understand visualizations. Therefore, we also evaluated the effort expended by
individuals to understand the information provided by a tool via user experiments
(both qualitative and quantitative).

We found that two challenges are typically encountered when evaluating co-
ordination tools: (1) differences in outcome because of differences in the technical
aptitude of participants and (2) differences in how a group reacts to tasks and con-
flicts. Through our experiments, we sought to control for both these differences. We
controlled for differences in technical aptitude by stratifying our participants based
on their background and then randomly selecting participants from each stratum.
Further, we benchmarked our results first by using non-programming tasks and then
confirming these results in a programming domain. We controlled for differences in
group interactions by using confederate based design, which ensured consistency in
the kind and timing of conflicts, as well as group interactions via IM.

While we took special care to control external factors to be able to test specifi-
cally the usability of our tools, our study suffers from the common external threats
to research validity that arise in user experiments. For example, selecting students
as participants in several of our evaluation threatens the ability to generalize from
our results. We sought to recruit different participants each time with varying levels
of expertise (i.e., graduate and post-graduate students) to limit this threat. We used
confederates to achieve consistency in our experiments. As such, we realize that
results can differ if events are introduced closer to the completion of the task or at
random intervals, as may happen in practice. Thus, the controlled introduction of an
event at a specific time can also threaten the generality of our results.

We note that the evaluation of a co-ordination infrastructure tool such as
YANCEES, require different evaluation methods than other front end co-ordination
tools. Therefore, its evaluations follow a slightly different format, although they

8 Continuous Coordination Tools and their Evaluation 173

still fall within the DESMET evaluation framework. We tested the usefulness of
YANCEES mainly through qualitative screening; and the usability and robustness
of YANCEES by implementing three feature rich applications using YANCEES and
three other competing event notification services. A quantitative evaluation of the
resulting implementations was performed that assessed the average responsiveness
and total development effort required per implementation.

Finally, we encountered internal threats in the form of bias that may have been
introduced during our qualitative screening evaluations. The potential for bias also
exists in the feedback participants provided because tool developers typically con-
ducted the experiments and were direct recipients of the feedback. We strove to
minimize the impact of these threats by conducting a combination of different
evaluation approaches for each tool.

8.6 Conclusions

In this paper, we described a set of co-ordination tools as known the CC tool
suite. The focus of this chapter was to describe in detail the different evaluation
methodologies that we followed for assessing the usefulness and usability of our
tools. In conclusion, we maintain there is no one evaluation method for a tool; rather,
tools should be iteratively evaluated using multiple evaluation methods to obtain
well rounded evaluation results. We found that a different evaluation methodology
is often needed to assess usefulness or usability aspects of a tool. Finally, the expe-
rience acquired while researching continuous co-ordination has led us to conclude
that we need to consider the co-ordination information in terms of what, how, when,
and who shares it, which means that the evaluation of these tools would benefit from
evaluating whether these aspects of the tools address developers’ needs.

Future plans for each tool were specified in their respective sections. However,
we have specific tasks ahead of us that hold true for most of the CC tools at both
the individual and organizational level. For example, at the individual level we need
to evaluate the impact that the order of events has on the outcome of our evalu-
ations and the possible co-ordination patterns that can emerge. CC tools typically
share potentially sensitive information, thus it would be beneficial to investigate
the issues relating to individual privacy and data confidentiality. Both are impor-
tant issues that need to be carefully assessed to design usable co-ordination tools.
Co-ordination tools can fail if individuals perceive that the tool is used as a manage-
rial performance metric or used by their competitors [23]. We also need to evaluate
the use of CC tools within an organizational context. A tool that requires changes
to the typical workflow in an organization will generally encounter more resis-
tance because potential users do not readily change their work processes to adopt a
new tool.

Acknowledgements This research was supported by the U.S. National Science Foundation under
grants 0534775, 0326105, 0093489, and 0205724, by the Intel Corporation, by two IBM Eclipse
Technology Exchange grants, and an IBM Technology Fellowship.

174 A. Sarma et al.

Appendix

Table 8.1 Summary of evaluation approaches for each CC tool

Tool Purpose of tool
Purpose of
evaluation DESMET Evaluation approach

Ariadne Allows
developers to
explore and
analyze
socio-technical
dependency
information.

Identify usability
issues with
Ariadne’s
visual
interface.

Qualitative
screening;
Qualitative-
effects
analysis;
Quantitative
case-study.

Usability inspection
methods: Heuristic
evaluation Cognitive
walkthrough Cognitive
dimensions of
notations Tufte’s
principles of
information
presentation.

WAV Provides a 3D
view of all
parallel
workspace
activities and
supports
playback over
time.

Demonstrate
accuracy of
data collected
and to test
scalability of
the
visualization.

Qualitative
screening;
Qualitative-
effects
analysis;
Quantitative
case-study.

Post-mortem analysis
(e.g. case study) of
existing open-source
projects and validation
of results with project
members.

Lighthouse Creates the
emerging
design, an
always
up-to-date
abstraction of
the software
code.

Observe the
usefulness of
lighthouse in
helping users
understand
ongoing project
activities,
detect
emerging
conflicts, and
communicate
with team
members.

Qualitative
screening;
Qualitative-
effects
analysis;
Qualitative
experiments.

Informal user experiment
involving Observation
by experimenters
Think aloud techniques
Exit survey.

Palantír Promote
workspace
awareness by
transmitting
information of
ongoing project
activities to
detect
emerging direct
and indirect
conflicts at real
time.

Statistically
determine the
usefulness of
Palantír in
detecting
emerging
conflicts and
promoting
coordination to
resolve
conflicts.

Qualitative
screening;
Qualitative-
effects
analysis;
Qualitative
experiments
(user
experiment;
interoperabil-
ity);
Quantitative
experiment;
Benchmarking
of experiment
results.

Formal sser experiment
(Benchmark: use text
data to control for
individual difference
arising due to
difference in technical
skills; Confederate
design: control the
type, number, and
timing of conflicts to
overcome variances in
group interaction)
Observation by
experimenters Think
aloud techniques Exit
survey.

8 Continuous Coordination Tools and their Evaluation 175

Table 8.1 (continued)

Tool Purpose of tool
Purpose of
evaluation DESMET Evaluation approach

YANCEES Improve the
support for
heterogeneous
set of
requirements of
continuous
coordination
tools.

Assess the
reusability and
performance of
YANCEES,
comparing the
results with
existing
approaches.

Qualitative
screening to
determine
existing
approaches.
Quantitative
experiment:
reusability
Benchmarking:
performance.

Implement three APIs
based on selected
infrastructures,
measuring the
development effort.
Benchmark: evaluate
the performance of the
resulting
implementations.

References

1. Amrit C (2005) Co-ordination in software development: the problem of task allocation.
Proceedings of the 2005 Workshop on Human and Social Factors of Software Engineering
(ACM), St. Louis, Missouri, pp. 1–7.

2. Andrews K (2006) Evaluating Information Visualizations. AVI Workshop on Beyond Time
and Errors: Novel Evaluation Methods for Information Visualization (ACM), Venice, Italy,
pp. 1–5.

3. Ardito C, Buono P, Costabile MF, Lanzilotti R (2006) Systematic inspection of information
visualization systems. AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods
for Information Visualization (ACM), Venice, Italy.

4. Barkhuus L, Rode JA (2007) From Mice to Men – 24 Years of Evaluation in CHI. CHI 2007
http://www.viktoria.se/altchi/.

5. Card SK, Mackinlay JD, Shneiderman B (1999) Readings in Information Visualization: Using
Vision to Think. San Francisco, CA: Morgan Kaufmann.

6. Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems 19(3): 332–383.

7. Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM (2006) Identification of co-ordination
requirements: Implications for the design of collaboration and awareness tools. Computer
Supported Co-operative Work, Banff, Alberta, Canada, pp. 353–362.

8. Crowston K (1997) A co-ordination theory approach to organizational process design.
Organization Science 8(2): 157–175.

9. da Silva I, Chen P, Van der Westhuizen C, Ripley R, Hoek Avd (2006) Lighthouse: Co-
ordination through emerging design. OOPSLA Workshop on Eclipse Technology eXchange,
Portland, Oregon, pp. 11–15.

10. Damianos L, Hirschman L, Kozierok R, Kurtz J, Greenberg A, Walls K, Laskowski S, Scholtz
J (1999) Evaluation for collaborative systems. ACM Computing Surveys 31(2es), Article
No. 15.

11. de Souza CRB (2005) On the relationship between software dependencies and co-ordination:
Field studies and tool support. Ph.D. dissertation, Donald Bren School of Information and
Computer Sciences, UC, Irvine, CA.

12. de Souza CRB, Basaveswara SD, Redmiles D (2002) Lessons learned using notification
servers to support application awareness. Meeting of the Human Computer Interaction
Consortium, Frasier, CO.

176 A. Sarma et al.

13. de Souza CRB, Froehlich J, Dourish P (2005) Seeking the source: Software source code as
a social and technical artifact. ACM SIGGROUP Conference On Supporting Group Work,
Sanibel Island, FL, USA, 06–09 November 2005, pp. 197–206.

14. de Souza CRB, Quirk S, Trainer E, Redmiles DF (2007) Supporting collaborative
software development through the visualization of socio-technical dependencies. 2007
International ACM Conference on Supporting Group Work (ACM), Sanibel Island, FL, USA,
pp. 147–156.

15. de Souza CRB, Redmiles D, Cheng LT, Millen D, Patterson J (2004) How a good soft-
ware practice thwarts collaboration – The multiple roles of APIs in software development.
Foundations of Software Engineering, ACM Press, Newport Beach, CA, 31 October–5
November 2004, pp. 221–230.

16. de Souza CRB, Redmiles D, Dourish P (2003) “Breaking the code”, moving between pri-
vate and public work in collaborative software development. ACM SIGGROUP Conference
on Supporting Group Work (ACM), Sanibel Island, FL, USA, November 9–12 2003,
pp. 105–114.

17. DePaula R, Ding X, Dourish P, Nies K, Pillet B, Redmiles D, Ren J, Rode J, Silva Filho
RS (2005) In the eye of the beholder: A visualization-based approach to information system
security. International Journal of Human-Computer Studies – Special Issue on HCI Research
in Privacy and Security 63(1–2): 5–24.

18. Ellis JB, Wahid S, Danis C, Kellogg WA (2007) Task and social visualization in soft-
ware development: Evaluation of a prototype. SIGCHI Conference on Human Factors in
Computing Systems, San Jose, CA, 28 April–03 May 2007, pp. 577–586.

19. Ericsson KA, Simon HA (1993) Protocol Analysis – Rev’d Edition: Verbal Reports as Data.
Cambridge, MA: MIT Press, p. 496.

20. Freeman E, Hupfer S, Arnold K (1999) Java Spaces Principles, Patterns, and Practice. The
Jini Technology Series. Portland, OR: Book News, Inc.

21. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Professional Computing Series. New York:
Addison-Wesley Publishing Company.

22. Green TRG (1989) Cognitive dimensions of notations. Fifth Conference of the British
Computer Society, Human-Computer Interaction Specialist Group on People and Computers,
Cambridge University Press, University of Nottingham, pp. 433–460.

23. Grudin J (1988) Why CSCW applications fail: Problems in the design and evaluation of orga-
nization of organizational interfaces. Computer Supported Co-operative Work, Portland, OR,
pp. 85–93.

24. Grudin J (1994) Groupware and social dynamics: Eight challenges for developers.
Communications of ACM 37(1): 92–105.

25. Hedberg H, Lappalainen J (2005) A preliminary evaluation of software inspection tools,
with the DESMET method. International Conference on Quality Software (IEEE Computer
Society) 19–20 September 2005, pp. 45–54.

26. Hilbert D, Redmiles D (1998) An approach to large-scale collection of application usage data
over the internet. 20th International Conference on Software Engineering (ICSE’98), IEEE
Computer Society Press, Kyoto, Japan. 19–25 April 1998, pp. 136–145.

27. Huang EM, Mynatt ED, Russell DM, Sue AE (2006) Secrets to success and fatal flaws: The
design of large-display groupware. IEEE Computer Graphics and Applications 26(1): 37–45.

28. Kantor M, Redmiles D (2001) Creating an infrastructure for ubiquitous awareness. Eighth
IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001), Tokyo, Japan,
pp. 431–438.

29. Kitchenham BA (1996) Evaluating software engineering methods and tool – Part 1: The
evaluation context and evaluation methods. SIGSOFT Software Engineering Notes 21(1):
11–14.

30. Lethbridge TC, Sim SE, Singer J (2005) Studying software engineers: Data collection
techniques for software field studies. Empirical Software Engineering 10(3): 311–341.

8 Continuous Coordination Tools and their Evaluation 177

31. Lungu M, Lanza M, Girba T, Heeck R (2007) Reverse engineering super-repositories.
Proceedings of the 14th Working Conference on Reverse Engineering (IEEE Computer
Society), pp. 120–129.

32. Malone TW, Crowston K (1994) The interdisciplinary study of co-ordination. ACM
Computing Surveys 26(1): 87–119.

33. McCabe TJ (1976) A complexity measure. IEEE Transactions on Software Engineering,
December 1976, pp. 308–320.

34. Mealy E, Strooper P (2006) Evaluating software refactoring tool support. Proceedings of the
Australian Software Engineering Conference (IEEE Computer Society), pp. 331–340.

35. Michelis GD, Loregian M, Martini P (2006) Directional interaction with large displays using
mobile phones. Proceedings of the 4th Annual IEEE International Conference on Pervasive
Computing and Communications Workshops (IEEE Computer Society), 13–17 March
2006, p. 5.

36. Morera D (2002) COTS evaluation using DESMET methodology & analytic hierarchy pro-
cess (AHP). 4th International Conference on Product Focused Software Process Improvement
(Springer-Verlag), pp. 485–493.

37. Nielsen JK (1994) Heuristic Evaluation. New York: Wiley.
38. OMG (2004) CORBAcos notification service version 1.1 formal/04-10-13, (Object

Management Group), p. 229.
39. Patterson JF, Day M, Kucan J (1996) Notification servers for synchronous groupware.

ACM Conference on Computer Supported Co-Operative Work (CSCW’96), Boston, MA,
pp. 122–129.

40. Plaisant C (2004) The challenge of information visualization evaluation. Working Conference
on Advanced Visual Interfaces (ACM), Gallipoli, Italy, pp. 109–116.

41. Ramage M (1999) The learning way: Evaluating co-operative systems, PhD Dissertation,
Department of Computer Science, Lancaster, UK, p. 142.

42. Redmiles D, Hoek Avd, Al-Ani B, Hildenbrand T, Quirk S, Sarma A, Silva Filho R, de
Souza CRB, Trainer E (2007) Continuous co-ordination: A new paradigm to support globally
distributed software development projects. Wirtschaftsinformatik 49: 28–38.

43. Ripley R, Sarma A, Hoek Avd (2007) A visualization for software project awareness and evo-
lution. Workshop on Visualizing Software for Understanding and Analysis, Alberta, Canada,
pp. 137–144.

44. Russell J, Roberts C (2001) Angles on Psychological Research. Cheltenham: Nelson Thornes
Ltd., p. 256.

45. Sarma A, Bortis G, Hoek Avd (2007) Towards supporting awareness of indirect conflicts
across software configuration management workspaces. Conference on Automated Software
Engineering, Atlanta, USA, pp. 94–103.

46. Sarma A, Noroozi Z, Hoek Avd (2003) Palantír: Raising awareness among configuration
management workspaces. Twenty-fifth International Conference on Software Engineering,
Portland, OR, USA, pp. 444–454.

47. Silva Filho RS, Redmiles D (2005) Striving for versatility in publish/subscribe infrastructures.
5th International Workshop on Software Engineering and Middleware (SEM’05), ACM Press,
Lisbon, Portugal, 5–6 September 2005, pp. 17–24.

48. Silva Filho RS, Redmiles DF (2005) A survey on versatility for publish/subscribe infras-
tructures. Technical Report UCI-ISR-05-8, (Institute for Software Research), Irvine, CA, pp.
1–77.

49. Sjoberg DIK, Dyba T, Jorgensen M (2007) The future of empirical methods in software
engineering research. Future of Software Engineering, 2007, pp. 358–378.

50. Storey MA, Cheng LT, Bull I, Rigby P (2006) Shared waypoints and social tagging to
support collaboration in software development. Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Co-operative Work (ACM), Banff, Alberta, Canada,
pp. 195–198.

178 A. Sarma et al.

51. Trainer E, Quirk S, de Souza CRB, Redmiles DF (2008) Analyzing a socio-technical visual-
ization tool using usability inspection methods. IEEE Symposium on Visual Languages and
Human Centric Computing, Washington, DC, pp. 78–81.

52. Tufte E (1990) Envisioning Information. Cheshire, CT: Graphics Press, p. 126.
53. Tufte E (2006) Beautiful Evidence. Cheshire, CT: Graphics Press, p. 213.
54. Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applications.

Cambridge: Cambridge University Press.
55. Wharton C, Rieman J, Lewis C, Polson P (1994) The cognitive walkthrough method: A practi-

tioner’s guide. In Nielsen J, Mack RL (Eds.) Usability Inspection Methods. New York: Wiley,
pp. 105–140.

56. Xiaojun B, Yuanchun S, Xiaojie C (2006) uPen: A smart pen-liked device for facilitating
interaction on large displays. First IEEE International Workshop on Horizontal Interactive
Human-Computer Systems, Adelaide, South Australia, 5–7 January 2006.

57. Zuk T, Schlesier L, Neumann P, Hancock MS, Carpendale S (2006) Heuristics for informa-
tion visualization evaluation. AVI Workshop on Beyond Time and Errors: Novel Evaluation
Methods for Information Visualization (ACM), Venice, Italy.

Index 409

Process-centered approach, 223
Process modelling, 4
Process support, 183
Product line requirements engineering, 369
Project management, 11
Projects, 269
Psychology-centered, 223

Q
Quality assessment, 204
Quality criteria, 201

R
Radical co-location, 137
Release grouping, 79
Release trains, 79
Requirement centered collaboration, 6–7
Requirements, 2
Requirements-centric team, 59
Requirements-driven, 57–74
Requirements engineering, 343
Requirements specification, 109
Requirements-traceability, 67
Risk management, 48

S
Searching, 140
Self-managed, 315
Self-organizing, 309
Semantic development environments, 118
Semantic web, 109
Semantic wikis, 109
Shared meaning, 2
Shared memory, 180
Shared space, 180
Shared understanding, 1
Shared version, 144
Sharing community, 214
Side-by-side programming, 138
Social activity, 94
Social considerations, 13
Social network analysis, 285
Social networking, 11
Sociogram, 157
Socio-technical congruence, 66
Socio-technical network, 267–269
Socio-technical relationships, 157

Software, 237
Software analyses catalog, 247
Software analysis, 241
Software analysis broker, 241
Software analysis services, 247
Software architecture, 7
Software development, 88
Software informalisms, 312
Software process, 4
Software service platform, 246
STNA-cockpit, 265
Story cards, 94
Suite, 344
Synchronous design, 141
System of systems model, 285

T
Tagging, 135
Team composition, 14
Team organization, 13
Techniques, 131
Testing, 5
Testing and inspections, 8
Tool-integration, 115
Traceability, 8
Trust and social, 316

U
UML, 2

V
Variability, 377, 397
Variation point, 375
Vertical collaboration, 348
Virtual co-location, 139
Virtual software teams, 13
Virtual spaces, 200
Virtual team, 36
Visualization, 135

W
The wall, 94
Workspace awareness, 165
Workspaces, 10

X
XP, 93

	Collaborative Software Engineering
	Foreword
	Preface
	 Introduction
	 Book Overview
	 What Is Collaborative Software Engineering?
	 Part I -- Characterizing Collaborative Software Engineering
	 Part II -- Tools and Techniques
	 Part III -- Organizational Experiences
	 Part IV -- Related Issues

	 Current Challenges and Future Directions

	Acknowledgements
	Contributors
	1 Collaborative Software Engineering: Concepts and Techniques
	1.1 Introduction
	1.2 Defining Collaborative Software Engineering
	1.3 Historical Trends in Collaborative Software Engineering
	1.3.1 Model-Based Collaboration Tools
	1.3.1.1 Requirement Centered Collaboration
	1.3.1.2 Architecture Centered Collaboration
	1.3.1.3 Design Centered Collaboration
	1.3.1.4 Collaboration Around Testing and Inspections
	1.3.1.5 Traceability and Consistency

	1.3.2 Process Centered Collaboration
	1.3.3 Collaboration Awareness
	1.3.4 Collaboration Infrastructure
	1.3.5 Project Management

	1.4 Global and Multi-Site Collaboration
	1.5 Social Considerations
	1.5.1 Software Teams
	1.5.2 Team Organization
	1.5.3 Team Composition
	1.5.4 Knowledge Sharing

	1.6 Managerial Considerations
	1.6.1 Software Project Management
	1.6.2 SPM for Collaborative Software Engineering
	1.6.2.1 Supporting Communications in the Project
	1.6.2.2 To Reconcile Conflicting Success Criteria in the Project
	1.6.2.3 Improving the Process in the Project
	1.6.2.4 Rapidly Construct the Knowledge in the Project

	1.7 Future Trends
	1.7.1 IDEs Shift to the Web
	1.7.2 Social Networking
	1.7.3 Broader Participation in Design
	1.7.4 Capturing Rationale Argumentation
	1.7.5 Using 3D Virtual Worlds

	1.8 Fundamental Tensions
	1.9 Conclusions
	References

	Part I Characterizing Characterizing Collaborative Software Engineering
	References
	2 Global Software Engineering: A Software Process Approach
	2.1 Introduction
	2.2 Software Process
	2.3 Research Project
	2.3.1 Case Studies into GSE
	2.3.2 Research Methodology
	2.3.3 Development of the Global Teaming Software Process Area

	2.4 Global Software Engineering
	2.4.1 Virtual Teams
	2.4.2 Project Management Challenges
	2.4.3 Global Teaming -- A GSE Process Area

	2.5 Global Teaming Process Area
	2.5.1 Global Teaming Specific Goal 1: Define Global Project Management
	2.5.1.1 SP 1.1 Global Task Management (1): Determine Team and Organisational Structure Between Locations
	2.5.1.2 SP 1.1 Global Task Management (2): Determine the Approach to task Allocation Between Locations
	2.5.1.3 SP 1.2 Knowledge and Skills (1): Identify Business Competencies Required by Global Team Members in Each Location
	2.5.1.4 SP 1.2 Knowledge and Skills (2): Identify the Cultural Requirements of Each Local Sub-team
	2.5.1.5 SP 1.2 Knowledge and Skills (3): Identify Communication Skills for GSE
	2.5.1.6 SP 1.2 Knowledge and Skills (4): Establish Relevant Criteria for Training Teams
	2.5.1.7 SP 1.3 Global Project Management (1): Identify GSE Project Management Tasks
	2.5.1.8 SP 1.3 Global Project Management (2): Assign Tasks to Appropriate Team Members
	2.5.1.9 SP 1.3 Global Project Management (3): Ensure Awareness of Cultural Profiles by Project Managers
	2.5.1.10 SP 1.3 Global Project Management (4): Establish Cooperation and Coordination Procedures Between Locations
	2.5.1.11 SP 1.3 Global Project Management (5): Establish Reporting Procedures Between Locations
	2.5.1.12 SP 1.3 Global Project Management (6): Establish a Risk Management Strategy

	2.5.2 Global Teaming Specific Goal 2: Define Management Between Locations
	2.5.2.1 SP 2.1 Operating Procedures (1): Define How Conflicts and Differences of Opinion Between Locations are Addressed and Resolved
	2.5.2.2 SP 2.1 Operating Procedures (2): Implement a Communication Strategy for the Team
	2.5.2.3 SP 2.1 Operating Procedures (3): Establish Communication Interface Points Between the Team Members
	2.5.2.4 SP 2.1 Operating Procedures (4): Implement Strategy for Conducting Meetings Between Locations
	2.5.2.5 SP 2.2 Collaboration Between Locations (1): Identify Common Goals, Objectives and Rewards for the Global Team
	2.5.2.6 SP 2.2 Collaboration Between Locations (2): Collaboratively Establish and Maintain the Work Product Ownership Boundaries Among Interfacing Locations Within the Project or Organisation
	2.5.2.7 SP 2.2 Collaboration Between Locations (3): Collaboratively Establish and Maintain Interfaces and Processes Among Interfacing Locations for the Exchange of Inputs, Outputs, or Work Products
	2.5.2.8 SP 2.2 Collaboration Between Locations (4): Collaboratively Develop, Communicate and Distribute Among Interfacing Teams the Commitment Lists and Work Plans that are Related to the Work Product or Team Interfaces

	2.6 Discussion
	2.7 Conclusion
	References

	3 Requirements-Driven Collaboration: Leveraging the Invisible Relationships between Requirements and People
	3.1 A Requirements Perspective on Collaboration
	3.2 An Approach to Study Requirements-driven Collaboration
	3.2.1 Defining Requirements-Centric Social Networks
	3.2.2 Using Requirements-Centric Social Networks to Study Requirements-Driven Collaboration
	3.2.2.1 Analysis to Characterize the Networks
	3.2.2.2 Analysis of Network Actors
	3.2.2.3 Analysis of Network Structure
	3.2.2.4 Analysis of Collaboration Behavior Within the Same Network
	3.2.2.5 Analysis of Collaboration Behavior Across Different Types of Networks

	3.3 A Study of Requirements-Driven Collaboration in an Industrial Project
	3.3.1 Construction of the Requirements-Centric Social Networks
	3.3.2 Communication in Requirements-Driven Coordination

	3.4 Implications
	3.4.1 Research Implications: Future Applications of the Approach
	3.4.2 Practice Implications: Designing of Collaboration Tools to Support Coordination of Cross-Functional Teams
	References

	4 Softwares Product Lines, Global Development and Ecosystems: Collaboration in Software Engineering
	4.1 Introduction
	4.2 Architecture, Process, Organization
	4.3 Five Collaborative Approaches
	4.3.1 Integration-Centric Development
	4.3.2 Release Groupings
	4.3.3 Release Trains
	4.3.4 Independent Deployment
	4.3.5 Open Ecosystem

	4.4 Conclusion
	References

	5 Collaboration, Communication and Co-ordination in Agile Software Development Practice
	5.1 Introduction
	5.1.1 XP as a Social Activity

	5.2 Fieldwork
	5.3 The Social in the Technical: Collaboration and Communication
	5.3.1 Pairing
	5.3.2 Customer Collaboration

	5.4 The Social in the Technical: Co-ordination
	5.4.1 Story Cards
	5.4.2 The Wall

	5.5 Discussion
	5.6 Conclusion
	References

	6 Applications of Ontologies in Collaborative Software Development
	6.1 Introduction
	6.2 Foundations
	6.2.1 Ontologies vs. Models ontologies vs. models
	6.2.2 Ontology Representation Languages
	6.2.3 Semantic Web

	6.3 Uses of Ontologies in CSD
	6.3.1 Coordination
	6.3.2 Knowledge Sharing
	6.3.3 Development

	6.4 Ontology-Based Tools in CSD
	6.4.1 Ontologies
	6.4.1.1 Collaboration Ontologies
	6.4.1.2 Software Development Ontologies

	6.4.2 Semantic Wikis
	6.4.3 Semantic Development Environments
	6.4.4 Software Engineering Semantic Web

	6.5 Conclusion
	References

	Part II Tools and Techniques
	References
	7 Towards and Beyond Being There in Collaborative Software Development
	7.1 Introduction
	7.2 Productivity vs. Co-Location Degrees
	7.3 Towards Being There
	7.3.1 Virtual Co-location virtual co-location and Radical Co-location
	7.3.2 Distributed Pair Programming
	7.3.3 Distributed Side-by-Side Programming
	7.3.4 Distributed Synchronous Design and Inspection
	7.3.5 Other ''Towards Being There'' Mechanisms

	7.4 Beyond Being There
	7.4.1 File System Events
	7.4.2 Persistent Awareness vs. Notifications
	7.4.3 Programming Environment Events
	7.4.4 Shared Version with Multiple Views
	7.4.5 Searching and Mining
	7.4.6 Visualization
	7.4.7 Context-Based Automatic Filtering
	7.4.8 Tagging

	7.5 Summary
	References

	8 Continuous Coordination Tools and their Evaluation
	8.1 Introduction
	8.2 Research Context
	8.3 The CC Evaluation Framework
	8.4 Continuous Coordination (CC) Tools: Their Origin and Evaluation
	8.4.1 Ariadne
	8.4.1.1 Objective of Evaluation Process and Steps Taken
	8.4.1.2 Lessons Learned with Respect to the Tool
	8.4.1.3 Lessons Learned with Respect to Evaluation

	8.4.2 Workspace Activity Viewer
	8.4.2.1 Objective of Evaluation Process and Steps Taken
	8.4.2.2 Lessons Learned with Respect to the Tool
	8.4.2.3 Lessons Learned with Respect to Evaluation Methods

	8.4.3 Lighthouse
	8.4.3.1 Objective of Evaluation Process and Steps Taken
	8.4.3.2 Lessons Learned with Respect to the Tool
	8.4.3.3 Lessons Learned with Respect to the Evaluation of Tool

	8.4.4 Palantír
	8.4.4.1 Objective of Evaluation Process and Steps Taken
	8.4.4.2 Lessons Learned with Respect to the Tool
	8.4.4.3 Lessons Learned with Respect to the Evaluation of Tool

	8.4.5 YANCEES
	8.4.5.1 Objective of Evaluation Process and Steps Taken
	8.4.5.2 Lessons Learned with Respect to the Tool
	8.4.5.3 Lessons Learned with Respect to the Evaluation

	8.5 Discussion
	8.6 Conclusions
	Appendix
	References

	9 The Configuration Management Role in Collaborative Software Engineering
	9.1 Introduction
	9.2 Configuration Management
	9.3 Configuration Management as an Enabling Technology for Collaboration
	9.3.1 Communication
	9.3.2 Awareness
	9.3.3 Coordination
	9.3.4 Shared Memory
	9.3.5 Shared Space

	9.4 The Future Role of Configuration Management
	9.4.1 On-Going Researches
	9.4.2 Future Trends

	9.5 Conclusion
	References

	10 The GRIFFIN Collaborative Virtual Community for Architectural Knowledge Management
	10.1 Introduction
	10.1.1 From a Codification/Personalization to a Hybrid Knowledge Management Strategy
	10.1.2 From Closed to Open Virtual AK Communities

	10.2 Requirements for Collaboration in a Distributed Environment of Software Architects
	10.3 A Collaborative Virtual Community for AK Management
	10.3.1 Support for Collaborative AK Management
	10.3.1.1 Virtual Spaces for AK Sharing
	10.3.1.2 Virtual Spaces for AK Discovery
	10.3.1.3 Virtual Spaces for AK Traceability
	10.3.1.4 Virtual Spaces for AK Compliance

	10.3.2 Towards a Virtual AK Sharing Community

	10.4 Future Trends and Research Challenges
	10.5 Conclusions
	References

	11 Supporting Expertise Communication in Developer-Centered Collaborative Software Development Environments
	11.1 Introduction
	11.2 Historical Context: Three Schools of Research Toward Developer-Centered CSDEs
	11.3 Coordination Communication and Expertise Communication in Software Development
	11.4 Nine Design Guidelines for Supporting Expertise Communication
	11.5 Concluding Remarks
	References

	Part III What We Know (and Do not Know) About Collaborative Collaborative Software Software Engineering Engineering
	References
	12 Distributed and Collaborative Software Analysis
	12.1 Introduction
	12.1.1 Tools and IDEs
	12.1.2 A Scenario for Collaborative Software Analysis Across Organizational and Tool Boundaries

	12.2 State-of-the-Art in Software Analyses
	12.3 The Software Service Platform
	12.3.1 The Software Analysis Broker Infrastructure
	12.3.1.1 Software Analysis Services
	12.3.1.2 Software Analyses Catalog software analyses catalog and Taxonomy
	12.3.1.3 Ontologies: The Need for Semantic Descriptions in Software Analysis
	12.3.1.4 Software Analysis Broker Web Service

	12.4 Software Analysis Services at Work
	12.4.1 CVS History Extractor Service
	12.4.2 Bugzilla Extractor Service
	12.4.3 Famix Model Extractor Service
	12.4.4 An Interoperability Scenario

	12.5 Conclusions
	References

	13 Dynamic Analysis of Communication and Collaboration in OSS Projects
	13.1 Introduction
	13.2 State-of-the-Art in Socio-technical Network Analysis
	13.3 Modeling Communication and Collaboration in OSS Projects
	13.3.1 Communication in OSS Projects
	13.3.1.1 Deriving Communication Paths from Mail Traffic
	13.3.1.2 Deriving Communication Paths from Bug Reports

	13.3.2 Collaboration in OSS Projects
	13.3.3 Integrating Communication and Collaboration Data

	13.4 STNA-Cockpit
	13.4.1 Actors
	13.4.2 Work Packages
	13.4.3 Communication and Collaboration

	13.5 Communication and Collaboration in the Eclipse Project
	13.5.1 The Eclipse Platform Core Project
	13.5.2 Ownership and Alien Commits
	13.5.3 Communicators
	13.5.4 Project Dynamics
	13.5.5 Summary

	13.6 Conclusions and Future Work
	References

	14 A Comparison of Commonly Used Processes for Multi-Site Software Development
	14.1 Motivation
	14.2 Comparison of Different Business Processes for Global Software Development
	14.3 Example Processes
	14.3.1 Extended Workbench Model
	14.3.2 System of Systems Model

	14.4 Example Project Global Studio Project
	14.5 Lessons Learned
	14.6 Conclusions
	14.7 Future Extensions to the System of Systems Global Software Development Process
	References

	Part IV Emerging Issues in Collaborative Software Engineering
	References
	15 Collaboration Practices and Affordances in Free/Open Source Software Development
	15.1 Introduction
	15.1.1 What Is Free/Open Source Software Development?
	15.1.2 What Are Affordances Supporting Collaborative Software Development?
	15.1.3 Results from Recent Studies of FOSSD

	15.2 Individual Participation in FOSSD Projects
	15.3 Resources and Capabilities Supporting FOSSD
	15.3.1 Personal Software Development Tools and Networking Support
	15.3.2 Beliefs Supporting FOSS Development
	15.3.3 FOSSD Informalisms
	15.3.4 Skilled, Self-organizing, and Self-managed Software Developers
	15.3.5 Discretionary Time and Effort of Developers
	15.3.6 Trust and Social Accountability Mechanisms

	15.4 Co-operation, Co-ordination, and Control in FOSS Projects
	15.5 Alliance Formation, Inter-project Social Networking and Community Development
	15.6 FOSS as a Multi-project Software Ecosystem
	15.7 Discussion
	15.8 Conclusions
	References

	16 OUTSHORE Maturity Model: Assistance for Software Offshore Outsourcing Decisions
	16.1 Introduction
	16.2 Related Works
	16.3 The OUTSHORE Maturity Model (OMM)
	16.3.1 The Calculation of OUTSHORE Maturity calculation of outshore maturity
	16.3.2 The OMM Phase Model
	16.3.3 The Levels of the OUTSHORE Maturity Model levels of the outshore maturity model

	16.4 Summary and Outlook

	References
	17 Collaborative Software Architecting Through Knowledge Sharing
	17.1 Introduction
	17.2 Theoretical Background
	17.2.1 Collaboration in Software Architecting
	17.2.2 Knowledge Management for Collaborative Architecting

	17.3 A Process for Collaborative Software Architecting
	17.4 The Knowledge Architect Tool Suite
	17.4.1 Knowledge Repository
	17.4.2 Document Knowledge Client
	17.4.3 Excel Plug-In
	17.4.4 Python Plug-In
	17.4.5 Knowledge Explorer
	17.4.6 Knowledge Translator

	17.5 Collaboration Within the Process with KA
	17.5.1 Requirements Engineering
	17.5.1.1 Horizontal Collaboration
	17.5.1.2 Vertical Collaboration

	17.5.2 Scope Problem Space
	17.5.2.1 Horizontal Collaboration

	17.5.3 Propose Solutions
	17.5.3.1 Horizontal Collaboration
	17.5.3.2 Vertical Collaboration

	17.5.4 Evaluate Solutions and Choose One
	17.5.4.1 Horizontal Collaboration
	17.5.4.2 Vertical Collaboration

	17.5.5 Evaluate Architecture and Modify the Architecture Description
	17.5.5.1 Horizontal Collaboration
	17.5.5.2 Vertical Collaboration

	17.5.6 Feedback Loop
	17.5.7 Architectural Knowledge Translation

	17.6 Related Work
	17.7 Conclusions and Future Work
	References

	18 Collaborative Product Line Requirements Engineering Using Rationale
	18.1 Introduction
	18.2 The Communication Problems
	18.3 Background
	18.4 Related Work
	18.5 Issue-Based Variability Modeling
	18.5.1 Collaboration for Product Instantiation
	18.5.2 Collaboration for Variability Identification collaboration for and Product Line Evolution

	18.6 Empirical Evaluation
	18.7 Conclusion
	References

	19 Collaborative Software Engineering: Challenges and Prospects
	19.1 Introduction
	19.1.1 What We Know About Collaborative Software Engineering
	19.1.2 Objectives of This Chapter

	19.2 Summary of the Book
	19.3 Todays Challenges
	19.4 Prospects
	References

	Editor Biographies
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

