
1 INTRODUCTION

A Survey of Collaborative Tools

in Software Development

Anita Sarma

Institute for Software Research

Donald Bren School of Information and Computer Sciences

University of California, Irvine

asarma@ics.uci.edu

ISR Technical Report # UCI-ISR-05-3

March 22, 2005

1 Introduction

Collaboration is at the heart of software development. Virtually all software devel-
opment requires collaboration among developers within and outside their project
teams, to achieve a common objective. It has in fact been shown that about 70%
of a software engineer’s time is spent on collaborative activities [219]. Indeed, col-
laboration in software development has been studied by researchers in the fields of
Software Engineering and Computer Supported Cooperative Work (CSCW) since
the 1980s and has produced a wide range of collaborative tools.

Enabling software developers to collaborate effectively and effortlessly is a difficult
task. The collaboration needs of the team depend to a large extent on environmental
factors such as, the organizational structure of the team, the domain for which
the software is produced, the product structure, and individual team members.
Accordingly, research in collaborative development has produced a host of tools,
each typically focussing on a different aspect of collaboration. Most teams have
their favorite repertoire of tools that has been built from historical use. These
tools may not always be the best suited for the team, but the team still uses them
nevertheless as the inertia and cost of trying out new tools surpasses the benefits.

A number of classification frameworks exist that can be used to classify collaborative
tools. In addition to placing the various tools in context, developers can use these
frameworks to select the right mix of tools fit for their needs. Each classification

1

1 INTRODUCTION

framework has a different focus: some provide a detailed taxonomy to compare
tools in a particular area [44], some classify tools based on the functionality of the
tools [93], some classify tools based on the high-level approach to collaboration that
the tools take [218], and so on. However, currently no framework exists that classifies
tools based on the user effort required to collaborate effectively. This however is also
a critical component in choosing the “right” set of tools for a team.

In this survey, we take a look at collaborative tools from the perspective of user
effort. For the purposes of this paper, we define user effort as the time spent in
setting up the tools, monitoring the tools, and interpreting the information from
the tools. While we cannot quantify the efforts required of each tool in detail, it is
clear that there is a natural ordering among different groups of tools. We propose a
framework that identifies these groups and highlights this ordering. Based on this
framework, our survey organizes the individual tools into tiers.

Our framework is in the form of a pyramid consisting of five vertical layers and three
horizontal strands. The five layers in the pyramid are: (1) functional, (2) defined,
(3) proactive, (4) passive, and (5) seamless. Tools that are at a higher layer in
the pyramid provide more sophisticated automated support, thereby reducing the
user effort required in collaborating. Each level, thus, represents an improvement
in the way a user is supported in their day-to-day collaborative activities. The
three strands in the pyramid are: communication, artifact management, and task
management. These three dimensions, we believe, are critical needs crosscutting all
aspects of collaboration.

The remainder of this paper is organized as follows. In Section 2, we discuss a few
existing representative classification frameworks. Section 3 presents the details of
our framework. The five layers of the pyramid are discussed in Sections 4 through 8,
with the functional layer discussed in Section 4; the defined layer discussed in
Section 5; the proactive layer discussed in Section 6; the passive layer discussed
in Section 7; and the seamless layer discussed in Section 8. We present our obser-
vations in Section 9 and conclude in Section 10.

2

2 RELATED WORK

2 Related Work

Group collaboration among software developers has been studied by researchers
in software engineering and CSCW since the 1980s. Research in these areas has
produced a wide range of collaborative tools (e.g., tools that support communication,
task allocation, decision making). To better understand the functionalities of these
tools and how they compare with each other, a number of classification frameworks
have been proposed by others. In this section, we take a brief look at some of the
representative frameworks.

2.1 Space and Time Categorization

Grudin modified the DeSanctis and Gallupe space and time classification frame-
work [58] to create a 3x3 matrix (Figure 1). The original framework was a 2x2 matrix
that classified tools based on the temporality and the location of the teams (e.g., does
the tool support asynchronous communication for collocated or distributed teams).
Grudin improved DeSanctis and Gallupe’s framework by further distinguishing the
tools based on the predictability of the actions that they support [93]. Grudin’s
framework, then, is a 3x3 matrix that classifies tools based on the temporality of
activities, location of the teams, and the predictability of the actions.

Different but

 predictable

Different but

 predictable

Different and

unpredictable

Different and

unpredictable

Meeting

facilitation
Work shifts Team rooms

Same

Same

Telephone,

video , desktop

conferencing

Email Collaborative

writing

Interactive

multicast

seminars

Computer

board

Workflow

P
la

c
e

Time

Figure 1: Space and Time Categorization [93].

3

2 RELATED WORK

Figure 1 represents the space and time framework, each cell illustrating some repre-
sentative applications for the particular space and time categorization. The rows in
the matrix represent whether applications support collocated or distributed teams.
The top, the middle, and the bottom row of the matrix represent activities that can
be carried out at a single place, in several places that are known to the participants
(email exchanges), and in numerous places not all of which are known to participants
(message posted in a newsgroup), respectively. The columns in the matrix depict
whether applications support synchronous or asynchronous collaboration. The left,
the middle, and the right column of the matrix represent activities that can be car-
ried out “in real time” (a meeting), at different times that are highly predictable
(when one sends an email to a colleague expecting it to be read within a day or
so), and at different times that are unpredictable (open-ended collaborative writing
projects), respectively.

2.2 Workflow

Research in workflow advocates the use of models and systems to define the way
an organization performs work [165]. A workflow system is based on a workflow
model that divides the overall work procedure of an organization into discrete steps
with explicit specifications of how a unit of work flows through the different steps.
Workflow languages (e.g., E-net modelling [164], Information-control net (ICN) [70],
PIF [134]) implement the workflow model by providing constructs for defining each

Amount of Detail

Operational Abstraction

Required Conformance

1.0=Purely Operational

1.0=Fully Implemented

1.0=No Deviation

Figure 2: The Model Domain Space [165].

4

2 RELATED WORK

step (computation language) and how the unit of work flows between the steps
(coordination language).

Gary Nutt [165] created a three dimensional model domain space that is based on
how a workflow model models a work procedure. As illustrated in Figure 2, the
three dimensions in the model space are: (1) x axis − the amount of conformance
that is required by the organization for which the process is a model, (2) y axis −

the level of detail of the description of the process, and (3) z axis − the operational
nature of the model (whether the model describes how the process works rather than
what is required from it). In this domain, models that represent only structured
or explicit work [191, 31] are in the sub-space approximating x→1, y→1, and z→1,
whereas systems intended to address unstructured work belong to a subspace where
x→0, y→0, and z→0. All other process types fit in elsewhere in the 3D space (e.g.,
descriptive and analytic workflow models [70, 73] can be placed in the plane defined
by 0≤x≤1, 0≤y≤1, and z=1; conventional workflow enactment systems [31, 155, 146]
can be characterized by the line segment x=1, y→1, and z=1).

2.3 Interdisciplinary Theory of Coordination

Malone and Crowston [141] use coordination theory to investigate how people in
other disciplines manage the dependencies that arise in collaboration. They define
coordination as managing dependencies between activities and provide a framework
for classifying collaborative tools by identifying the coordination processes the tools
use to manage the different kinds of dependencies. Malone and Crowston take a
broad outlook and study coordination at an interdisciplinary level, with the objec-
tive of finding similarities in concepts and processes in different disciplines (e.g.,
economics, computer science, organization theory). These similarities would then
allow ideas to be transported across the discipline boundaries, which in turn would
help in enriching the existing processes in each discipline. For example, the way or-
ganization theory handles resource allocation (hierarchial resource allocation, where
managers at each level decide how the resources are allocated) can be modelled to
handle resource allocation in software development teams.

Malone and Crowston identified the coordination processes used by different disci-
plines to manage dependencies between activities. They then created a taxonomy
of collaborative tools, illustrated in Table 1, based on processes that the tools sup-
port in software development. Rows 1 through 4 in the table identify processes
for managing typical dependencies between developers and resources in a software
development team. For example, task assignment needs to ensure that tasks are as-
signed to developers who have the required expertise (row 1), the interdependencies
between tasks should be considered while creating tasks and subtasks (row 4), and
so on. In addition to the processes for managing the coordination dependencies,
communication and group decision making play an important role in collaboration
and have been added to the framework (rows 5 and 6). For instance, in case of

5

2 RELATED WORK

Process Example systems

Managing shared resources (task
assignment and prioritization)

Coordinator [225], Information Lens [142]

Managing producer/consumer re-
lationships (sequencing prerequi-
sites)

Polymer [45]

Managing simultaneity con-
straints (synchronizing)

Meeting scheduling tools [14]

Managing task/ subtask relation-
ship (goal decomposition)

Polymer [45]

Group decision making gIBIS [41], Sibyl [133], electronic meeting
rooms [57, 58]

Communication Electronic mail, computer conferencing (e.g.,
Lotus, 1989) electronic meeting rooms [57,
58], Information lens [142], collaborative au-
thoring tools [78, 71]

Table 1: A Taxonomy of Collaborative Tools Based on the Process They Sup-
port [141].

shared resources, a group needs to decide how to allocate the resources; in manag-
ing task / subtask dependencies, a group must decide how to segment tasks; and so
on.

2.4 Formal versus Informal Approach to Collaboration

The formal versus informal coordination model [218], illustrated in Figure 3, clas-
sifies tools based on their high level approach to collaboration. This framework
classifies tools into three categories, namely tools that follow formal process-based
approaches, tools that provide informal awareness-based coordination support, and
tools that combine these two approaches.

Tools that follow formal process-based approach provide coordination by breaking
the entire software development effort into discrete steps. At the end of each step,
developers are required to synchronize their work to maintain consistency. In this
approach the tool is responsible for the coordination protocols that the developers
are required to follow (e.g., the check-in/check-out model of SCM systems, workflow
systems). The chief advantages of the formal process-based approach are, that they
are group centric and scalable. Their drawback is that the insulation provided by the
workspaces quickly turns into isolation, as developers are not aware of the activities
of others that may affect their work.

Tools that follow the informal awareness-based approach provide coordination by

6

2 RELATED WORK

Conceptual Visualization

Formal process

based coordi-

nation

Informal

awareness

based

coordination

Continuous

coordination

Scalable; Control;

Insulation from

other activities;

Group-centri

Strengths Weaknesses

Flexible;

Promotes synergy;

Raises awareness;

User-centric

Resynchronization

problems;

Insulation becomes

 isolation

Not scalable;

Requires extensive

 human

intermediation

Expected to be the

strengths of both

formal and informal

coordination

To be discovered

by the current

research

Figure 3: Formal vs. Informal Approach [218].

explicitly or implicitly disseminating information (e.g., artifacts that have changed,
activities of other developers) to the members of a team. It is the responsibility of the
members of the team to interpret this information and pro-actively self-coordinate.
Usually this leads to some kind of informal agreement according to which developers
plan their activities. While this approach is user-centric and gives the users control
and flexibility in defining their coordination protocols, it requires extensive human
intermediation and is not scalable.

Neither the formal process-based approach nor the informal awareness-based ap-
proach is completely satisfactory. The weaknesses further compound when con-
fronted with the reality of coordination needs in distributed settings. To overcome
this problem, van der Hoek et al. [218] propose an integrated approach, called con-
tinuous coordination, that supports collaborative work by combining the strengths
of both the formal and informal coordination approaches. Applications that fol-
low this approach would be highly flexible and be able to continuously adapt their
coordination support to the needs of the task at hand. Research in continuous co-
ordination, however is new and has not yet produced any prototype applications,
therefore the strengths in the table are expected and the weaknesses have still to be
discovered.

2.5 Summary

Each of the frameworks discussed above approaches collaboration from a differ-
ent perspective: Grudin classifies collaboration tools based on whether they can
support synchronous or asynchronous communication for distributed or collocated
teams; Nutt classifies workflow systems based on the characteristics of the underly-
ing workflow model; Malone and Crowston focus on coordination processes that can

7

2 RELATED WORK

be shared between multiple disciplines; and van der Hoek et al. classify applications
based on their high-level approach to collaboration.

What is interesting to observe, however, is that none of these frameworks classify
tools based on the user’s effort required to collaborate effectively. In fact, all of the
frameworks look at coordination tools from a functionality point of view. For exam-
ple, the space and time categorization tells us which tools can support collaboration
at real time or which tools can support distributed collaboration; the formal versus
informal framework informs us which tools follow the formal process-based approach
and which the informal awareness-based approach. These frameworks do not specify
the expected kind of user effort that is required in using a particular kind of tool
for collaboration. In this survey, we introduce a new classification framework that
revolves around different classes of user effort required to collaborate effectively. We
discuss our framework in the next section.

8

3 CLASSIFICATION FRAMEWORK

3 Classification Framework

Our classification framework is based on two principal characteristics of collabora-
tive tools, namely: (1) the level of coordination support provided to users, and (2)
the focus of a tool on one of the three essential elements of collaboration: commu-
nication, artifact management, and task management. Our classification framework
combines these two characteristics to form a pyramid, as illustrated in Figure 4.
We distinguish five levels of coordination support and three different foci of tools.
The five levels of coordination support are organized vertically and we call them
“layers” from here on. The foci of the tools are organized horizontally, and we call
them “strands” from now on.

Layers are based on the “level of coordination support” provided by the tools. By
this, we mean that tools at a higher layer provide better automated support (and
therefore less user effort) than tools in layers below it. Each layer, thus, represents
an improvement in the way a user is supported in their day-to-day collaborative
activities. We identify five layers: (1) functional, (2) defined, (3) proactive, (4)
passive, and (5) seamless.

Strands in the pyramid represent the three elements that we consider intrinsic to
collaboration, namely: (1) communication among team members, (2) artifact man-
agement, and (3) task management. Research in collaboration has typically focused
on one of the strands at a time. By including all three strands in our pyramid, we
are able to create a common ground for classifying the tools that stem from different
approaches.

As we move up the layers in the pyramid, the level of support provided by collabora-
tion tools increases while at the same time the user effort in enabling collaboration
decreases. Tools at the higher layers in the pyramid provide advanced automated
support to users, can handle large and complex team structures, and reduce action
and information overload on users as compared to tools at the lower layers. We envi-
sion that the layers are not isolated, but functionally build upon each other. Layers
become stronger than when functioning in isolation, i.e., when combined with the
functionalities of the layers below it.

As we progress up the pyramid, the distinction among the strands becomes increas-
ingly blurred. The communication strand slowly but surely moves over into the
territory of the artifact management strand. So does the task management strand,
until all three strands merge in the highest layer of the pyramid. This merging rep-
resents insights from ethnographic studies [92, 124] which found that, to coordinate
their activities, users combine different cues and resources from the environment in
which they operate. Researchers and tool builders alike have recognized this, and
have broadened their focus to encompass support for more than one strand in their
tools.

9

Continuous coordination,

collaborative architecture,

seamless development environments,

Asynchronous communication
Access to common set of artifacts,

isolated workspaces and version control

Parallel development,

roles and access rights

Passive awareness of

development activites

and developers, manage

information overload

Task allocation and assignment

Email, SCM

(pessimistic), basic

 project management

 tools, bugtrackers

Communication archival

along with artifacts

Communication

F
u
n
c
ti
o
n
a
l

Collocation benefits to

distributed development

Organizational memory,

knowledge acquisition and

dissemination, social navigation

Advanced SCM functionality (merging),

Instant messaging, visualization systems,

 recommendation sytems, GDSS

Workflow, SCM (optimistic),

process environments, MUDs

 bugtrackers

Prescribed and defined

 coordination support

Artifact Management Task Management

Advanced conflict

detection

Awareness tools, collocation benefits

(screen sharing, war rooms, tangible user

 interfaces), event notification services,

 social callgraphs

Collaborative development environments,

collaborative architectures

D
e
fi
n
e
d

P
ro

a
c
ti
v
e

P
a
s
s
iv

e
S

e
a
m

le
s
s

Fine grained versioning,

conflict resolution

Instant Messaging,

monitoring changes

to artifacts

Research areas that have focused on capabilities

at a particular layer

F
igu

re
4:

C
lassifi

cation
F
ram

ew
ork

.

3 CLASSIFICATION FRAMEWORK

At this point, the pyramid is not complete. We have left the top of the pyramid
open to signify further research. We do not know if the seamless layer will be the
last layer in the pyramid or if it will split into additional layers. This is subject to
future research as we have barely begun to scratch the surface of this layer.

3.1 Layers

Tools in the functional layer enable collaborative development, but do so with
minimal technical support. Development teams at this level are small and work
with the bare minimum in tool support; developers can get by in collaboration,
but much manual effort is still required. For example, generally tools at this level
allow different developers to access the same set of artifacts or communicate using
email, but developers at this level are chiefly responsible for the actual coordination
activity of who changed which artifacts and at what time. Teams relying on tools
at this level depend on the developers’ knowledge of the product structure, of which
developer has been and is currently working on which changes, and of how the
various changes relate to each other.

As teams become larger in size, the bare bones coordination support offered at the
functional layer is insufficient. Developers in large teams often must make changes
to the same artifacts in parallel, because it is more difficult to make non-overlapping
task allocations in large teams. Tools at the defined layer provide exactly this kind
of support by guiding users with a well-defined set of prescribed steps. For instance,
tools in office automation or workflow help divide the development process into
discrete steps, help specify which developer should change which artifacts, and help
in directing what the changes to an artifact should be. These systems are “good”, as
developers can now rely on the system to support their coordination activities, (e.g.,
the system automatically routes the final checked-in code to the “test” team), but
at the same time they are “bad” as developers have to strictly follow the prescribed
steps and have little flexibility.

Tools at the proactive layer allow developers more control over the coordination
steps. Specifically, developers can be proactive in obtaining the information with
which they can fine tune the coordination steps to suit their project. For example,
using tools such as CVS-watch [20] and Coven [37], users can monitor changes to
artifacts of interest in order to avoid potential conflicts. Once the tools inform
users of such changes, they can either merge the changes using automated merge
tools [151] or not take any action at the moment. Developers with tools at this layer
clearly have control over the overall coordination process, but in order to achieve
this flexibility they have to be actively involved in the process.

Tools at the passive layer reduce the effort required to obtain the information
necessary to tailor their development process. At this layer, users can configure the
tools to view relevant, timely information. Some of the tools provide default modes

11

3 CLASSIFICATION FRAMEWORK

requiring little to no configuration, yet provide important information at opportune
times. Typically, the information is peripherally displayed in an unobtrusive manner,
to create a subtle “awareness” of what activities are occurring in parallel. For
instance, tools such as Palant́ır [194], JAZZ [36], and others [97, 109, 170] provide
passive workspace awareness by displaying which developers are changing which
artifacts. Developers can now realize which changes would affect them and with
whom they should coordinate their activities. Tools at the passive layer allow
developers to concentrate on their current development activity, knowing that they
will be notified if there are pertinent changes. However, a drawback of the tools
at this layer is that users have to typically run multiple applications, because each
of these tools provides a different set of information (process support mechanism,
awareness mechanism, conflict resolution mechanism, and so on) and each typically
is a stand alone tool.

At the final layer in our pyramid, the seamless layer, developers no longer have
to switch contexts while accessing different sets of information, as tools at this
layer are built such that they can be integrated seamlessly to provide continuous
coordination [218]. Research in environments such as Oz [19] and Serendipity [95] are
investigating exactly these kinds of integration, providing a single tool for seamless
task management, artifact management and communication (see Section 3.2 for each
of these strands). Research in this area is still very much in progress, but the hope
is that eventually there will be environments that allow developers to seamlessly use
all necessary collaboration facilities within their development environment.

As we move up the hierarchy, tools change from supporting the minimal needs
that barely enable coordination to providing full-featured, seamless coordination
support that places a minimal burden onto the user. We note that this change
has gradually occurred over time, but that layer development has not been strictly
historical. Sometimes, research has jumped a level (as in the case of Portholes [64],
see section 7.1.1) and sometimes research has returned to a lower level to spark
evolution at a higher level (as in research in social navigation, see section 6.3.3, where
research on email allowed subsequent development of recommendation systems [163,
166]).

We recognize that environmental factors impact research in collaboration. For ex-
ample, a change in the problem domain or the team structure often creates different
coordination needs. We consider two environmental factors, namely product struc-
ture and organizational structure, as factors that have shaped the collaboration
capabilities of tools at each layer. An example of a change in product structure
leading to new capabilities was the fact that programming evolved to include inter-
faces (promoting stronger separation of concerns), which has allowed easier impact
analysis. An example of a change in organizational structure was the emergence
of distributed teams that are geographically separated. This created a need for
workspace and presence awareness tools that operate across time and distances. We
describe the effect of these factors and the context as we introduce each layer.

12

3 CLASSIFICATION FRAMEWORK

Technology

Needs Activities

Figure 5: Three level interaction.

While creating the hierarchy of layers, we also consider experiences from tool us-
age that have influenced the needs for the tools at each layer. For example, when
users become experienced with their current tools they feel the need for advanced
features. By the same token, the approach taken by the tools in solving a particular
need creates a newer set of needs that have to be addressed. This is illustrated by
the relationship between needs, technology, and usage of technology in Figure 51 .
Typically, researchers identify a set of needs and then create the technology that
addresses those needs. Oftentimes the technological solution or the way users inter-
act with the technology creates a newer set of needs. A new generation of tools is
then created to address these additional set of needs, continuing the cycle.

For example, to address the coordination needs of a large software development
team, SCM tools created workspaces [20, 44, 51]. These workspaces allow developers
to make changes in private, and after completing their tasks, synchronize their
changes with the repository. On the one hand, the isolation created by workspaces
is “good”, because it allows developers to make changes without being affected by
others. On the other hand, this isolation is “bad”, since it inhibits developers from
being aware of their co-developers’ activities. This was confirmed in a study of a
software development organization, which revealed that developers planned their
activities based on the activities of their colleagues [89, 90]. The users gained this
information by querying the SCM repository to find out which artifacts had been
checked out by whom. Another study [55] investigated the informal convention of
using email that augmented the formal development process already in use. These
activities around the repository clearly imply the need for workspace awareness.
Such research is now in progress [194, 36, 157].

1Ddiscussion with Paul Dourish, professor, Informatics, UCI, Nov 2004.

13

3 CLASSIFICATION FRAMEWORK

3.2 Strands

The Cambridge dictionary defines collaboration as: “two or more people working
together to create or achieve the same thing” [179]. In the domain of software
development, collaboration involves the coordination of developers to create and
maintain software artifacts. Broadly speaking, collaborative support in software
tools must involve support for: (1) communication among team members, (2) ar-
tifact management, and (3) task management. We use these three aspects, which
we call “strands”, throughout the remainder of the paper as vertical slices of the
pyramid.

Communication: Teams use communication to keep each other up to date with
the tasks that have been completed, to communicate changes in schedules, to ask
questions or provide solutions to problems, to schedule meetings, and numerous
other purposes. When an organization does not have a good communication in-
frastructure, developers might hesitate to ask questions to colleagues whom they do
not know, not communicate changes to an artifact that others might depend on,
not be able to keep track of past communication, and so on. This lack of good
communication in teams often leads to project delays.

Artifact Management: Artifacts in software systems are highly interdependent
on each other. This interdependence implies that changes to software artifacts,
be it code or other artifacts produced during the life cycle (e.g., a requirements
specification, a design), need to be managed to ensure the correct behavior of the
program. In large projects, it becomes impossible for developers to manage changes
to software artifacts on their own. Developers therefore increasingly depend on tool
support to version their code, coordinate parallel development, resolve conflicts, and
integrate code, among other things.

We place artifact management as the central strand in our framework, since col-
laboration in software engineering primarily involves coordination of development
activities around a set of software artifacts. As we move up the pyramid, we note
that the distinction among the strands becomes blurred and that the other two
strands slowly but surely intrude into the territory of artifact management. As we
stated before, this is an explicit choice, namely to illustrate the change in research
focus wherein research is increasingly drawing on all three strands to provide tool
support. For example, in the proactive layer of the pyramid, developers can mon-
itor changes to artifacts. In the event of a change, the system notifies developers
who had registered interest on the artifact. Here, we see that “when” the communi-
cation is triggered or “who” the communication is sent to, depends on the artifacts
in question.

Task Management: Task management in software development involves, among
others, decomposing the project into smaller units, identifying developers with ex-
pertise, assigning tasks to developers, and creating a development schedule. In large

14

3 CLASSIFICATION FRAMEWORK

projects, task management is a time-consuming and difficult task. Managers of large
teams typically rely on project management tools to assign and monitor tasks. For
instance, workflow systems split the development process into discrete steps and
specify which developer should make what change to which artifact. Task alloca-
tion in large projects is seldom clean and managers rely on automated tool support
to continuously coordinate the activities of developers with overlapping task re-
sponsibilities. For example, concurrent changes to the same artifact have to merged
before they can be placed in the repository.

In the following sections, we discuss each layer and each of the three strands cross-
cutting a given layer. We begin with the functional layer and its communica-
tion, artifact management, and task management strands. This pattern is repeated
through the first four layers of the pyramid (Sections 4 through 7).

15

4 THE FUNCTIONAL SUPPORT LAYER

4 The Functional Support Layer

The functional layer is the first layer in the pyramid and forms its base. It depicts
the basic level of automated collaboration support provided by tools. Previous to
the tools in this layer, collaboration was managed manually. The tools at this layer
were promoted by the type of organization and product structure prevalent at that
time. From the organizational and product structure point of view, tools primarily
needed to support collaboration for small, “flat” teams working with structured
programming languages.

Based on the aforementioned criteria, tools at this layer provide basic automated
support for developers to communicate with each other, access and modify a common
set of artifacts, and enable managers to allocate and monitor tasks. These tools
form the transition from “no automated support” for collaboration to the “minimal
automated support” necessary to allow a team to function.

4.1 Communication

Communication is one of the key factors in coordinating the activities of team mem-
bers and has a big impact on how successful the team can be [123, 33]. Traditionally,
face-to-face meetings were the typical means of communication in a team, with re-
ports and memos being used for archival purposes.

As personal computers became popular, face-to-face communication was increas-
ingly replaced by electronic communication, primarily email. Email was widely
adopted as it allowed developers to asynchronously communicate over distances,
refer to previous replies, reply to a group, record communication with little extra
effort, and so on. Email has largely become popular because of its low learning curve
and the ability to resolve problems without having to schedule meetings. Currently,
there are a number of email clients, both commercial and open source [104, 142].

In addition to email, the open source community relies heavily on news groups and
discussion forums for their communication needs. While email is more directive and
chiefly used for point-to-point communications, news groups and discussion forums
are more open and allow interested people to subscribe to the list [26, 66]. Dis-
cussions in these forums usually start when someone in the list posts a question
or an interesting solution, that is then followed by discussion among other sub-
scribers. Often times, complex solutions are attained in these discussion forums
without members ever meeting face-to-face or sending personal email.

The open source community is an excellent example of a software development
community that primarily depends on the tools in the functional layer for their
collaboration support. Most of the team members never even meet each other face-
to-face. The core development teams in open source projects are relatively small

16

4 THE FUNCTIONAL SUPPORT LAYER

[181] and use email or discussion forums for most of their communication needs.
Successful projects produced by the open source community have demonstrated
that groups can successfully collaborate by relying solely on the tools in functional

layer [154].

4.2 Artifact Management

The basic support for managing artifacts in a collaborative software development
environment involves: access to a common set of artifacts, private workspaces that
allow developers to work uninterrupted on their tasks, and version control. Software
configuration management (SCM) systems provide exactly this kind of functional-
ity [215, 183]. Developers can check-out artifacts, in which they are interested, from
a central repository into a private workspace. There, they can make changes without
any interference from other developers. Once the changes are complete, they can
check-in the artifact back into the repository, making the artifacts and the changes
available to the rest of the team.

SCM systems also version artifacts such that changes can be made incrementally
and rolled back should the need arise. The SCM repository creates a new version
(a new identifier) for the artifact when it is checked-in. Versions are not directly
accessible, but have to be checked out from the repository. This process ensures that
artifacts in the repository cannot be changed directly and that changed artifacts are
always given a new version number. SCM systems thus support the development
process by maintaining the software artifacts, recording the history of the artifacts,
providing a stable working context for changing the artifacts, and allowing a team
to coordinate their changes to its artifacts [76].

The check-out/check-in model of SCM systems, as characterized by systems, such
as SCCS [187], RCS [214], and DSEE [131], is mainly pessimistic in nature. In this
model, once an artifact has been checked-out by a developer, it is locked by the
repository and is not available for modifications by others, until the changes are
checked back into the repository by the original developer and the lock is released
by the repository. Pessimistic SCM systems ensure that there are no conflicting
changes to the same artifact, but only ensure this by severely limiting the amount
of parallel work.2

SCM systems were the first applications that handled artifact management and
based on their success they have become the de facto system for managing software
artifacts, especially code [74]. Some systems, such as BSCW [6] and Orbits [143],
that manage artifacts by leveraging repositories. However, these tools are not as
popular or widely used as SCM systems. We discuss some of these systems later,
based on their advanced functionality in addition to basic artifact management.

2RCS does allow merging (rcsmerge [214]), but this is a functionality that we will discuss in
Section 6.

17

4 THE FUNCTIONAL SUPPORT LAYER

4.3 Task Management

In the functional layer, task management involves task allocation and task moni-
toring. Managers allocate tasks based on expertise of developers and in a manner to
avoid duplication of work or conflicting efforts [67]. Once tasks are assigned, man-
agers continuously monitor the progress of team members to ensure that individual
tasks are executed on time, to coordinate the activities of team members where
responsibilities overlap, and to keep the overall development effort on schedule.

In the past this was a purely manual activity, with schedules on paper, meetings
to assign tasks, status meetings for monitoring progress, and so on. The tools in
the functional layer of the pyramid provide managers with rudimentary task man-
agement support. Early versions of nowadays well established project management
tools like Milos [85], Autoplan [62], and MS-project [35] provided basic project plan-
ning and scheduling tools.

At this layer, we also include tools such as, email, basic SCM systems, and rudi-
mentary bug tracking systems as they too help in scheduling and monitoring task
assignments. Besides its critical role in communication among individual develop-
ers, email has come to play a central role in task management. It has been found
that senior managers spend a majority of their time answering email [66, 18]. Email
has become a popular management tool as it facilitates managerial activities like:
assigning tasks, scheduling meetings with the help of calendering systems that track
when a developer is busy, and placing reminders for themselves by flagging impor-
tant email or with to-do lists [16].

Pessimistic SCM systems (e.g., RCS [214], SCCS [187]) and bug tracking systems
(e.g., Mantis [144], Bugzilla [30]) serve as coordination tools for project management
by allowing managers to monitor changes to artifacts. For example, a manager can
query a SCM repository to detect which software artifacts are currently locked by
which developers, bug trackers can be used to detect which bug reports have been
closed and which are still open, and so on. Pessimistic SCM systems can also prevent
task duplication considerably, as in this model only one developer can work on an
artifact at any given time. This ensures that developers are always working with
the latest changes in the repository and therefore will not duplicate efforts that have
already been coded. As stated before, the open source community is a successful
example of software development teams that mainly depend on email, SCM systems
and bug trackers for their collaboration needs.

18

5 THE DEFINED LAYER

5 The Defined Layer

The tools discussed in the previous layer, the functional layer, provide only rudi-
mentary automated support for collaborative groups. They are sufficient for teams
that are small, have minimum overlapping of tasks, and low interdependencies in
functionalities. The structure of the teams changed as the field of software engineer-
ing matured and demand for software burgeoned, with different disciplines relying
on software for their applications (e.g., medical community, automobile industry,
telecommunication industry). Teams became larger in size and more structured in
nature. Moreover, in order to stay competitive and reduce the development time
and cost, parallel development was encouraged.

The tools at the functional layer can not handle these changed collaboration needs.
Well-defined software processes are needed to coordinate the activities of members in
a large team. The second layer in the pyramid, the defined layer, historically builds
on the functional layer and includes tools that support such well-defined software
processes to help in collaboration. The tools at this layer prescribe defined steps that
advise developers which steps they are required to take and who to communicate
which artifact with.

The birth of object oriented programming, in some ways, accelerated parallel devel-
opment, as programs could now be broken down into smaller modules with different
developers working on each module. Concepts like encapsulation allow modulariza-
tion with well-defined interfaces that can then be integrated back [172].

Tools at the defined layer are characterized by their support for larger teams with
clearly defined processes. An interesting observation regarding the systems discussed
at this layer is that they primarily focus on task management. This is in accordance
with the theme of this layer: prescribing defined coordination steps to help the team
in effectively collaborating.

5.1 Communication

Email as the sole communication medium for large teams is inadequate, given the
overwhelming number of email that are sent in a typical team. In such teams,
email users quickly become inundated with the volume of email they receive per
day and often end up scanning only the subject headers [86, 17]. Many times, users
have to retrieve previously discarded email, email that seemed unimportant then.
Retrieving old email, that may have been important, remains a daunting task in
spite of the sort mechanisms and filters provided by email clients [142].

Communication that is recorded along with the artifact is easier to retrieve at a
later stage than when archived separately (as in email). Artifacts such as project
schedules and bug reports play a crucial role in coordinating the development activ-

19

5 THE DEFINED LAYER

ities [30]. Artifacts playing an important role in coordination is depicted by the slow
migration of the communication strand into the artifact management strand at this
layer (See Figure 4). Moreover communication records that are tightly associated
with artifacts, such as bug reports [30] or check-in comments in SCM systems, allow
better access mechanisms since artifact storage usually leverages access and query
mechanisms of underlying database systems.

In addition to one-to-one communication, meetings are the next most common com-
munication medium, but scheduling face-to-face meetings to bring the entire team
together in a room often proves to be difficult. It is now a common practice to
either teleconference or video-conference with team members who cannot be physi-
cally present in the same room [105, 108]. Some companies even have mobile units
with conferencing facilities that allow developers to attend meetings when they are
travelling. In addition to the tele/video conferences, users can use the internet to
remotely login and use streaming video and audio to participate in meetings. De-
signers at the Jet Propulsion Laboratories frequently use web based conference calls
to participate in design meetings with their design teams that are geographically
separated [145].

We see that, at this layer, the technology has shifted from just email and infor-
mal communication conventions to communication that is recorded along with the
artifacts as supported by process based environments.

5.2 Artifact Management

As discussed earlier, parallel development became necessary to reduce overall devel-
opment time, which in turn made concurrent access to artifacts necessary. Coordi-
nating parallel access to multiple artifacts is too complicated to handle manually.
Teams need automated support to keep track of: which developers have access to
which artifacts, which developer is working on which artifacts, which versions have
been created that need to be integrated, and so on.

Parallel development can be either synchronous or asynchronous in nature. Group-
ware applications support synchronous editing, the majority of which deal with col-
laborative editing. These collaborative editors allow multiple users to simultaneously
access and edit documents (e.g., text documents, software code, design drawings).
To take a few examples, GROVE is a textual multi-user outlining tool [71]; ShrEdit
is a multi-user text editor [150]; DistEdit is a toolkit for implementing distributed
group editors [125]; and Flesce is a toolkit for shared software coding [60]. These
editors ensure the consistency of simultaneous changes either by using locks or by
ordering the editing events. Most of these editors also support shared views and
shared telepointers (MMM [22], GroupSketch [87]). Shared views allow different
users to see a part of the document in exactly the same manner as the other user
using the WYSIWIS (What You See Is What I See) metaphor [203]. Shared tele-

20

5 THE DEFINED LAYER

pointers allow multiple cursors, one for each user, which are shown at all sites and
updated in real time. The user interfaces of these applications are tightly coupled
such that the views of the users are updated to reflect the action of every user. Some
of these systems also provide support for speech and communication (GroupKit - a
real time conferencing toolkit [188]).

SCM systems support asynchronous editing (primarily software code), where devel-
opers edit artifacts in their private workspace and then synchronize their changes
with the repository [215]. SCM systems like CVS [20], Telelogic CM/Synergy [213],
and Rational ClearCase [3] are optimistic in nature and allow concurrent changes
to a common set of artifacts. Unlike the pessimistic SCM systems discussed in the
previous section (Section 4.3), optimistic SCM systems do not place locks on arti-
facts when they are checked-out. The repository allows a developer to check-out
an already checked-out artifact as long as the changes are later synchronized in the
repository. In the optimistic model, developers who complete their changes first
have the opportunity to check-in their code. The next person who tries to check-in
has to ensure that their changes integrate with the latest version in the repository.
Typically, this is supported by automated merge facilities [151]. Some SCM sys-
tems also can provide access rights to developers such that different developers have
different privileges based on their role in the project [76, 51].

Overall, the level of support has risen from providing basic support in artifact man-
agement to managing parallel development and means of integrating these changes.
The tools at the functional layer provided the basic infrastructure using which
developers could access and modify artifacts that were stored in central repository.
Tools at the defined layer provide enhanced support in artifact management and
allow both synchronous and asynchronous parallel development.

5.3 Task Management

Task management is at the heart of this layer. Task management is where one really
manages the steps in the process from creating project schedules to coordinating ac-
tivities of developers. Historically there have been two approaches: workflow and
process engineering. Both these approaches break the development process into steps
and prescribe the computation required at each step and the coordination protocol
between the steps. While initially they seem similar they are really complemen-
tary to each other. Workflow focuses on the unit of work that flows between the
steps [165], whereas process engineering focuses on the development steps [171, 173].

5.3.1 Workflow

The concepts and technologies involved in workflow systems evolved from work in
the 1970s on office information systems. Workflow systems are mainly useful for

21

5 THE DEFINED LAYER

domains that have standard procedures, for example office automation or inventory
control. A workflow system is built upon a workflow model that describes the
characteristics of the target system. The workflow model characterizes the target
system by focusing on the critical characteristics of the system while ignoring the
non critical ones.

The characteristics that a model considers critical depends to a large extent on the
purpose of the model. For example, a model of a purchasing procedure created for
teaching new employees the current procedure will focus on describing how autho-
rizations are obtained, how people in purchasing interact with vendors, and so on.
On the other hand, if the model is to be used to analyze the staffing requirements
of the purchasing department, characteristics such as the distribution of purchase
requests, and the amount of time required to identify a vendor would be critical [165].

The workflow model divides the work procedure in an organization into discrete steps
with explicit specifications of what actions are to be taken at which step and how the
unit of work flows through the different steps. A workflow language that describes
the model, thus, contains constructs to define a set of steps to represent units of work.
It does so with two languages, a sequential computation language [206, 135, 228] that
provides an interpretation for each step, and a coordination language (E-nets [164],
ICNs [70], Petri nets [119]) that defines how the unit of work flows among the steps.

A workflow model is created in a workflow modeling system such as IBM Flow-
mark [155, 135], Filenet Visual Workflo [68], or PIF [134]). These modelling systems
are editing environments that provide facilities for creating and browsing a repre-
sentation model (describing how a particular step is accomplished for the benefit of
human users), for applying algorithms to an analysis model (quantifying the vari-
ous aspects of a step’s execution), and for collaborative interaction and information
archival for design models (capturing requirements, constraints, relationships, and
algorithms for implementing an individual component).

Once a workflow model has been formulated it needs to be enacted, an operation
in which the model is encoded into a set of directives that will be executed either
by humans or computers in a workflow management system. Workflow enactment
systems establish the order in which steps should be executed for each work unit
and identify the software modules that would implement each step in a workflow
management system (e.g., FlowPath [31], FlowMark [135, 155], and InConcert [146]).

5.3.2 Process-centered Software Engineering Environments

Process-centered Software Engineering Environments (PSEEs) are environments
that provide a process model (a representation of the process) to support devel-
opment activities. These environments support the process designer in analyzing
the existing process, designing a process model, and enacting the model to create

22

5 THE DEFINED LAYER

directives that are then executed by the team and the computer system.

The heart of the process environment is the process model, as it is the model that
determines the accuracy of the process, its flexibility, and whether the process can
deal with exceptions. The process model describes the process to be used to carry
out a development task, the roles and responsibilities of developers, and the inter-
action of tools needed to complete the tasks. Process models are usually expressed
in a formal notation, so that they can support process analysis, process simulation,
and process enactment. Different paradigms exist that different process modeling
languages follow, such as state oriented notations (Petri nets [177]), rule-based lan-
guages [77], or logic languages [77].

Once the process model is defined, the environment enacts the model and provides
a variety of services, such as, among others, automation of routine tasks, invocation
and control of software development tools, and enforcement of mandatory rules and
practices. Several PSEEs are currently available, each with a slightly different focus.
We illustrate a few representative environments here.

• OIKOS : OIKOS is a research project [160] whose main goal is to ease the
construction of a PSEE. It is an environment to specify, design, and implement
PSEEs. It also helps in the comprehension and documentation of software
processes. It has been developed in Prolog [40] and is built in two separate
languages, Limbo [4] is for the requirement specification and Pate [5] for its
implementation.

• EPOS [42] has chiefly been designed to provide flexible and evolving process
assistance to multiple software developers involved in software development
and maintenance. Its process model is expressed in SPELL [43], an object-
oriented, concurrent, and reflexive modelling language. It has its own ver-
sioned database called EPOS-DB which is used to store the process models.

• The SPADE project [12] was created as an environment for software process
analysis, design, and enactment. SPADE adopts extended Petri-nets [177, 161]
and augments them with specific object-oriented constructs to support product
modelling.

• Arcadia [212] was built with the goal to create an environment that was tightly
integrated yet flexible and extensible enough to support experimentation with
alternate software processes and tools. The environment is comprised of two
complementary parts. The variant part consists of process programs and the
tools and objects used and defined by these programs. The other, fixed part,
or infrastructure, supports the creation, execution, and changes to the con-
stituents to the variant part. The infrastructure part is composed of a process
programming language and interpreter (Appl/A [103]), object management
system (PGraphite [224], Cactis [114]), and user interface management sys-
tem (Chiron [227]).

23

5 THE DEFINED LAYER

In addition to a well defined coordination process, managing changes to software
artifacts is an integral component in software development [215]. The importance of
SCM has been widely recognized by the software development community (“Indeed,
SCM is one of the few successful applications of automated process support” [74]).
Its importance is also reflected in particular in the Capability Maturity Model
(CMM) developed by the Software Engineering Institute (SEI) [175]. CMM defines
levels of maturity in order to assess software development processes in organizations.
Here SCM is seen as one of the key elements for moving from “initial” (undefined
process) to “repeatable” (project management and quality assurance being the other
two).

5.3.3 Summary

To summarize, workflow and process environments have changed the picture as
with respect to the previous layer from bare bones support in task management
to sophisticated systems that prescribe the development steps and the coordination
protocol required. Tools at the functional layer provided only rudimentary support
in task scheduling and task assignment. Compared to them, the tools at the defined
layer are sophisticated system that prescribe the ideal development process for an
organization and provide directives to enact it.

24

6 PROACTIVE

6 Proactive

While tools at the defined layer are useful and effective in breaking the development
process into smaller steps and coordinating developers’ activities between the steps,
developers using these tools soon realized that these systems made the development
process very rigid. As a result of the prescribed rules of coordination, developers no
longer had any flexibility in the development process. To work around these strict
rules, developers often cheated the system by creating their own ad-hoc coordination
processes. For instance, it was found in a study [55] at NASA/Ames, that developers
followed an informal convention where in they sent email to the developers’ mailing
list before checking-in their code. This email described their changes and its impact
on others thereby preparing others for the change. In another study [89], it was
found that developers in a software development company used the information
about who has currently checked-out what artifacts to coordinate their activities
outside of the provided and otherwise used SCM system. A flexible coordination
infrastructure was thus needed, one that recommends the desired coordination steps,
but is flexible enough to allow developers to change the process if necessary.

Tools at the third layer of the pyramid, the proactive layer, satisfy this need and
allow developers to be proactive by giving them more control over the development
process that they follow. These tools primarily allow developers to obtain informa-
tion regarding the state of the project to help them detect potential conflicts. The
critical advance in tools at this layer is that developers are no longer bound by strict
rules, but have the flexibility to take decisions to change the process if necessary.

6.1 Communication

In accordance with the theme of this layer, the communication tools at this layer
allow developers to be more proactive. They achieve this by: (1) allowing developers
to communicate with their colleagues in real-time, such that they no longer have to
wait for the other party to reply, and (2) by allowing developers to monitor changes
to their project space, such that they are informed when other developers change
artifacts of interest.

6.1.1 Synchronous Communication

In asynchronous communication, such as email, users do not have any control over
when their colleagues would reply. Sometimes email discussions can stretch over
days, with each party asking questions and waiting for answers. This waiting time
can be eliminated with synchronous communication, such as Instant Messaging (IM).
Here, similar to email, users have to initiate a conversation and wait for the other
party to respond, but once the person responds, users can immediately start con-

25

6 PROACTIVE

versing in real-time. Since IM is akin to having a conversation, it is much easier
and faster to discuss the issues involved with a particular problem and resolve it.
Compared to email, IM is much more informal, which allows users to quickly draft
messages and not worry about formalities [162, 26].

Users generally configure the IM environments to indicate whether it is an appropri-
ate time for others to approach them or not [162]. Most IM environments provide
a standard set of status messages, such as away, idle, and busy for this purpose.
Some environments (e.g., Yahoo) allow users to personalize the status messages to
make them better suited to the current situation (e.g., in a meeting, on the phone).
Researchers are currently investigating the effect of embedding emotions in IM en-
vironments [121, 184], such that users can better express their mood, which in turn
would reflect their emotional availability.

Instant messaging has been widely used for informal communication over the in-
ternet, but only recently has been adopted by businesses as acceptable means of
communication [104]. Researchers are now studying the effects of IM on employee
productivity [104] and interruption management techniques to help developers man-
age the continuous interruption caused by IM [56, 50]. IM environments also allow
users to archive their IM conversations that can then be later investigated. Cur-
rently IM archives are not widely used yet, but it is a resource that might be tapped
in the future. JAZZ [36], an awareness tool, is integrated with an IDE that allows
developers to start chats from the IDE and in the context of the code that they are
involved in. JAZZ then annotates the part of the code that was discussed with the
relevant chat message.

6.1.2 User Initiated Artifact Monitoring

The tools at the previous layer mostly coordinated development activities by iso-
lating developers in private workspaces and synchronizing their changes at specific
synchronization points. Even though this isolation was needed, it often lead to con-
flicting changes. Developers thus felt the need to break this isolation and be aware of
development activities around them, such that they could detect potential conflicts
before they become large and difficult to resolve.

Tools at this layer allow developers to monitor the artifacts that they are interested
in, but only if they explicitly register interest (tools at the next layer can provide
semi-automated monitoring, see Section 7.1.2). In the event of a change to an
artifact, the tool notifies those developers who have registered interest in the artifact.
Being notified of changes as they are occurring allows developers to gain an overall
understanding of their project, with respect to what changes are being made to
which artifacts and by which developer. This awareness helps developers understand
others’ changes and how that might affect them. Even though these tools require
manual registering of interest they are an advancement over tools at the previous

26

6 PROACTIVE

layer, where developers had no flexibility and were prescribed what steps to follow,
when to follow, and how to follow.

Since Software Configuration Management (SCM) systems continuously log which
developer has accessed or modified which artifact in the repository, these systems
are well suited for providing capabilities for monitoring artifacts. Whereas SCM
systems of the previous generation (tools at the defined layer) allowed developers
to access information regarding which developers are changing which artifacts by
manually querying the repository, SCM tools at this layer (e.g., Coven [37], CVS-
watch [20]), allow developers to obtain this information at real-time by registering
their interest on specific artifacts with the repository. Clearly, registering interest
in artifacts is an advantage only if it is easy to set the monitors or is a one-time
effort, otherwise it amounts to expensive user effort and will never get adopted by
the development community [92]. An interesting observation is that the next layer,
the passive layer, is the epitome of this, because in the passive layer we place tools
that aim to have no set up time whatsoever.

Most of the tools that build on SCM systems monitor artifacts that are stored in
the repository. Developers thus know when an artifact has been checked-out for
modification and when changes have been completed. However, they have no idea
of what changes are taking place in the workspace. Being aware of changes as they
are taking place in the workspace can be more important and timely in avoiding
conflicts, than when changes have already been made [97]. Only recently has research
in SCM started investigating monitoring changes at the workspace level [195, 170].
There are a number of CSCW applications that provide workspace awareness, but
they usually present this information in a passive format and we place those tools
in the next layer.

Some systems, like COOP/Orm [140, 139] and State treemaps [157], do not support
notification of changes, but allow developers to monitor changes to artifacts by
presenting them, as part of their regular interaction, with a view of parallel activity
in an easy to understand graphical format. We notice that these notifications of
changes are currently a very active mechanism in SCM. We could add the CSCW
tools that have similar features, but it turns out that most of these tools tend to
be more passive in nature and we therefore will discuss them in the next layer. For
example, in BSCW [6] there are query mechanisms akin to the SCM tools, but it
also provides some automated visualizations that display the information when a
user browses the repository.

6.1.3 Summary

To summarize, tools at the previous layer provided the process infrastructure that
defined the coordination protocols that developers were required to follow (who
to coordinate with and when). Developers were required to strictly follow these

27

6 PROACTIVE

prescribed steps. We note that the tools at this layer allow developers to be flexible
and represent the intertwining of the strands. Developers can be more flexible in the
way they handled their development process by using the communication tools of this
layer (e.g., IM and artifact change monitors). Developers no longer have to depend
on asynchronous communication media, but can directly chat with their colleagues
to quickly resolve problems. Another instance of this flexibility is that developers
can break the isolation promoted by workspaces and monitor development activities
in their project. Even though tools at this layer require users to explicitly set up
the monitors and actively investigate the notifications, they are still an advancement
from the isolation enforced by tools at the previous layer.

6.2 Artifact Management

Tools that support artifact management at the proactive layer allow developers
to avoid conflicts either by versioning artifacts at a lower granularity (smaller than
the source file level) or by allowing developers to share intermediate changes. In
addition to these mechanisms, which help developers avoid conflicts, tools at this
layer provide sophisticated conflict resolution support to help developers resolve
conflicts that cannot be avoided. We once again focus our discussion on SCM
tools, as SCM systems have been the forerunners in artifact management (“Product
management forms the core functionality of SCM systems” [74]).

6.2.1 Fine-Grained Versioning

SCM systems of the previous generation (e.g., RCS [214], SCCS [187], CVS [20])
version artifacts at the “source file” level, the file being the smallest unit in the
repository. But versioning at the file level often is not the best solution [139, 74].
In pessimistic SCM systems (RCS, SCCS) artifacts are locked to avoid conflicting
changes to the same artifact. Since the lock is applied to the entire source file,
developers who intend to make changes to non-conflicting sections of the file have
to wait for the lock on the file to be released. In large teams, waiting for locks can
quickly become a bottleneck, increasing the time and cost of development. Even
though optimistic SCM systems (CVS [20], Subversion [216]) do not suffer from
bottlenecks due to locking, versioning at the file level still makes it fairly cumbersome
to extract change histories of smaller units (e.g., a particular method or function)
from the version history of the source file containing the method/funtion.

Fine-grained versioning avoids these bottlenecks and difficulties in allowing access
to smaller software constituents. Most software artifacts can be broken down into
smaller units. For example, software programs are composed of functions that can be
further broken down into declarations and statements; text documents are composed
of sections and paragraphs; and so on. Software changes usually affect more than

28

6 PROACTIVE

one file [176], but “it is often the case that a change affects only a small part of
a document” [139]. Owing to encapsulation of concerns in methods, changes to
software artifacts are usually contained in smaller logical units, and most of the
times developers only change a specific method and do not touch other parts of
the program [140]. Empirical data collected by Perry et al. further supports this
observation [176].

Fine-grained versioning of artifacts takes advantage of this characteristic and allows
multiple developers to change different parts of the same artifact (e.g., methods,
collections of statements). Systems such as Coven [37], COOP/Orm [139], and
Desert/Poem [182] provide fine-grained versioning. Each of these systems version
and manage configurations directly in terms of functions, methods, or classes in
the source code with the goal to increase software reuse and collaborative program-
ming [136].

6.2.2 Conflict Management

Task allocation can seldom ensure that task responsibilities do not overlap. This
overlapping of task responsibilities, more often than not, results in conflicting changes.
Tools in areas such as CSCW and Workflow attempt to avoid conflicts by locking
artifacts. SCM systems that allow parallel development attempt to alleviate this
problem by supporting fine-grained versioning and providing awareness of parallel
activities. However, conflicting changes are still very much a reality and organiza-
tions lose time and money in resolving them [176]. Considerable research on conflict
detection and resolution has been done in the area of SCM [151, 44], since developers
are required to merge their changes and resolve any conflicts before they can check-
in their artifacts into the repository. These merge tools can be classified along two
dimensions, the ancestry of the artifact considered and the semantic level at which
merging is performed.

Three main merging techniques, based on whether the tool considers the parent of
the version or not, exist. Raw merging simply applies a set of changes in a different
context. For example, consider a change c2 that was originally performed indepen-
dently of a previous change c1 to an artifact. In raw merging, c2 is later combined
with c1 to produce a new version. Source Code Control System (SCCS [187]) sup-
ports raw merging. Two-way merging compares two versions of an artifact a1 and
a2 and merges them into a single version a3. It displays the differences to the user,
who then has to select the appropriate alternative incase of a conflict. A two-way
merge tool can merely detect differences, and cannot resolve them automatically
(Unix diff [116]). Three-way merging compares two versions of an artifact in a sim-
ilar fashion to two-way merging, but consults a common baseline if a difference is
detected. If a change has been applied in only one version, the change is incorpo-
rated automatically, otherwise a conflict is detected, which then needs to be resolved
manually. Compared to two-way merging, this resolves a number of ‘supposed’ con-

29

6 PROACTIVE

flicts automatically (false positives) [151]. Aide-de-Camp [118] offers a three-way
merge tool in addition to raw merging.

Crosscutting the various ancestry-based merge techniques is the semantic level at
which merging is applied [44]. Textual merging considers software artifacts merely
as text files (or binary files). The most common approach is line-based merging,
where each line is considered an indivisible unit (rcsmerge [214]). This approach
can detect when lines have been added or deleted, but cannot handle two parallel
modifications to the same line very well. It has been found in an industrial case
study that three-way, line-based merge tools are most popular and can resolve 90
percent of changed files without any need for user intervention [176, 130]. Syntactic
merging [29] is more powerful than textual merging as it recognizes the syntax of
the programming language, which in turn allows them to perform intelligent deci-
sions. Syntactic merging ignores conflicts due to differences in formatting or com-
menting and guarantees the syntactical correctness of the merge result. However,
syntactic merging is not trivial and has been implemented by only a few research
prototypes [29, 222]. Semantic merging builds on syntactic merging and takes the
semantics of the software program into account [21, 23, 111]. Semantic merge tools
perform sophisticated analyses in order to detect conflicts between changes. The
exact definition of a semantic conflict is a hard problem to solve and the merge al-
gorithms developed so far are applicable to only simple programming languages. In
addition to the basic merging techniques discussed above researchers are also investi-
gating structural, state-based, change-based and operation-based merge techniques.
Mens [151] provides a detailed discussion of these aforementioned techniques.

Researchers in areas other than traditional SCM have also investigated conflict res-
olution. We briefly describe some of the proposed solutions here. Asklund et al. [9]
in COOP/Orm use the structure of the program in its visualizations to help users
make merge decisions. The tool automatically performs a three-way, line based
merge and the user needs to interact with the tool only for conflicts that it cannot
automatically resolve. In such cases the tool helps users make merge decisions by
presenting them with a version graph of which developer has changed which arti-
facts. The artifacts in the graph that have conflicts are highlighted (Figure 6, top
panel). The editing panel of the tool annotates artifacts that have merge conflicts
with “< − >” (the parent window is showing a conflict in stack.java) and dis-
plays changes from both the files. Changes that are conflicting are color coded. For
example the bottom middle panel displays the conflict in the code for stack.java,
and shows two variations for the assignment statement for the variable curr. The
user then has to choose the changes that should be preserved.

Molli et al. investigate synchronization problems arising when changes are executed
in parallel. They have produced a number of prototypes (e.g., COO [156] and
divergence metric [158]) that attempt to coordinate parallel activity. The COO3

environment supports synchronization of development activities by encapsulating

3
COO stands for cooperation and coordination in the software process

30

6 PROACTIVE

Figure 6: COOP/Orm merge UI [9].

the activities as COO transactions. COO transactions relax the isolation property
enforced by traditional ACID4 transactions while maintaining the other properties.
The COO environment allows developers to share intermediate results. In COO
each developer works on their local copy of the artifact, makes changes and can
place an intermediate version of the artifact in the repository that can then be used
by another developer. COO creates a final stable version of the artifact based on the
order in which the transactions were performed [156]. In other research, the authors
investigate the divergence that can occur in an artifact when developers concurrently
change the same artifact. They calculate this divergence based on the operations
that have been made to the artifact (operational transformation algorithms) and
present the calculated divergence metrics as graphs. The aim of the tool is to
enable users to better understand the divergence that has emerged as an indication
of the effort involved in its resolution, which needs to be resolved.

6.2.3 Summary

Compared to the previous layer in our pyramid, artifact management has advanced
from just providing the infrastructure for allowing parallel development to providing
automated support for integrating parallel changes. The focus of the tools at the
previous layer was to create protocols that would allow multiple developers to access
and modify artifacts synchronously or asynchronously. If the protocol allowed an
artifact to be modified simultaneously by two or more developers, it was the respon-

4
ACID : Atomic, Consistent, Isolation, and Durable

31

6 PROACTIVE

sibility of the developer to integrate the parallel changes. This is problematic, as it
was found in a study that the amount of parallel work is proportional to the num-
ber of conflicts in a project [176]. Tools at this layer therefore focused on helping
developers to deal with conflicts arising out parallel development.

6.3 Task Management

The tools at this layer support task management mainly by drawing upon the ex-
tensive knowledge base that is already available in the repository archives, such as
change logs, design documents, check-in comments, and so on. The tools analyze
this information and display the results as visualizations (e.g., which developer has
changed which artifact, how many lines of code have been changed by a particu-
lar developer) or provide recommendations to developers (e.g., which developer can
help me, which artifacts are important for the task at hand, who has worked on
similar projects).

A thing to note is that these tools are useful to both managers and developers. In
fact many of the tools that we discuss here have been designed more for the developer
than the manager (e.g., Hipikat, a tool that allows new developers to be productive
faster). Another observation is that these tools support task management by mining
information from archived artifacts, which is a clear example of the blending of
artifact management and task management strands of the pyramid.

6.3.1 Visualizing Software Evolution

Managers need to maintain a comprehensive view of the status of their projects
along with the interdependencies between the software modules, so that they can
make informed decisions. Managers usually make these kind of decisions based on
their expert judgement, but as software systems become more complex in nature
and larger in size, keeping track of the software and its components becomes more
difficult.

Research in information visualization aims to represent software systems, their evo-
lution, and interdependencies between its constituents in an easy to understand
graphical format, such that users can better understand the project space and
thereby make informed decisions. Some of these visualizations concentrate at the
code-level (Augur [82], Figure 7), while others take a broader outlook and visualize
the software system at the structural level (Evolution Matrix [129], Figure 8). Some
systems are currently exploring displaying these visualizations at a central place
using multiple monitors [169]. Storey et al. [205] have surveyed such visualizations
that support awareness of development activities. We briefly describe a few such
systems here.

32

6 PROACTIVE

SeeSoft [69] and Augur [82] use the software code maintained in a SCM reposi-
tory to display the number of lines that a particular developer has changed in a
particular file. Figure 7 illustrates Augur’s multi-pane interface, with the central
pane displaying lines of code that are color coded to represent changes by different
developers (lines of code changed by a particular developer are colored in a single
color). This metric helps managers comprehend the contribution of each developer,
the evolution of the system, and existence of code decay. When code gets old (e.g.,
legacy systems), eventually there are parts of code and issues involved with them
that people forget. As the code keeps getting modified, its architecture degrades
with bits of code never being used or being duplicated. Code decay represents this
degradation of code that makes subsequent maintenance of the system or addition
of new functionalities a difficult task.

Figure 7: Multi-Pane Interface of Augur [82].

Hill and Hollan modified the ZMACS editor to create the Edit Wear and Read
Wear tool [110]. This tool displays documents with scroll bars placed in the mar-
gins. Scroll bars indicate how many times a particular line has been read or edited.
Additional information regarding the authors who have modified the document is
also presented as meta-data along with the scroll bars. This system can therefore
graphically answer which sections in a document are most stable (changing the
slowest) or unstable (being edited rapidly).

Evolution Matrix [129] focus on the architecture of the system to represent the

33

6 PROACTIVE

evolution of the system. The Evolution Matrix considers classes that have been
added, modified, or deleted in different versions and creates a 2-D matrix, where
each cell in the matrix represents a class. Figure 8 shows the code structure of
MooseFinder [204] as visualized by the tool. The rows in the matrix represent the
number of classes and the columns the versions of the artifact. The evolution of the
system (e.g., when have classes been added to the system, when the system has been
stagnating) can be easily understood by simply looking at the evolution matrix.

Figure 8: Evolution Matrix Showing Code Structure of MooseFinder [129].

SeeSys [11] is a visualization system that uses state treemaps [120] to display software
code. The state treemap visualization maps hierarchical information of directories
and files onto a rectangular 2-D display. In this method, nodes whose attributes are
of more importance are given a larger display area. SeeSys further uses color and
animation (zoom in and zoom out) to show historical changes to the system.

6.3.2 Organizational Memory

New developers need to understand the design, the architecture, and any existing
code of the system before they can become productive and start coding. Most
companies assign an experienced developer as a mentor to the new developer. The
mentor guides the new developer in understanding the design constraints of the
system and any other relevant information that is necessary to understand the cur-
rent task. Initially, the new developer requires more help from their mentors but
as the developer gains experience these interactions reduce. It has been found in
a study [108] that developers are more inclined to help their colleagues who are
collocated than colleagues who are separated [91, 107]. Therefore, when teams are

34

6 PROACTIVE

distributed in nature (e.g., virtual teams), new developers cannot always get the
advantage of having a mentor. In cases were new developers are on their own, they
have to spend a considerable amount of time getting acquainted with their project
and organization before they can be productive [46]. In this section, we discuss
tools that utilize the product and organization information already existing in the
software archives to help developers be up-to-date with their task. New developers
can use these tools to recommend the correct design practices, experts in a domain,
required artifacts for a given task, and so forth.

Software critics are used in design environments (ArgoUML [185], ArchStudio [52])
to help developers maintain the design specifications of the software system. Soft-
ware critics are active agents that support decision-making by continuously and pes-
simistically analyzing partial designs or architectures. Critics analyze the changes
made by developers and compare these changes with the architecture of the system.
If the design violates any constraints it immediately notifies the developer. Since
critics are continuous and pessimistic in nature, these environments allow the critics
to be switched off so that developers are not distracted in their design exercise. De-
velopers can start the critics to check their entire design once they have completed
their task.

Recommendation systems can be used for recommending either domain experts
(e.g., Expertise Recommender [148], Expertise Browser [153]) or artifacts (e.g.,
Hipikat [46, 47], Codebroker [226]) that are essential for the current task. Arti-
fact recommenders help newcomers become productive quicker by recommending
existing artifacts from the development set that are relevant to the task at hand.
For example, Hipikat [46] uses two techniques to help newcomers. First, the tool in-
fers links between artifacts that may have been apparent at one time to members of
the development team but that went unrecorded. Second, using these links the tool
acts as a mentor and suggests relevant information that would help the newcomer
with their task.

Expertise recommenders on the other hand use data from SCM systems to locate
people with desired expertise. They help locate developers who have expertise in a
particular domain or have worked extensively in a specific product. The Expertise
Browser [153], for example, quantifies the past experience of developers and presents
the result to the user. This enables a manager to easily distinguish a developer
who has only worked briefly in a particular area from someone who has extensive
experience. In addition to locating developer expertise, the tool also helps managers
discover expertise profiles of organizations.

6.3.3 Social Navigation

Social relationships are a strong factor in determining who collaborates with whom.
Social networks are used by groupware designers to provide a means of visualizing

35

6 PROACTIVE

existing and potential interaction in organizational settings [147]. Social networks
should ideally make software development environments more sensitive to social
situations and guide users toward effective collaborations.

Social networks typically represent groups of people and the connection among them.
A common approach is to use social network visualization as an overview of group
participation or group membership. Social network visualizations (e.g., Conversa-
tion Map [192], PeCo [166], Contact Map [163]) mainly analyze the communication
medium among developers. Conversation Map [192] provides a content visualization
by analyzing the message content and displays the network of participants. Ogata
et al. [166] use PeCo to facilitate finding the person with whom to collaborate by
mining and analyzing email exchanges among individuals. Contact Map [163] is a
personal communication and contact management system. It mines the email ex-
changes and allows the user to arrange their contacts based on people with whom
they interact more regularly or deem important.

6.3.4 Group Decision Support Systems

Managers spend a considerable amount of their time in meetings. When starting a
new project or if a project is behind schedule managers meet to discuss the potential
problems that the group faces and generate potential solutions to solve them. These
meetings usually involve multiple stakeholders who have to agree on the solution and
the way it would be implemented. The members in the meeting may not always be
collocated which makes the decision making process even harder. Group Decision
Support Systems (GDSS) [126] provide automated support that help managers in
their decision making process.

GDSS combine computing, communication, and decision support technologies to
facilitate formulation and solution of unstructured problems by a group of peo-
ple [58]. GDSS improve the process of group decision making by removing common
communication barriers, providing techniques for structuring decision analysis, and
systematically directing the pattern, timing, and content of the discussion. Tech-
nological advancements, such as electronic boardrooms, broadband local area net-
works, teleconferencing, and decision support software, have spurred research in this
area. The availability of advanced GDSS coupled with the fact that managers have
to participate in meetings while they are away has made decision-related meetings
more frequent and more effective [112].

6.3.5 Summary

In conclusion, task management at the previous layer focused on encoding the de-
velopment process such that the system could generate the coordination protocol
that is required for the team. Effort was mainly concerned with correctly analyzing

36

6 PROACTIVE

the current process and enacting it. Exceptions to the prescribed rules were not well
handled. The focus of the tools at this layer is to complement the existing process
infrastructure by providing further information about development activities, such
that developers and managers alike can monitor the project space. The goal of these
tools is to make developers aware of development activities around them such that
they can detect potential conflicts and take steps to avoid them. In addition to
providing information of development activities, the tools mine the already existing
organization memory [1, 2] to help developers in their task. These tools mainly help
developers by recommending the correct design practices, experts in the field, or
artifacts required for tasks that the developer is involved in.

37

7 PASSIVE

7 Passive

The tools at the previous layer allow developers to monitor development activities
around them and be proactive by resolving potential conflicting situations before
they become real. However, these tools require explicit user involvement in setting
up the monitors, investigating notifications (usually sent via email), or understand-
ing the visualizations [205]. Moreover, barring a few, most of these tools are stand
alone applications and require users to switch contexts from their development task
to the visualizations. The tools at the seamless layer focus on reducing this load
on users by providing awareness to users in a passive format, such that they are not
distracted from their tasks. The tools further reduce the overload on users by pro-
viding filtering mechanisms that allow developers to view only relevant information
with minimal or no configuration requirement.

The advance in Integrated Development Environments (IDE) facilitated the integra-
tion of awareness widgets into the IDE, thus reducing the context switch required in
monitoring activities. For example, tools such as Palant́ır [194] and JAZZ [36] use
the Eclipse plug-in development features [39] to create passive workspace awareness
embedded in the IDE.

In a study at a commercial development site, Sawyer and Guinan [196] investigated
the development practices of forty teams to assess the effects of production methods
and social processes on software product quality and team performance. Findings of
the study indicate that production methods, such as use of software methodologies
and automated development tools, provide no explanation for the variance in either
software product quality or the team performance. Social processes on the other
hand, such as the level of informal coordination and communication, the ability to
resolve intragroup conflict, and the degree of supportiveness in the team, can account
for 25 percent of the variations in software product quality. Heath and Luff, in their
seminal study [102, 101], investigated how collocated team members coordinate their
actions by monitoring the physical cues and actions of their colleagues. Developers
generally subconsciously monitor the ambient noises (e.g., people arriving or leaving,
phone ringing, conversations in the hallway) in the environment to coordinate their
actions [80].

Teams that are distributed cannot take advantage of these environmental cues
making communication and coordination even harder [108]. However, distributed
development has become the norm in technology companies. Organizations fre-
quently operate teams that are geographically separated to leverage expertise lo-
cated elsewhere, spread development across time zones, and reduce development
costs [67, 106]. This new development practice exacerbates the already existing
problems in communication and coordination [28], with developers having to work
across different time zones, languages, and cultures [167, 107]. Researchers in collab-
orative development have started investigating ways to provide collocation benefits
to distributed teams [72]. These awareness tools mainly focus on providing aware-

38

7 PASSIVE

ness of user presence and activities to help distributed users collaborate; other areas
are still to be addressed.

The tools in the fourth layer of the pyramid, the passive layer, mainly focus in
providing awareness of co-developers and their development activities in a non-
intrusive, relevant, and timely manner. The tools at this layer provide further
evidence of the three strands slowly but definitely merging into each other to provide
tools a well-rounded approach to collaboration.

7.1 Communication

Tools at the previous layer enabled developers to be proactive by allowing them to
monitor development activities and communicate at real time. However, users had
to be actively involved while using these tools. Tools at this layer attempt to reduce
the user effort involved in collaboration. The awareness tools at this layer provide
information of parallel activities in a passive format (Tukan [198], Elvin [80]) so as
to reduce the effort and context switch that users have to undertake to monitor the
changes to artifacts. Some of these awareness widgets (JAZZ [36], Palantir [194])
are integrated with the development environment to further help developers avoid
the context switch between their development task and monitoring others’ activities.
Notifications services (Siena [34], Yancees [199, 200]) allow developers to filter out
information in which they are interested thereby reducing the information overload.

7.1.1 Awareness

Awareness can be defined as “an understanding of the activities of others, which
provides a context for your own activity” [64]. This context allows developers to
ensure that their contributions are relevant to the activity of the group as a whole.
Research in promoting awareness in shared work has been widely recognized in the
CSCW community [80] and currently is being investigated by researchers in software
engineering.

Awareness applications can be broadly classified into three categories based on the
type of awareness that they provide [178]. Task-oriented awareness focuses on ac-
tivities performed to achieve a specific shared task. This kind of awareness is usu-
ally provided by information on the state of an artifact in a shared workspace or
changes to it. This information can then be used to coordinate activities of devel-
opers around the shared object (GroupDesk [83], Tukan [198]). Social awareness
presents information about the presence and activity of people in a shared envi-
ronment (Portholes [65], Social Awareness@work [217]). Systems focusing on social
awareness provide information about who is present in a shared environment and
about the activities the users are currently engaged in. The difference between
task-oriented and social awareness is the shared context. The shared context for a

39

7 PASSIVE

task-oriented awareness system is established by the artifact that is part of a collab-
orative process, whereas for social awareness it is the environment that is inhabited
by the users. The third approach, room based awareness, integrates the aforemen-
tioned approaches. In systems following this approach, virtual rooms provide a
shared location for the organization and collection of task-oriented objects (Team-
Rooms [189], Diva [201]). For example, users who collaborate on a particular task
share a room and information of someone working on a shared artifact contributes
to task-oriented awareness. Whereas, the mere presence of the person in the shared
environment represents social awareness.

An interesting observation is that tools that provide awareness are difficult to distin-
guish based on the strand in the pyramid that they support best, because these tools
largely encompass all the three strands in some way or another. For instance, the
same tools can be used to support collaboration in communication, artifact manage-
ment, task management or a combination thereof. This illustrates the fact that, as
research has matured, tools have taken a broader scope in supporting collaboration.
However, tools at this layer have not blended the three strands completely yet, but
lay the foundation for the tools at the next layer (the seamless layer) to do so.

Task-Oriented Awareness: The chief purpose of tools that provide task-oriented
awareness is to enable developers to have an idea of the development activities of
others so that they can coordinate their tasks accordingly. The amount of aware-
ness information that is required for a particular task is based on the nature of the
task in which the user is involved. For example, synchronous editing requires the
users to be aware of every mouse-click and key-stroke of their co-authors, whereas
the awareness details required for asynchronous or semi-synchronous applications
are much more coarse (e.g., a developer has finished working on an artifact, a user
has started work). Semi-synchronous applications allow users to work in both syn-
chronous and asynchronous mode and therefore the awareness information required
for these applications is dependent on the mode of collaboration in which they are
currently engaged. For example, a developer might code in asynchronous mode
when they need to concentrate on their task, but work in synchronous mode while
debugging to obtain help from their colleagues. There are a number of applications
that support each of these modes of collaboration (GroupDesk [83], ShrEdit [150],
SUITE [59], [88]) and a few that allow developers to change their modes (Tukan [198],
Sepia [100]). Tools that allow users to change their mode of collaboration are dis-
cussed in Section 7.3.

Awareness tools can also be categorized based on the manner in which they present
awareness information. Some attach this information along with the artifacts, which
the users then need to investigate (already discussed in the proactive layer), while
others present this information in a passive unobtrusive display [197]. There are
a number of approaches that tools have investigated to disseminate information in
an effective but unobtrusive manner. The most common approach is to provide
awareness widgets that are small and stay in the background, but change their ap-

40

7 PASSIVE

pearances to draw the attention of the user (desouza99, fritzpatrick02). Some tools
emulate the development interface with which the user is familiar to embed aware-
ness information (Groupdesk [83] uses the desktop metaphor, PoliAwac [202] uses
the windows explorer interface), while others embed this information directly in the
development environment (JAZZ [36], Palant́ır [194]). Many tools are investigating
media outside the desktop. Some of these media includes separate display screens,
multiple monitor displays, 3D display of artifacts, ambient devices (ambient globes),
and ambient noises (whirring of the fan, thud of mail dropping) [80, 178, 169].

Traditionally, CSCW applications have focused on providing workspace awareness
(gutwin96, GroupSketch [87], Quilt [78]) while SCM based tools have focused on
repository based awareness (Cover [99], State TreeMaps [157]). This was so, be-
cause the nature of work in the two communities differed, with CSCW applications
typically supporting synchronous activities and SCM tools supporting asynchronous
activities. Currently this division is getting erased with some CSCW applications
investigating repository based information [6, 143], while SCM based tools are ex-
ploring workspace awareness [97, 194, 170]. A thing to note is that repository based
tools are better suited to provide a history of past actions [198, 194] than tools that
support synchronous activity and workspace awareness.

Social Awareness: Collocated teams members are often aware of activities around
them by subconsciously monitoring cues from the environment (e.g., conversation in
the hallways, the humming of printers, people passing by offices). Presence aware-
ness tools support distributed teams in taking advantage of these environmental
cues by representing activities of developers in the organization, both distributed
and remote, in a digital format. Tools such as Portholes [65] and Polyscope [25] use
video technology to capture activities in public areas and offices and present them
as regularly-updated digitized video images on workstations. Glance [210], another
video monitoring tool, follows a slightly different metaphor and provides the elec-
tronic analog of strolling down a hallway and intentionally glancing into people’s
office.

Use of video technology raises privacy concerns among users (see Section 7.3.1).
To avoid privacy issues of users, some tools do not use video technology. These
tools monitor user activities and presence by monitoring activities, such as when
developers are working on their computer, the kind of activity in which the developer
is involved (read/edit), whether the developer is present in a shared area (physical
or digital), and so on (Work rhythms [15], awareness monitors [32, 113]). In addition
to monitoring the presence of users to ascertain when is the best time to contact a
developer, these tools also help in community building via a shared space [81]. A
more popular and lower bandwidth solution to presence awareness are IM messages
(Section 6.1.1). JAZZ [36], a collaborative development environment, enhances the
information that IMs currently provide by adding context information about the
task in which the user is currently involved, making the application more suitable
for development teams.

41

7 PASSIVE

Room-based Awareness: In collocated software development teams physical con-
versation spaces are indispensable to conduct meetings, review design documents,
resolve conflicts, disseminate information or just converse informally [53]. Organi-
zations usually designate a permanent shared space to be used by the team, serving
as a meeting room, work area, a place to store documents that are needed by
the teams projects, and more generally, as a focus for communication within the
group [189, 201]. Traditional team rooms have relied on the physical proximity of
the team members and their easy access to the room. However, as teams get in-
creasingly distributed and chances for face-to-face discussions reduce, team members
turn to virtual team spaces for their communication needs [117].

Research in CSCW has resulted in virtual rooms [189, 201] that support the team
room concept for virtual teams. Using these systems, teams that are distributed can
still get a feeling of belonging to the group, monitor which artifact has been changed
by which developer, be able to access team related documents, or start electronic
discussions with team members. BCSW [6] provides similar kinds of information
(which developer has last viewed an artifact, which artifact has been viewed the
most, who is currently working on shared artifacts) but in a web-based format.
Some room-based systems allow developers to interact with the artifacts and other
developers in the shared room in a 3D environment allowing developers to experi-
ence the benefits of collocation [63, 27]. The main drawback of such room-based
awareness systems is that they are non-contextual. These systems are created as
separate applications and developers have to switch from their development envi-
ronment to view activities in these rooms. Moreover, when developers belong to
multiple rooms it becomes difficult to monitor activities in different rooms or search
for a particular artifact in a particular room.

Figure 9: The Three-Layer Model of Orbit [143].

42

7 PASSIVE

Researchers have started investigating making team rooms better by avoiding the
aforementioned drawbacks [117]. Orbit [143, 79], a collaborative environment, is
based on the notion of locales, a conceptual place where groups of people come
together to work on a shared activity. Orbits implements locales by using a three-
layer model (Figure 9). The bottom layer contains artifacts, tools and resources
to be used by the organization. The middle layer defines locales based on specific
collaborative activities. Each locale is then mapped to the artifacts, resources, and
tools in the bottom layer that are relevant to it. The top layer signifies the individual
layer, where individuals can belong to more than one locale and access artifacts with
respect to the locale that they are currently working in.

7.1.2 Event Notification Systems

One of the primary responsibilities of awareness tools is to notify users of events in
which they are interested (an artifact getting modified, a developer exploring the
shared space, a discussion in the shared space). A drawback to the awareness tools
is the amount and complexity of information that a user is forced to process to take
advantage of the benefits of awareness. When users are not able to process this
large amount of information they simply ignore it, sometimes ignoring important
information. Traditionally, users set filters to streamline the information to suit
their needs [17, 18], but it is not the perfect solution, since users have to manually
set the filters up and the filters are not flexible enough.

Event notification services work based on the publish-subscribe model, which helps
reduce the information overload on the recipients while making information dis-
tribution easier for the sender [138]. In order to leverage this advantage many
awareness tool builders have started using event notification services for their infor-
mation distribution needs, instead of creating their own event distribution network.
A secondary, but important benefit of using notification services, is that they allow
information from disparate sources to be integrated [54]. There are a number of noti-
fication services currently available [180, 190]. Here, we discuss some characteristics
of notification services that are important for creating collaborative tools.

• Subscription type: whether the subscription matching is content based or chan-
nel based. Content-based subscription [80, 34] matches the content of the event
with the subscription expression and forwards only those events that satisfy
the expressions. Channel-based subscriptions [168, 209], on the other hand
have predefined named topics or channels that must be specified by both the
producer and the consumer.

• Pull vs Push: whether it is a pull-based or a push-based mechanism. In the
pull-based mechanism [138, 122], clients poll the event server and retrieve
matching events, whereas in the push-based mechanism [80, 34] events are
sent to clients as soon as they occur.

43

7 PASSIVE

• Persistency : whether the service stores the events persistently for later re-
trieval [138, 122] or loses the events once they have been delivered.

• Federation: whether they work in a federation of multiple servers [80, 34] to
increase the load bearing capabilities and provide wide-area scalability or work
with a single server [122].

• Infrastructure: whether they are strongly coupled with a collaborative tool
[174] or provide a notification infrastructure [178]. Researchers are currently
investigating making notification infrastructures more versatile [200].

Awareness tools have built on different notification services based on which char-
acteristic is important for the specific tool. For example, federation of servers is
suitable for large applications, content-based subscription matching provides more
flexibility, and so on.

7.1.3 Summary

To summarize, tools at the previous layer allowed developers to be proactive, but this
required active user involvement either when communicating with their colleagues
(IM conversation) or for monitoring development activities of others (explicitly set
up the monitors, interpret the visualizations). The tools at this layer concentrate
on reducing the user effort in acquiring the information and processing it. The
tools present awareness information in a passive unobtrusive format, reduce the
information overload that developers have to face, and allow developers the flexibility
to configure the amount and type of information that they want to view.

7.2 Artifact Management

Conflict resolution is a time consuming and tedious effort that reduces the pro-
ductivity of teams [176]. Researchers have investigated different methodologies to
help reduce conflicts ranging from programming paradigms (separation of concerns,
encapsulation of functionalities) [172] to conflict detection tools [36, 129, 6]. How-
ever, despite these tools and methodologies, conflicts are still very much a reality
in commercial software development. Indeed there are a slew of conflict resolution
and merge tools that are currently available (Section 6.2.2). It is a well known fact
that the earlier a conflict is detected the less expensive it is, therefore researchers
have focused on creating sophisticated tools that help detect and resolve conflicts
before they become large and difficult to resolve. Tools at the previous layer enabled
developers to understand and visualize the changes to artifacts, such that, based on
their experience and domain knowledge, they could identify potential conflicts and
take steps to avoid them. Tools at this layer analyze the changes to an artifact and

44

7 PASSIVE

its effect on other artifacts based on program analysis. These tools, thus, aim to
provide more accurate conflict detection and at the same time reduce the user effort
required.

7.2.1 Change Analysis

Software change impact analysis helps users to understand and implement changes
in large systems by a providing detailed examination of the consequences of changes
in software [8, 7]. A major goal of impact analysis is to identify the software ar-
tifacts that would be affected by a proposed change. Developers can then use this
information to evaluate and implement the proposed changes, potentially in a way
that causes less impact.

Dependency analysis and traceability analysis are the two main schools of thought
that constitute impact analysis. Dependency analysis [137] involves examining de-
tailed dependency relationships among program entities (e.g., variables, logic mod-
ules, methods). It provides a detailed evaluation of dependencies at the code level,
but does not provide any support for other artifacts created in the software life cycle
such as requirement specifications, design documents, test suites, and so on.

Traceability analysis [38] examines dependency relationships among all artifacts
that are created in the software’s life cycle. For instance, it can relate requirement
specifications with associated design components or components in the architecture
to software code. Although traceability covers many of the relationships among
artifacts that a software repository stores, these relationships typically are not very
detailed.

The aforementioned impact analysis methods are not new and have been extensively
used in program comprehension. However, these techniques have largely not been
used by collaborative tools. Research in collaboration has only recently started
investigating the impact of changes made by a developer on another [198], sarma03].
These tools attempt to inform a developer of the effect of others’ change on their
current task. Being aware of this effect, developers can take appropriate actions
to coordinate their activities with others to avoid any conflicting situations. A
secondary benefit of the impact analysis is that it helps developers identify the
people that they need to collaborate with.

7.2.2 Artifact relationships

As discussed in Section 7.1.1, developers need to have constant awareness of the
activities related to a shared product while collaborating. These activities are mainly
related to the parts of the product on which a developer is directly working, but a
developer may also need to be informed about activities related to other parts of

45

7 PASSIVE

the product that are somehow related to “their” parts. Researchers are increasingly
concentrating on the product model for providing awareness to developers regarding
which artifacts are of interest to the developer, which artifacts have an effect on the
current task, which other developers are working on artifacts that are relevant, and
so on. This model is particularly useful in a distributed development context because
the product is normally the main focus of work for the developers and the shared
product is something on which the developers need to collaborate.

Systems that use product models specifically to aid collaboration use the inherent
relationship between the artifacts to interpret the impact of changes. These models
mainly represent the artifacts (classes or methods) in the software project as a
semantic network [198]. Each artifact in this network is either mapped to a node in
a graph or connected to other artifacts based on a relationship model [75]. When
a developer creates a new artifact or makes changes to an existing one, the tool
scans the artifact for possible relations to other artifacts in the graph to predict
the impact of the change. These tools usually allow a developer to define the set
of artifacts in which they are interested (called the focus of the developer’s current
interest). Artifacts that are related to this set of artifacts create the shared interest
space (nimbus). These tools, thus, use the developers’ focus and nimbus to predict
changes in which the developer should be interested.

The relationships between artifacts can be mined either using the aforementioned
product models or by using dependency analysis to create social callgraphs [53].
Developers can then navigate these social callgraphs to identify developers who are
most likely to affect them and with whom they should probably coordinate their
activities.

Task based SCM systems, unlike popular systems (e.g., CVS [20], Subversion [216],
Visual Source Safe [193]) that version individual artifacts, track the modified arti-
facts that are related to a particular task (e.g., CCC/Harvest [10], CM/Synergy [223],
Rational ClearCase [211]). Developers in these SCM systems select the particular
task that they are working on, the SCM system then uses that information to track
all the changes that have been made by the developer. On finishing their task, the
developer can simply check-in the task and the SCM system ensures that all the
relevant artifacts are checked-in. Managers and developers can thus depend on the
SCM system for information, such as, which artifacts were associated with which
tasks, which set of changes have been implemented, which changes have been used
in the latest build, and so on.

7.2.3 Summary

We note that tools at this layer attempt to reduce conflicts in collaborative devel-
opment by investigating the relationships among artifacts. Tools at the previous
layer showed which artifact is being changed by which developer and it was the

46

7 PASSIVE

responsibility of the developer to leverage their experience and domain knowledge
to detect potential conflicts. Tools at this layer analyze the changes to artifacts and
their effects, thereby reducing the user effort. A secondary benefit of these tools is
that they allow developers to better understand the structure of their product and
identify colleagues whom they should collaborate with.

7.3 Task Management

Informal communication is an important part of coordination [196]. Distributed
teams lose this ability and its corresponding cues that sometimes lead to delays or
creates problems in development [108]. Awareness tools attempt to recreate the so-
cial cues in an organization by presenting users with presence awareness, awareness
of activities of others, and providing virtual shared rooms where distributed devel-
opers can interact. These systems serve the purpose of communication tools and
can be used for task management. We note that the three strands of the pyramid
merge here as tools take a broader perspective and combine more than one activity.
For example, the awareness tools that we discuss in Section 7.1.1, serve the purpose
of communication, but can be and are used by developers and managers for task
management.

In this section we discuss research that improves the awareness tools already dis-
cussed. In particular, we discuss research that addresses the privacy concerns in
presence awareness tools, interruptions that distract developers, and the different
modes of collaboration that users would like to be involved in based on their current
tasks.

7.3.1 Privacy Concerns

Collocated teams often coordinate their activities based on informal communication
(coffee hour discussion, supervisors looking over the shoulder to check progress),
which is lost in distributed development. Unfortunately, it has also been found
that developers who are geographically separated are less likely to collaborate and
help each other [128, 108]. To enable distributed developers to take advantage of
this informal communication, researchers have created tools that provide presence
awareness in organizations (Section 7.1.1).

A primary concern among users of such systems is the tradeoff between access to
presence data for legitimate uses, and concerns about privacy [84, 115]. Some of
the issues with privacy are camera shyness, threat of surveillance, loss of control
over privacy, lack of support of awareness of audience, and so on. Researchers
are investigating policies, such as reciprocity and ownership of data, to alleviate
privacy concerns. For example, users are not keen on sharing their information
with strangers, but are more comfortable with people whose information they can

47

7 PASSIVE

view [84, 104]. Systems that use video technology address privacy concerns of users
by allowing them to host their own pictures, place cameras in neutral positions, blur
users images, and so on [132].

7.3.2 Interruption Management

Developers have to manage a number of distractions (colleague dropping by, tele-
phone ringing, IM message), which slow and sometimes introduce errors in complex
tasks in which developers are involved [186]. In collocated teams, social cues help
determine whether a colleague can be interrupted or not (a developer may close the
door to their office when they need to work in privacy). In a distributed develop-
ment environment developers can use the presence awareness tools to create social
cues that inform others about their availability. However, these tools fail to avoid
interruptions from automated external agents, such as critics, source control moni-
tors, bug-database monitors, and so on. Filtering interruption by creating rules does
not always work either, as some interruptions may be useful and help in getting a
task accomplished better or faster. Based on the benefits of the interruption, users
may assign higher priority to some interruptions than others. This priority may also
change based on the task in which the user is currently involved.

Researchers have studied the way managers and developers handle interruptions,
and they have found that there is never a good time for interruptions, since inter-
ruptions invariably disrupt the current task [49, 113]. This observation implies that
interruption management systems should not queue possible interruptions for the
ideal time, but send them at the best relative time based on the work patterns of
the user. Interruption management tools, thus, need to incorporate a certain level
of social process to ease the challenge of limited attention of the users [56, 149].

7.3.3 Changing Modes of Collaboration

The amount of collaboration that developers need varies from working in isolation to
tightly coupled collaboration mode, based on the current task in which the developer
is involved [98]. For example, a developer might want to work in isolation and not be
interrupted while implementing a complex task that requires intense concentration.
However, once the developer has finished implementing the task, they may want to
collaborate with their colleague to debug the program.

The tools following the formal process-based approach required the users to work in
isolation and then synchronize their changes with the repository. The tools following
the informal awareness-based approach supported the other extreme in collaboration
(synchronous editors) [218]. Researchers have realized that the mode of collabora-
tion depends on the task in which the developer is currently involved [98, 60] and may
lie at any point in between the two extremes. Tools following this approach typically

48

7 PASSIVE

allow a user to work in three distinct modes, namely Synchronous, Asynchronous,
and Multi-Synchronous (SAMS environment [159], FLECSE [60]). Tukan [198] fur-
ther decomposes its available modes to create nine distinct modes of collaboration
in which developers may be involved. All these tools however require the user to
explicitly set and change the mode of collaboration. The tools at the next layer aim
to reduce the user effort involved in changing the modes and automatically alter the
mode based on the current task that the user is involved in.

7.3.4 Summary

The tools at the proactive layer supported both managers and developers alike
in managing task by visualizing the development activities in the project space
and providing organizational memory. However, the tools at that layer required
users to be actively involved in using them. The awareness tools at this layer
are an enhancement of the tools at the previous layer as they require less user
involvement. The tools at this layer also address concerns that arise from using
awareness tools, such as, privacy issues, distractions caused by interruptions, and
the need for different modes of collaboration. These tools have succeeded in bringing
presence awareness and task-oriented awareness to distributed development, but still
are very much a work in progress. These tools have not yet been able to completely
imitate the social cues in an organization, or be easy to install and use either (and
may never be able to do so).

49

8 SEAMLESS

8 Seamless

Collaboration in software development is a challenging task [127] that is further mag-
nified with large teams [48] and geographical separation [33]. Traditionally, software
engineering and CSCW have taken two very different approaches to collaboration.
Software engineering research advocate dividing the development process into dis-
tinct steps and prescribing the coordination protocols among the steps [13, 171],
while CSCW researchers have recognized the importance of awareness and environ-
mental factors in collaboration [208, 64, 218]. Both these approaches have produced
tools that are extensively used in software development [74, 26], but they also suf-
fer from drawbacks. Formal process-based systems are scalable to large teams, but
are rigid and do not handle exceptions to the process very well [171]. Informal
awareness-based approaches, on the other hand, are user centric, but are not scal-
able and overwhelm users with excessive amounts of information [113]. Researchers
are currently investigating combining both these approaches so as to build on their
strengths, while avoiding their drawbacks.

There are different ways in which both approaches can be integrated. Some re-
searchers are investigating integrating the collaborative features typically provided
by CSCW applications into software engineering tools [61, 194]. While others are
trying to understand the development process with respect to the activities and ar-
tifacts in which developers are involved, creating software product and supporting
them [220, 221].

Strubing [207] in his study found three other activities that developers consistently
carry out beyond coding: “organizing their working space and process, representing
and communicating design decisions and ideas, and communicating and negotiating
with various stakeholders”. However, coding has traditionally been considered the
most important activity of a developer in software engineering. As a result, tool
builders have focused on creating better programming languages and environments
that facilitate coding, while ignoring other activities. In the recent past, environ-
ments that support collaborative activities and software artifacts produced during
the software life cycle have become popular.

Researchers following this approach are investigating environments that either sup-
port different types of software artifacts or integrate tools that do so [211, 182, 152].
Using these environments developers usually partition their views to interact with
different types of artifacts (e.g., system specification, design document, code). Mod-
ifying parts of a system specification in one tool can introduce inconsistencies with
related parts of the system specified in other tools, between specifications shared
by different developers, or even cause inconsistencies within the same tool. In a
complex system involving multiple developers and development tools, developers
are often unaware of the introduction, or even existence of such inconsistencies [96].
Mechanisms for detecting these kinds of inconsistencies and for informing developers
are currently being researched [152, 94].

50

8 SEAMLESS

Booch and Brown [24] propose Collaborative Development Environments (CDE),
a virtual space wherein all the stakeholders of a project, collocated or distributed,
can collaborate by negotiating, brainstorming, sharing knowledge, and in essence
working together to create an executable deliverable and its supporting artifacts.
A similar approach by van der Hoek et al. advocate continuous coordination, a
paradigm where “humans must not and cannot have their method of collaboration
dictated, but should be supported flexibly with both the tools and the information
to coordinate themselves and collaborate in their activities as they see fit” [218].

The aforementioned approaches exemplify the trend in research to provide a flex-
ible unified environment that allows the user to effortlessly collaborate with addi-
tional stakeholders by using different artifacts, while providing them the flexibility
to choose the level of collaboration support that is required. We observe that the
three strands in the pyramid have begun to strongly blend at this layer to create
a unified environment that begins to seamlessly supports communication, artifact
management, and task management.

We acknowledge that collaboration is a difficult task and integrated environments
do not solve all the collaboration problems, but it definitely is a step in the right
direction. We also recognize that problems in global software development, such
as differing time zones, language and culture barriers have yet to be investigated.
We have left the top of the pyramid open to signify the need and room for further
research.

51

9 OBSERVATIONS

9 Observations

In this paper we present a survey that takes a different perspective from the existing
surveys in classifying collaborative tools. Our framework considers the user effort
that is required to collaborate effectively − a critical component in deciding whether
a tool is adopted or not [92]. For the purposes of this paper, we define user effort as
the attention and time that a user has to expend in using the tool to communicate
and coordinate their activities.

Our classification framework is in the form of a pyramid, with five layers and three
strands (Figure 4). The layers in the pyramid are arranged vertically and are: (1)
functional, (2) defined, (3) proactive, (4) passive, and (5) seamless. Tools
that are at a higher layer in the pyramid provide more sophisticated automated
support, thereby lowering the user effort required in using these tools. Crosscutting
the layers of the pyramid are three strands that we believe are the critical needs of
collaboration. These strands are: communication, artifact management, and task
management.

We note that there is a natural ordering of the collaborative tools based on the
user effort required in operating them. Our framework highlights this ordering by
placing them in successive layers of the pyramid. For example, tools that facili-
tate communication started by allowing teams to communicate by using electronic
mail in the functional layer, which was an advancement over the prevalent office
memos. The user effort that was required in determining when, who, and how to
send communication was reduced in the defined layer with tools archiving commu-
nication along with artifacts and sending certain notes automatically (e.g., “foo.c
has been checked out and is ready for testing”). The third layer of the pyramid,
the proactive layer, allowed developers to be proactive by allowing them to com-
municate asynchronously and monitor changes to artifacts. The tools at the next
layer, the passive layer, reduced the effort required to set the monitors and investi-
gate the changes by providing awareness of activities and co-developers in a passive
unobtrusive manner. Tools at the seamless layer take a step further and attempt
to provide a seamless environment that would make communication smooth and
effortless.

Tools that support task management reflect a similar ordering. Task management
has moved from ad hoc management techniques using tools at the functional

layer to well-defined coordination and computation steps prescribed by tools at the
defined layer. The undesirable rigidity enforced by tools at the defined layer is
broken by tools at the next layer. By using tools at the proactive layer users can
be proactive and have the flexibility to change the development process if needed.
The tools at this layer further help users in their task by leveraging the existing
information and history of past activities. The next layer, the passive layer, fur-
ther enhances task management by providing collocation benefits and awareness to
distributed teams. The final layer of the pyramid, seamless, attempts to create a

52

9 OBSERVATIONS

continuous and smooth coordination infrastructure that allows both developers and
managers to effectively manage their tasks.

We note that the changes in the functionality of the tools have gradually occurred
over time, but that layer development has not been strictly historical. Sometimes,
research has jumped a level (as in the case of Portholes [65], see section 7.1.1) and
sometimes research has returned to a lower level to spark evolution at a higher
level (as in research in social navigation, see section 6.3.3, where research on email
allowed subsequent development of recommendation systems [163, 166]). Another
interesting observation is that the requirements in collaboration have been signif-
icantly impacted by environmental factors and experience from usage of existing
tools.

The strands in the pyramid slowly but surely intertwine with each other until they
finally blend together, lending the shape of a pyramid to the framework. We note
that lower layer tools generally focused on a specific strand, but as they evolved
they took a broader approach encompassing more than one strand. This reflects
the maturity of the field and the fact that research in different areas have started
collaborating to create tools with a broader perspective.

We recognize that the manner in which collaboration is carried out depends to a
large extent on environmental factors and development practices. For example, use
of interfaces as part of object-oriented programming promoted stronger separation
of concerns, which in turn facilitated distributed development. Distributed develop-
ment, on the other hand, created the need and promoted research in collaborative
tools that facilitate communication and coordination over distances. There are a
number of problems in collaboration that have yet to be resolved (e.g., difficulties
like collaborating across different time zones and cultures caused by global software
development). We have left the top of the pyramid open to signify future research.
We do not know if the seamless layer will be the last layer or if it will split into
additional layers, and is subject to future research.

A secondary benefit of our framework is that users can relate tools in different
areas (e.g., workflow, CSCW, SCM) under a single classification framework as our
framework is independent of the methodology that a tool follows, and is based on
the functionalities of the tool and the user effort required in using these tools.

53

10 CONCLUSIONS

10 Conclusions

Software development is not just an engineering effort, it also inherently involves hu-
man interactions. Moreover, the collaboration needs of software developers are not
static and evolve over time. These needs are shaped by environmental factors and
prevalent development practices. For example, the collaboration needs of a team
vary based on the nature of the product (e.g., large government contract, in-house
development, commercial shrink wrap software); the programming paradigm used
(e.g., procedural languages, object-oriented programming, aspect-oriented program-
ming); the organizational structure (e.g., collocated, distributed, open-source); and
the amount of automation available to users.

Tool builders have recognized the collaboration needs of developers and are striv-
ing to incorporate collaboration features in their tool sets. However, collaboration
support for software development is nontrivial and difficult to achieve by merely
adding collaborative features to existing functionalities. Unfortunately, this is the
approach that the majority of tool builders have taken. Tools produced by the
software engineering community are typically built from a decidedly software engi-
neering perspective, with the collaborative aspects of the tools based on bits and
pieces of ideas borrowed from the CSCW community. For example, sophisticated
IDEs provide awareness through the simple addition of awareness widgets. The re-
verse holds true as well – the CSCW community produces development tools that,
while highly sophisticated in terms of collaboration mechanisms, have only mar-
ginal support for software-specific aspects, such as life cycle support, large group
coordination, and diverse artifacts.

To create intrinsic collaboration support for software development, researchers need
to reevaluate the traditional development practices to design development tools from
the ground up to truly support collaboration. This step requires researchers in both
CSCW and software engineering to work together to leverage the vast experiences in
both fields. Fortunately, researchers have started to realize this and are proposing
seamless and flexible environments that provide continuous coordination. In the
meantime, plug-in based development environments are gaining popularity as they
allow developers to find the right mix of tools that best suit their needs.

Our survey provides a framework that classifies tools based on the user effort re-
quired and the type of collaboration support provided. Our framework, thus, breaks
the unseen boundaries between different research areas and allows one to relate tools
in different areas. We hope that understanding the existing functionalities and relat-
ing them to each other will pave the way for a deeper understanding of collaboration
needs in software development and ultimately lead to newer and better tools.

54

REFERENCES

References

[1] M.S. Ackerman and C.A. Halverson. Considering an organization’s memory. In 1998
ACM conference on Computer supported cooperative work, pages 39–48, Seattle, Wash-
ington, 1998.

[2] M.S. Ackerman and C.A. Halverson. Reexamining organizational memory. Commu-
nications of the ACM, 43(1):58–64, 2000.

[3] L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Minard, and J. Posner. Clearcase
multisite: Supporting geographically-distributed software development. In Interna-
tional Workshop on Software Configuration Management: ICSE SCM-4 and SCM-5
Workshops Selected Papers, pages 194–214, 1995.

[4] V. Ambriola, G.A. Cignoni, and C. Montangero. Enacting software processes in oikos.
In 4th ACM SIGSOFT Symposium on Software Developement Environments (SDE4),
pages 183–192, Irvine, 1990.

[5] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing process-centered software engi-
neering environments. ACM Transactions on Software Engineering and Methodology
(TOSEM), 6(3):283–328, 1997.

[6] W. Appelt. Www based collaboration with the bscw system. In Conference on Current
Trends in Theory and Informatics, pages 66–78, 1999.

[7] R.S. Arnold. The year 2000 problem: Impact, strategies and tools. Technical report,
Software Evolution Technology, Inc. Tech. Report, February 1996.

[8] R.S. Arnold and S. A. Bohner. Impact analysis - towards a framework for comparison.
In Proceedings of the Conference on Software Maintenance, pages 292 – 301, 1993.

[9] U. Asklund and B. Magnusson. Support for consistent merge. In Proceedings of SCM-
10, 10th International Workshop on Software Configuration Management:New Prac-
tices, New Challanges and New Boundaries., pages 27–32, Toronto, Ontario, Canada,
2001.

[10] Computer Associates. Product solutions: http://www3.ca.com/products/, 2005.

[11] M.J. Baker and S. G. Eick. Space-filling software visualization. Journal of Visual
Languages and Computing, 6(2):119–133, 1995.

[12] Fuggetta A. Ghezzi C. Bandinelli, S. and L. Lavazza. Spade: An environment for
software process analysis, design, and enactment. In Software process modelling and
technology, pages 223 – 247. 1994.

[13] P. Barthelmess and K.M. Anderson. A view of software development environments
based on activity theory. Computer Supported Cooperative Work, 11(1-2):13–37, 2002.

[14] D. Beard, Humm A. Banks D. Nair A. Murugappan, P., and Y.-P. Shan. A visual
calendar for scheduling group meetings. In 3rd Conference on Computer Supported
Cooperative Work, pages 279–290. ACM Press, NY, 1990.

[15] J. Begole, J.C. Tang, R. B. Smith, and N. Yankelovich. Work rhythms: analyzing
visualizations of awareness histories of distributed groups. In 2002 ACM conference
on Computer supported cooperative work, pages 334–343, New Orleans, Louisiana,
2002.

55

REFERENCES

[16] V. Bellotti, B. Dalal, N. Good, P. Flynn, D.G. Bobrow, and N. Ducheneaut. What a
to-do: studies of task management towards the design of a personal task list manager.
In Conference on Human Factors in Computing Systems, pages 735–742, Vienna,
Austria, 2004.

[17] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Email-centric task management
and its relationship with overload, 2002.

[18] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task: the
design and evaluation of a task management centered email tool. In Human Factors
in Computing Systems, SESSION: Integrating tools and tasks, pages 345–352, Ft.
Lauderdale, Florida, USA, 2003. ACM Press.

[19] I.Z. Ben-Shaul, G.T. Heineman, S.S. Popovich, P.D. Skopp, A.Z. Tong, and G. Vale-
too. Integrating groupware and process technologies in the oz environment. In Ninth
International Software Process Workshop: The Role of Humans in the Process, pages
114–116, Airlie VA, 1994. IEEE Computer Society Press.

[20] B. Berliner. Cvs ii: Parallelizing software development. In USENIX Winter 1990
Technical Conference, pages 341–352, 1990.

[21] V. Berzins. Software merge: Semantics of combining changes to programs. ACM
Transactions, Programming Languages and Systems, 16(6):1875–1903, 1994.

[22] E.A. Bier and S. Freeman. Mmm: A user interface architecture for shared editors
on a single screen. In ACM Symposium on User Interface Software and Technology,
pages 79–86, 1991.

[23] D. Binkley, S. Horwitz, and T. Reps. Program integration for languages with procedure
class. ACM Transactions, Software Engineering and Methodology, 4(1):3–35, 1995.

[24] G. Booch and A. Brown. Collaborative development environments. Advances in
Computers, 59, 2003.

[25] A. Borning and M. Travers. Two approaches to casual interaction over computer
and video networks. In SIGCHI conference on Human factors in computing systems:
Reaching through technology, pages 13–19, New Orleans, Louisiana, 1991.

[26] E. Bradner, W. Kellogg, and T. Erickson. The adoption and use of ’babble’: A
field study of chat in the workplace. In the Sixth European conference on Computer
supported cooperative work, pages 139–158, Copenhagen, Denmark, 1999. Kluwer Aca-
demic Publishers.

[27] S. Brave, H. Ishii, and A. Dahley. Tangible interfaces for remote collaboration and
communication. In 1998 ACM conference on Computer supported cooperative work,
pages 169–178, Seattle, Washington, USA, 1998.

[28] F. P. Brooks Jr. The mythical man-month. Datamation, 20(12):44–52, 1974.

[29] J. Buffenbarger. Syntactic software merging. In Software Configuration Management:
ICSE SCM-4 and SCM-5 Workshops Selected Papers, pages 153–172, 1995.

[30] Bugzilla. http://www.bugzilla.org.

[31] S.A. Bull. Introduction to flowpath. Technical report, May 1992.

[32] J.J. Cadiz, S.R. Fussell, R. E. Kraut, J.F. Lerch, and W.L. Scherlis. Awareness
monitor: A coordination tool for asynchronous, distributed work teams. Technical
report, Unpublished manuscript, Carnegie Mellon University, 1999.

56

REFERENCES

[33] E. Carmel. Global Software Teams: Collaborating Across Borders and Time Zones.
Prentice-Hall: Englewood Cliffs NJ, 1st edition edition, 1999.

[34] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 2001. ACM
Trans. Comp. Sys.

[35] C.S. Chatfield and J.D. Johnson. Microsoft Project 2000 Step by Step. Microsoft
Press;, bk and cd-rom edition edition, 2000.

[36] Li-Te Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up eclipse with col-
laborative tools. In 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications / Eclipse Technology Exchange
Workshop, pages 102–103, Anaheim, CA, 2003.

[37] M.C. Chu-Carroll and S. Sprenkle. Coven: Brewing better collaboration through soft-
ware configuration management. In Eighth International Symposium on Foundations
of Software Engineering, pages 88–97, 2000.

[38] A. Cimitile, F. Lanubile, and G. Visaggio. Traceability based on design decisions.
In Proceedings of International Conference on Software Maintenance, pages 309–317,
Orlando, FL, 1992.

[39] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Quality Plug-ins. Eclipse
Series. Addison-Wesley Professional, 2004.

[40] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, NY, USA,
3rd edition, 1987.

[41] J. Conklin and M.L. Begeman. gibis: A hypertext tool for exploratory policy dis-
cussion. In the Conference on Computer Supported Cooperative Work (CSCW ’88),
pages 140–152. ACM Press, NY, 1988.

[42] R. Conradi, M. Hagaseth, J-O. Larsen, M.N. Nguyn, B.P. Munch, P.H. Westby,
W. Zhu, M.L Jaccheri, and C. Liu. Epos: object-oriented cooperative process mod-
elling. In Software process modelling and technology, pages 33 – 70. 1994.

[43] R. Conradi, M.L. Jaccheri, C. Mazzi, M.N. Nguyen, and A. Aarsten. Design, use and
implementation of spell, a language for software process modelling and evolution. In
Second European Workshop on Software Process Technology, pages 167–177, 1992.

[44] R. Conradi and B. Westfechtel. Version models for software configuration manage-
ment. ACM Computing Surveys, 30(2):232–282, 1998.

[45] W.B. Croft and L.S. Lefkowitz. Using a planner to support office work. In ACM
Conference on Office Information Systems, pages 55–62. ACN, NY, 1988.

[46] D. Cubranic, G. Murphy, and K Booth. Hipikat: A developer’s recommender. In
OOPSLA, 2002.

[47] D. Cubranic and Gail C. Murphy. Hipikat: Recommending pertinent software arti-
facts. In International Conference on Software Engineering, pages 408 – 418, Portland,
Oregon, 2003.

[48] B. Curtis, H. Krasner., and N. Iscoe. A field study of the software design process for
large systems. Communications of the ACM, 31(11):1268–1287, 1988.

[49] E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, disruption, and memory:
Effects of messaging interruptions on memory and performance. In Interact, Tokyo,
Japan, 2001.

57

REFERENCES

[50] M. Czerwinski, E. Cutrell, and E. Horvitz. Instant messaging and interruption: In-
fluence of task type on perform. In OZCHI 2000 Conference, pages 356–361, 2000.

[51] S. Dart. Concepts in configuration management systems. In Third International
Workshop on Software Configuration Management, pages 1–18, 1991.

[52] E. Dashofy, A. van der Hoek, and R. Taylor. A comprehensive approach for the devel-
opment of modular software architecture description languages. In ACM Transactions
on Software Engineering and Methodology, to appear., 2005.

[53] C. R. B. de Souza, P. Dourish, D. Redmiles, S. Quirk, and E. Trainer. From technical
dependencies to social dependencies. In Workshop in Social Networks for Design
and Analysis: Using Network Information in CSCW during the ACM Conference on
Computer-Supported Cooperative Work, Chicago, IL, 2004.

[54] C.R.B. de Souza, S.D. Basaveswara, and D Redmiles. Lessons learned using notifi-
cation servers to support application awareness. In Meeting of the Human Computer
Interaction Consortium (HCIC 2002 Frasier, CO), 2002.

[55] C.R.B. de Souza, D.F. Redmiles, G. Mark, J. Penix, and M. Sierhuis. Management of
interdependencies in collaborative software development. In ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE 2003),, pages 294–303, 2003.

[56] Y. Dekel and S. Ross. Eclipse as a platform for research on interruption management
in software development. In Eclipse Technology Exchange Workshop at OOPSLA’04,
Vancouver, BC, Canada,, 2004.

[57] A.R. Dennis, F.G. Joey, L.M. Jessup, J.F. Nunamaker, and D.R. Vogel. Informa-
tion technology to support electronic meetings. Management Information Systems,
12(4):591–619, Dec 1988.

[58] G. DeSanctis and R. B. Gallupe. A foundation for the study of group decision support
systems. Management Science, 33(5):589–609, 1987.

[59] P. Dewan and R. Choudhary. A high-level and flexible framework for implementing
multi-user interfaces. ACM Transactions on Information Systems, 10(4):345–380,
1992.

[60] P. Dewan and J. Riedl. Toward computer-supported concurrent software engineering.
IEEE Computer, 26(1):17–27, 1993.

[61] E. Di Nitto and A. Fuggetta. Integrating process technology and cscw. In 4th European
Workshop on Software Process Technology, volume 413, pages 154–161, 1995.

[62] Diget. Autoplan. 2004.

[63] S.E. Dossick and G.E. Kaiser. A metadata-based distributed software development
environment. In Seventh European Software Engineering Conference together with the
Seventh ACM SIGSOFT International Symposium on the Foundations of Software
Engineering, pages 464–475, 1999.

[64] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In
ACM Conference on Computer-Supported Cooperative Work, pages 107–114, Mon-
terey, California, USA, 1992.

[65] P. Dourish and S. Bly. Portholes: Supporting awareness in a distributed work group.
In Human Factors in Computing Systems, CHI’92, pages 541–547, New York, 1992.

[66] N. Ducheneaut and V. Bellotti. E-mail as habitat: an exploration of embedded per-
sonal information management. interactions, Volume 8(Issue 5):30 – 38, 2001.

58

REFERENCES

[67] C. Ebert and P. De Neve. Surviving global software development. IEEE Software,
18(2):62–69, 2001.

[68] D.A. Edwards and M.S. McKendry. Exploiting read-mostly workloads in filenet file
system. In Proceedings of the Twelfth ACM Symposium on Operating Systems Prin-
ciples, pages 58–70, 1989.

[69] S. G. Eick, J.L. Steffen, and Jr. Summer, E.E. Seesoft-a tool for visualizing line
oriented software statistics. IEEE Transactions on Software Engineering, Special issue
on software measurement principles, techniques, and environments, 18(11):957–958,
1992.

[70] C.A. Ellis. Information control nets: A mathematical model of office information
flow. In ACM Press, editor, In Proceedings of the ACM Conference on Simulation,
Measurement and Modeling of Computer Systems, pages 225–240, Boulder, Colorado,
1979.

[71] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Design and use of a group editor. In Engineering
for Human Computer Interaction, pages 13–25, North Holland/Elsevier, Amsterdam,
1990.

[72] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware—some issues and experiences.
communications of the ACM, 34(1):38–58, 1999.

[73] C.A. Ellis and N. Naffah. Design of office information systems. 1987.

[74] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi, G. Clemm, W. F. Tichy, and
D.W. Weber. Impact of software engineering research on the practice of software
configuration management. to appear (ACM Transactions of Software Engineering
and Methodology), 2005.

[75] B. A. Farshchian. Integrating geographically distributed development teams through
increased product awareness. Information Systems Journal, 26(3):123–141, 2001.

[76] P.H. Feiler. Configuration management models in commercial environments. Technical
Report SEI-91-TR-07, Software Engineering Institute, Carnegie Mellon University,
1991.

[77] A. Finkelstein, G. Kramer, and B. Nuseibeh. Software Process Modeling and Technol-
ogy. Research Studies Press. 1994.

[78] R.S. Fish, R. E. Kraut, and M.D.P. Leland. Quilt: a collaborative tool for cooperative
writing. ACM SIGOIS Bulletin, 9(2-3):30–37, April 1988.

[79] G. Fitzpatrick, S. Kaplan, and T. Mansfield. Physical spaces, virtual places and social
worlds: A study of work in the virtual. In Computer-Supported Collaborative Work
’96, pages 334–343, 1996.

[80] G. Fitzpatrick, S. Kaplan, T. Mansfield, D. Arnold, and B. Segall. Supporting pub-
lic availability and accessibility with elvin: Experiences and reflections. Computer
Supported Cooperative Work, 2002.

[81] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and B. Segall. Aug-
menting the workaday world with elvin. In Sixth European Conference on Computer
Supported Cooperative Work, pages 431–451, 1999.

[82] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual tool for dis-
tributed software development teams. In Proceedings of the International Conference
on Software Engineering, pages 387–396, Edinburgh, UK, 2004.

59

REFERENCES

[83] L. Fuchs, Pankoke-Babatz U., and W. Prinz. Supporting cooperative awareness with
local event mechanism: The group desk system. In European Computer Supported
Cooperative Work (ECSCW’95), pages 247–262. Kluwer, Dordrecht, 1995.

[84] P. Godefroid, J. Herbsleb, L.J. Jagadeesany, and D. Li. Ensuring privacy in pres-
ence awareness: an automated verification approach. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 59–68, Philadelphia, Penn-
sylvania, USA, 2000. ACM Press.

[85] S. Goldmann, J. Mnch, and H. Holz. Milos: A model of interleaved planning, schedul-
ing, and enactment. In Web-Proceedings of the 2nd Workshop on Software Engineering
over the Internet, Los Angeles, CA, 1999.

[86] A. Graveline, C. Geisler, and M. Danchak. Teaming together apart: emergent pat-
terns of media use in collaboration at a distance. In 18th annual ACM international
conference on Computer documentation: technology and teamwork, pages 381–393,
Cambridge,Massachusetts, USA, 2000. IEEE Educational Activities Department.

[87] S. Greenberg and R. Bohnet. Groupsketch: A multi-user sketchpad for geographically-
distributed small groups. In Proceedings of Graphics Interface, 1991.

[88] S. Greenberg and M. Roseman. Groupware toolkits for synchronous work. In
Computer-Supported Cooperative Work (Trends in Software), volume 7, pages 135–
168, 1999.

[89] R.E. Grinter. Using a configuration management tool to coordinate software develop-
ment. In Conference on Organizational Computing Systems, pages 168–177, 1995.

[90] R.E. Grinter. Supporting articulation work using software configuration management
systems. Computer Supported Cooperative Work, 5(4):447–465, 1996.

[91] R.E. Grinter, J.D. Herbsleb, and D.E. Perry. The geography of coordination: Dealing
with distance in r&d work. In ACM Conference on Supporting Group Work (GROUP
99), pages 306–315, Phoenix, AZ, 1999.

[92] J. Grudin. Why cscw applications fail: problems in the design and evaluation of
organization of organizational interfaces. In Proceedings of the 1988 ACM conference
on Computer-supported cooperative work, pages 85–93, Portland, Oregon, 1988.

[93] J. Grudin. Cscw: History and focus. IEEE Computer, 27(5):19–27, 1994.

[94] J.C. Grundy and J.G. Hosking. Constructing integrated software development
environments with mviews. Interactional Journal Applied Software Technology,
2(3/4):133–160, 1996.

[95] J.C. Grundy and J.G. Hosking. Serendipity: integrated environment support for
process modelling, enactment and work coordination. Automated Software Engineer-
ing, 5(1):27–60, 1998.

[96] J.C. Grundy, J.G. Hosking, and W.B. Mugridge. Inconsistency management for multi-
view software development environments. IEEE Transactions on Software Engineer-
ing: Special Issue on Managing Inconsistency in Software Development, Vol. 24(No.
11), 1998.

[97] C. Gutwin and S. Greenberg. Workspace awareness for groupware. In CHI’96 Con-
ference Companion on Human Factors in Computing Systems, pages 208–209, 1996.

[98] A. Haake. Facilitating orientation in shared hypermedia workspaces. In International
ACM SIGGROUP Conference on Supporting Group Work, pages 365–374, 1999.

60

REFERENCES

[99] A. Haake and J.M. Haake. Take cover: Exploiting version support in cooperative
systems. In INTERCHI’93, pages 406–413, 1993.

[100] J.M. Haake and B. Wilson. Supporting collaborative writing of hyperdocuments in
sepia. In 1992 ACM conference on Computer-supported cooperative work, pages 138–
146, Toronto, Ontario, Canada, 1992. ACM Press.

[101] C. Heath, M. Jirotka, P. Luff, and J. Hindmarsh. Unpacking collaboration: the
interactional organisation of trading in a city dealing room. Computer Supported
Cooperative Work, 3(2):147–165, 1994.

[102] C. Heath and P. Luff. Collaboration and control: Crisis management and multimedia
technology in london underground line control rooms. Computer Supported Coopera-
tive Work, 1(12):69–94 rooms, 1992.

[103] D. Heimbigner, L. Osterweil, and S. Sutton. Appl/a: A language for managing rela-
tions among software objects and processes. Technical report, University of Colorado,
Department of Computer Science, Boulder, Colorado, 1987.

[104] J. Herbsleb, D.L. Atkins, B.G. Boyer, M. Handel, and T. A. Finholt. Introducing
instant messaging and chat in the workplace. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Changing our world, changing ourselves,
pages 171–178, Minneapolis, Minnesota, USA, 2002.

[105] J. Herbsleb and R. E. Grinter. Splitting the organization and integrating the code:
Conway’s law revisited. In Proceedings of the 21st international conference on Software
engineering, pages 85–95, Los Angeles, CA, USA, 1999.

[106] J. Herbsleb and D. Moitra. Global software development. IEEE Software, 18(2):16–20,
2001.

[107] J. D. Herbsleb and R. E. Grinter. Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Software, pages 63–70, 1999.

[108] J.D. Herbsleb, A. Mockus, T. A. Finholt, and R.E. Grinter. Distance, dependencies,
and delay in a global collaboration. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 319–328, Philadelphia, PA, 2000.

[109] J. Hill and C. Gutwin. Awareness support in a groupware widget toolkit. In Pro-
ceedings of the 2003 international ACM SIGGROUP conference on Supporting group
work, pages 258–267, Sanibel Islands, Florida, USA, 2003. ACM Press.

[110] W. C. Hill and et al. Edit wear and read wear. In Proceedings of the ACM SIGCHI
Conference on Human Factors and Computing Systems, pages 3–9, 1992.

[111] S. Horwitz, Prins. J., and Reps. T . Integrating non-interfering versions of programs.
ACM Transactions, Programming Languages and Systems, 11(3):345–387, 1989.

[112] G. P. Huber. Issues in the design of group support systems. MIS Quarterly, September
1984.

[113] J.M. Hudson, J. Christensen, W.A. Kellogg, and T. Erickson. ”i’d be overwhelmed,
but it’s just one more thing to do”: availability and interruption in research man-
agement. In Proceedings of the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves, pages 97–104, Minneapolis, Min-
nesota, 2002.

[114] S. Hudson and R. King. The cactis project: Database support for software environ-
ments. IEEE Transactions on Software Engineering, 14(6):709–719, 1988.

61

REFERENCES

[115] S.E. Hudson and I. Smith. Techniques for addressing fundamental privacy disruption
tradeoffs in awareness support systems. In ACM, Computer-Supported Cooperative
Work (CSCW96), Boston, Massachusetts, USA, 1996.

[116] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350–353, 1977.

[117] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Reinventing team spaces for a col-
laborative development environment. In ”Beyond Threaded Conversation” Workshop,
in CHI 2005 (to appear), 2005.

[118] Software Maintenance $ Development Systems Inc. Aide de camp product overview.
Technical report, 1994 1994.

[119] K. Jensen. Colored petri nets: Basic concepts, analysis methods, and practical use.
Springer-Verlag, 3:265, 1997.

[120] B. Johnson. Treeviz: Treemap visualization of hierarchically structured information.
In John Bennett Penny Bauersfeld and Gene Lynch, editors, Proceedings of the Confer-
ence on Human Factors in Computing Systems, pages 369–372, Monterey, California,
USA, 1992. ACM Press.

[121] R. E. Kaliouby and P. Robinson. Faim: integrating automated facial affect analysis
in instant messaging. In Proceedings of the 9th international conference on Intelligent
user interface, pages 244 – 246, Funchal, Madeira, Portugal, 2004.

[122] M. Kantor and D. Redmiles. Creating an infrastructure for ubiquitous awareness. In
Eighth IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001),,
pages 431–438, Tokyo, Japan, 2001.

[123] D. W. Karolak. Global software development: managing virtual teams and environ-
ments. IEEE Computer Society, 1999.

[124] D. Kirsch. The context of work. Human-Computer Interaction, Vol 16:305–322, 2001.

[125] M.J. Knister and A. Prakash. Distedit: a distributed toolkit for supporting multiple
group editors. In Proceedings of the 1990 ACM conference on Computer-supported
cooperative work, Los Angeles, CA, 1990.

[126] K. Kraemer and J. L. King. Computer-based systems for cooperative work and group
decision making. ACM Computing Surveys (CSUR), 20(2):115–146, 1988.

[127] R.E. Krant and L.A. Streeter. Coordination in software development. Communications
of the ACM, 38(3):69–81, 1995.

[128] R. Kraut, C. Egido, and J. Galegher. Patterns of contact and communication in scien-
tific research collaboration. In Proceedings of the 1988 ACM conference on Computer-
supported cooperative work, pages 1–12, Portland, Oregon, 1988.

[129] M. Lanza. The evolution matrix: Recovering software evolution using software visu-
alization techniques. In 2001 International Workshop on the Principles of Software
Evolution, pages 28–33, 2001.

[130] D. Leblang. The CM challenge: configuration management that works, volume 2 of
Trends in Software of In Configuration management. John Wiley $ Sons, Inc., New
York,, 1995.

[131] D.B. Leblang and G.D. McLean. Configuration management for large-scale soft-
ware development efforts. In Proc. Workshop Software Eng. Environments for
Programming-in-the-Large, pages 122–127, 1985.

62

REFERENCES

[132] A. Lee, A. Girgensohn, and K. Schlueter. Nynex portholes: initial user reactions and
redesign implications. In Proceedings of the international ACM SIGGROUP confer-
ence on Supporting group work: the integration challenge: the integration challenge,
pages 385–394, 1997.

[133] J. Lee. Sibyl: A qualitative decision management system. Artificial Intelligence at
MIT: Expanding Frontiers, 1, 1990.

[134] J. Lee, G. Yost, and PIF Working Group. The pif process interchange format and
framework. Technical report, Technical Report, University of Hawaii Information and
Computer Science Department, February 1996.

[135] F. Leymann and W. Altenhuber. Managing business process as an information re-
source. IBM Systems Journal, 33(2), 1994.

[136] Y-J. lin and S.P. Reiss. Configuration management with logical structures. In Pro-
ceedings of the 18th international conference on Software engineering, pages 298–307,
Berlin, Germany, 1996. IEEE Computer Society.

[137] J.P. Loyall and S.A. Mathisen. Using dependency analysis to support the software
maintenance process. In Proceedings of International Conference of Software Mainte-
nance, pages 282–291, Montral, Quebec, Canada, 1993.

[138] L. Lvstrand. Being selectively aware with the khronika system. In In Proceedings
of the European Conference on Computer Supported Cooperative Work, ECSCW(91),
pages 265–278, Amsterdam, NL, 1991. ACM Press, New York.

[139] B. Magnusson and U. Asklund. Fine grained version control of configurations in
coop/orm. In Sixth International Workshop on Software Configuration Management,
volume 1167, pages 31–48, 1996.

[140] B. Magnusson, U. Asklund, and S. Minr. Fine-grained revision control for collabo-
rative software development. In Proceedings of ACM SIGSOFT ’93: Symposium on
Foundations of Software Engineering, pages 33–41, Los Angeles, CA, USA, 1993.

[141] T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys (CSUR), 26(1):87–119, 1994.

[142] T. W. Malone, K.R. Grant, F.A. Turbak, S.A. Brobst, and M.D. Cohen. Intelligent
information-sharing systems. Communications of the ACM, (30):390–402, 1987.

[143] T. Mansfield, S. Kaplan, G. Fitzpatrick, P. Phelps, M. Fitzpatrick, and R.N. Taylor.
Toward locales: supporting collaboration with orbit. Journal of Information and
Software Technology, 41(6):367–382, 1999.

[144] Mantis. http://www.mantisbt.org/.

[145] G. Mark. Extreme collaboration. Communications of the ACM, 45(6):89–93, 2002.

[146] D.R. McCarthy and S.K. Sarin. Workflow and transactions in inconcert. IEEE Data
Engineering, 16(2):53–56, 1993.

[147] D.W. McDonald. Recommending collaboration with social networks: a comparative
evaluation. In Proceedings of the conference on Human factors in computing systems,
pages 593–600, Ft. Lauderdale, Fl, 2003.

[148] D.W. McDonald and M.S. Ackerman. Expertise recommender: a flexible recom-
mendation system and architecture. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 231–140, Philadelphia, PA, USA, 2000.
ACM Press.

63

REFERENCES

[149] D.C. McFarlane. Comparison of four primary methods for coordinating the inter-
ruption of people in human-computer interactions. Human-Computer Interaction,
17(1):63–139, 2002.

[150] L.J. McGuffin and G. Olson. Shredit: A shared electronic workspace. Technical
Report 45, Cognitive Science and Machine Intelligence Laboratory, Tech report: 45,
University of Michigan, Ann Arbor, 1992.

[151] T. Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[152] S. Meyers. Difficulties in integrating multiview development systems. IEEE Software,
8(1):49–57, 1991.

[153] A. Mockus and J. Herbsleb. Expertise browser: A quantitative approach to identifying
expertise. In 2002 International Conference on Software Engineering, 2002.

[154] Fielding R. Mockus, A. and J.D. Herbsleb. Two case studies of open source software
development: Apache and mozilla. ACM Transactions on Software Engineering and
Methodology., 11(3):309–346, 2002.

[155] C. Mohan. Tutorial: State of the art in workflow management system research and
products. In A tutorial at the ACM SIGMOD International Conference on Manage-
ment Data, 1996.

[156] P. Molli. Coo-transactions: Supporting cooperative work. In R. Conradi, editor, Pro-
ceedings of Seventh International Workshop on Software Configuration Management
(SCM7), pages 128–141, Boston, MA, USA, 1997. Springer.

[157] P. Molli, H. Skaf-Molli, and C. Bouthier. State treemap: an awareness widget for
multi-synchronous groupware. In Seventh International Workshop on Groupware,
2001.

[158] P. Molli, H. Skaf-Molli, and G. Oster. Divergence awareness for virtual team through
the web. In Integrated Design and Process Technology, 2002.

[159] P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain. Sams: Synchronous, asynchronous,
multisynchronous environments. In Seventh International Conference on CSCW in
Design, Rio de Janeiro, Brazil, 2002.

[160] C. Montangero and V. Ambriola. Oikos: Constructing process centered sde’s. In
Software Process Modelling and Technology, pages 131 – 151. 1994.

[161] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[162] B. Nardi, S. Whittaker, and E. Bradner. Interaction and outeraction: Instant mes-
saging in action. In Computer Supported Cooperative Work, Philadelphia, PA, 2000.

[163] B.A. Nardi, S. Whittaker, E. Isaacs, M. Creech, J. Johnson, and J. Hainsworth. Con-
tactmap: Integrating communication and information through visualizing personal
social networks. Communications of the ACM, 45(4):89–95, 2002.

[164] G. Nutt. The Formulation and Application of Evaluation Nets. Phd thesis, 1972.

[165] G. Nutt. The evolution towards flexible workflow systems. In Distributed Systems
Engineering, volume 3(4), pages 276–294, 1996.

[166] H. Ogata, Y. Yano, N. Furugori, and Q. Jin. Computer supported social networking
for augmenting cooperation. Computer Supported Cooperative Work: The Journal of
Collaborative Computing, 10:189–209, 2001.

64

REFERENCES

[167] G.M. Olson and J.S. Olson. Distance matters. Human-Computer Interaction,
15(2and3):139–178, 2000.

[168] OMG. CORBACos: Notification Service Specification v1.0.1. 2002.

[169] C. O’Reilly, D. Bustard, and P. Morrow. The war room command console (shared
visualization for inclusive team coordination). In To Appear (2nd ACM Symposium
on Software Visualization), St. Louis, Missouri, USA, 2005.

[170] C. O’Reilly, P. Morrow, and D. Bustard. Improving conflict detection in optimistic
concurrency control models. In Proceedings of the Eleventh International Workshop
on Software Configuration Management, pages 191–205, Portland, Oregon, 2003.

[171] L. Osterweil. Software processes are software too. In Proceedings of the 9th Interna-
tional Conference on Software Engineering, pages 2–13, Monterey, CA, 1987.

[172] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

[173] D.L. Parnas and P.C. Clements. A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering, SE, 12(2):251–257, 1986.

[174] J. Patterson, M. Day, and J. Kucan. Notification servers for synchronous groupware.
In Proceedings of the 1996 ACM conference on Computer supported cooperative work,
pages 122–129, Boston, Massachusetts, USA, 1996.

[175] M.C. Paulk, B. Curtis, M.B. Chrissis, and V.W. Weber. Capability maturity model,
version 1.1. IEEE Software, 10(4):18–27, 1993.

[176] D.E. Perry, H.P. Siy, and L.G. Votta. Parallel changes in large-scale software develop-
ment: An observational case study. ACM Transactions on Software Engineering and
Methodology, 10(3):308–337, 2001.

[177] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

[178] W. Prinz. Nessie: an awareness environment for cooperative settings. In Sixth Euro-
pean conference on Computer supported cooperative work, pages 391–410, Copengha-
gen, Denmark, 1999. Kluwer Academic Publishers.

[179] P. Procter. Cambridge International Dictionary of English. Cambridge University
Press, 1995.

[180] D. Ramduny, A. Dix, and T. Rodden. Exploring the design space for notification
servers. In 1998 ACM conference on Computer supported cooperative work, pages
227–235, Seattle, Washington, USA, 1998.

[181] E.S. Raymond. The Cathedral $ the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly,, 2001.

[182] S.P. Reiss. Simplifying data integration: The design of the desert software develop-
ment environment. In Proceedings of the 18th International Conference on Software
Engineering, pages 398–407, Berlin, Germany, 1996. IEEE Computer Society.

[183] W. Rigg, C. Burrows, and P. Ingram. Configuration Management Tools. PhD thesis,
1995.

[184] k. Rivera, N.J. Cooke, A.L. Rowe, and J.A. Bauhs. Conveying emotion in remote
computer-mediated-communication. In Conference companion on Human factors in
computing systems, pages 95–96, Boston, Massachusetts, USA, 1994. ACM Press.

65

REFERENCES

[185] J. Robbins and D. Redmiles. Software architecture critics in the argo design environ-
ment. Knowledge-Based Systems, 11(1):47–60, 1998.

[186] T.J. Robertson, S. Prabhakararao, M. Burnett, C. Cook, J.R. Ruthruff, and L. Beck-
with. Impact of interruption style on end-user debugging. In 2004 conference on
Human factors in computing systems, pages 287–294, Vienna, Austria, 2004. ACM
Press.

[187] M.J. Rochkind. The source code control system. IEEE Transactions on Software
Engineering, SE-1(4):364–370, 1975.

[188] M. Roseman and S. Greenberg. Groupkit: a groupware toolkit for building real-time
conferencing applications. In Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, pages 43–50, Toronto, Ontario, Canada, 1992.

[189] M. Roseman and S. Greenberg. Teamrooms: Network places for collaboration. In In
Proceedings of ACM Computer Supported Cooperative Work, pages 325–333, 1996.

[190] D.S. Rosenblum and A. Wolf. A design framework for internet-scale event observa-
tion and notification. In Sixth European Software Engineering Conf./ACM SIGSOFT
Fifth Symposium on the Foundations of Software Engineering, pages 344–360, Zurich,
Switzerland, 1997.

[191] P. Sachs. Transforming work: Collaboration, learning, and design. Communications
of the ACM, 38(9):36–44, September 1995.

[192] W. Sack. Conversation map: A content-based usenet newsgroup browser. In Proceed-
ings of the International Conference on Intelligent User Interfaces, pages 233–240,
New Orleans, 2000. ACM Press.

[193] Visual Source Safe. http://msdn.microsoft.com/vstudio/previous/ssafe/.

[194] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantr: Raising awareness among
configuration management workspaces. In Twentyfifth International Conference on
Software Engineering, pages 444–454, Portland, Oregon, USA, 2003.

[195] A. Sarma and A. van der Hoek. Visualizing parallel workspace activities. In IASTED
International Conference on Software Engineering and Applications (SEA), pages
435–440, Marina Del Rey, California, 2003.

[196] .S Sawyer and P.J. Guinan. Software development: Processes and performance. IBM
Systems Journal, 37(4), 1998.

[197] K. Schmidt. The problem with ’awareness’: Introductory remarks on ’awareness in
cscw’. Computer Supported Cooperative Work, 11(3):285–298, 2002.

[198] T. Schmmer and J.M. Haake. Supporting distributed software development by modes
of collaboration. In Seventh European Conference on Computer Supported Cooperative
Work, pages 79–98, 2001.

[199] R. S. Silva Filho, C.R.B. de Souza, and D.F. Redmiles. The design of a configurable,
extensible and dynamic notification service. In Second International Workshop on
Distributed Event-Based Systems (DEBS 2003), In conjunction with The ACM SIG-
MOD/PODS Conference, San Diego, 2003.

[200] R.S. Silva Filho, C. R. B. de Souza, and D. Redmiles. Design and experiments with
yancees, a versatile publish-subscirbe service. Technical report, TR-UCI-ISR-04-1,
University of California, Irvine. Irvine, CA, April 2004.

66

REFERENCES

[201] M. Sohlenkamp and G. Chwelos. Integrating communication, cooperation, and aware-
ness: the diva virtual office environment. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pages 331–343, Chapel Hill, North Carolina,
USA, 1994.

[202] M. Sohlenkamp, W . Prinz, and L. Fuchs. Poliawac: Design and evaluation of an
awareness-enhanced groupware client. AI and Society: Special issue on computer-
supported cooperative, 14(1):31 – 47, 2000.

[203] D.G. Stefik, M .and Bobrow, G. Foster, S. Lanning, and D. Tatar. Wysiwis revised:
early experiences with multiuser interfaces. ACM Transactions on Information Sys-
tems (TOIS), 5(2):147–167, 1987.

[204] L. Steiger. Recovering the evolution of object oriented software systems using a flexible
query engine. PhD thesis, University of Bern, (Diploma thesis), 2001.

[205] M-A. D. Storey, D. Cubranic, and D.M. German. On the use of visualization to support
awareness of human activities in software development: A survey and a framework.
In Proceedings of 2nd ACM Symposium on Software Visualization, 2005 (to appear),
St. Loius, Missouri, USA, 2005.

[206] P.D. Stotts and R. Furuta. alphatrellis: A system for writing and browsing petri-net-
based hypertext. In Proceedings of the 10th International Conference on Application
and Theory of Petri Nets, pages 312–328, Bonn, Germany, 1989.

[207] J. Strubing. Designing the working process: What programmers do besides program-
ming. User-Centered Requirements for Software Engineering Environments, 1994.

[208] L.A. Suchman. Plans and Situated Actions: The Problem of Human-Machine Com-
munication. Cambridge University Press, New York, 1987.

[209] SunMicrosystems. Java Message Service API. 2003.

[210] J.C Tang and M. Rua. Montage: providing teleproximity for distributed groups.
In Proceedings of the SIGCHI conference on Human factors in computing systems:
celebrating interdependence, pages 37–43, Boston, MA, 1994.

[211] A. Tate and K. Wade. Simplifying development through activity-based change man-
agement. White paper, IBM Software Group, October 2004.

[212] R. Taylor, F. Belz, L. Clarke, R. Osterweil, L .and Selby, J. Wileden, A. Wolf, and
M. Young. Foundations for the arcadia environment architecture. In In Proceedings of
the Software Engineering Symposium on Practical software development environments,
pages 1–13, 1988.

[213] Telelogic. Cm/synergy.

[214] W.F. Tichy. Rcs, a system for version control. Software - Practice and Experience,
15(7):637–654, 1985.

[215] W.F. Tichy. Tools for software configuration management. In In Proc. of the Int.
Workshop on Software Version and Configuration Control, pages 1–20, Grassau, 1988.

[216] Tigris.org. Subversion.

[217] K. Tollmar, O. Sandor, and A. Schmer. Supporting social awareness @ work design
and experience. In Proceedings of the 1996 ACM conference on Computer supported
cooperative work, pages 298–307, Boston, Massachusetts, USA, 1996. ACM Press.

67

REFERENCES

[218] A. van der Hoek and et.al. Continuous coordination: A new paradigm for collaborative
software engineering tools. In Proceedings of Workshop on WoDISEE, Scotland, 2004.

[219] I. Vessey and A. P. Sravanapudi. Case tools as collaborative support technologies.
Communications of the ACM, vol. 38:83–95, 1995.

[220] L. Votta. By the way, has anyone studied real programmers yet? In Ninth Interna-
tional Software Process Workshop, Reston, Virginia, 1994.

[221] G. Weinberg. The Psychology of Computer Programming. Dorset House Publishing,
1989.

[222] B. Westfechtel, B.P. Munch, and R. Conradi. A layered architecture for uniform
version management. IEEE Transactions on Software Engineering, 27(12):1111–1133,
2001.

[223] D. Wiborg Weber. Benefits of task-based change management. White paper, Telelogic,
September 2003.

[224] J.C. Wileden, A.L. Wolf, C.D. Fisher, and P.L. Tarr. Pgraphite: an experiment in
persistent typed object management. ACM SIGPLAN Notices, 24(2):130–142, 1989.

[225] T. Winograd and F. Flores. Understanding Computers and Cognition: A New Foun-
dation for Design. Addison-Wesley Professional, 1 edition, 1987.

[226] Y. Ye and G. Fischer. Information delivery in support of learning reusable software
components on demand. In 7th international conference on Intelligent user interfaces,
pages 159–166, San Francisco, California, USA, 2002. ACM Press.

[227] M. Young, R.N. Taylor, and D. B. Troup. Software environment architectures and
user interface facilities. IEEE Transactions on Software Engineering, 14(6):697–708,
1988.

[228] P. Zave and W. Schell. Salient features for an extensible specification language and
its environment. IEEE Transactions on Software Engineering, 12:312–325, 1986.

68

