
Architectural Congruence: Toward Exploring the Software Development

Process Through an Architectural Perspective

Anita Sarma

Institute for Software Research

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213 USA

asarma@cmu.edu

John Georgas

Department of Computer Science

Northern Arizona University

PO Box 15600

Flagstaff, AZ 86011 USA

John.Georgas@nau.edu

Abstract

While the architecture of a software system is a

critical artifact, it is often overlooked during

development. Instead, developers focus on the

numerous relationships and dependencies between

source code files, bug and feature reports, and

communications between other developers. We

propose to begin bringing architecture back to the

forefront of development, by extending the TESSERACT

environment to support the exploration of the

relationships and dependencies between the

architecture, the technical artifacts of software

development, and the social interactions of developers.

With this tool support in place, software engineers may

now begin exploring and reasoning over the

development process in architectural terms, promoting

congruence between their understanding of a system’s

architecture and how this architecture effects and is

affected by the social and technical activities of

software development.

1. Introduction

The architecture of a software system is one of the most

important artifacts of the development lifecycle: it is

the architecture that captures the essential design

decisions that frame a system’s functionality. The

architecture forms the structure around which code is

fleshed out, and fundamentally affects the system’s

non-functional properties.

However, the importance of architecture also extends

beyond just technical concerns, playing a distinct role

in coordination. Task assignments are often created

along the separations between architectural boundaries

by, for example, assigning different modules to

different teams. However, the architecture also frames,

and is framed by, the organizational structure of these

teams. Simply stated, the architecture of a software

system is inextricably linked to the organization of

those that develop it. This is commonly referred to as

Conway’s Law [4], which states that the organizational

structure of developers is reflected in the architecture

of the product they eventually produce.

Despite this importance of architecture from both a

technical and coordination perspective, it is

unfortunately not at the forefront of the software

development process. Software developers tend to

focus more on the numerous artifacts with which they

interact on a day-to-day basis: source code files, unit

tests, bug reports, and emails to and from other

developers. This is not surprising, given the large

number of these artifacts and the need to achieve a

basic understanding of the numerous relationships and

correlations between them. Developers, for example,

need to be able to edit, compile, and debug their

changes, while also ensuring that their work integrates

with the rest of the changes taking place elsewhere in

the project. These activities are not trivial, require

considerable effort and consume most of the time and

attention of software developers. Finally, the lack of a

direct mapping between architecture and the rest of

software artifacts makes it difficult for developers to

treat architecture as a first-class artifact. Consequently,

the architecture fades away into the background,

becoming less important and often abandoned, quickly

becoming obsolete. Architecture is simply still not a

part of the conventional, everyday development

toolbox, despite efforts to make it so.

We aim to augment the software development process

– rather than fundamentally alter it – in such a way as

to bring architecture closer to the forefront of the

development process. We propose an approach that

leverages architecture to tie together information about

source code files, code changes, defect and new feature

reports, and developer communication records. This

cross-linked architectural model will provide a

cohesive and concise multi-level view of the overall

development process, while still allowing developers to

access lower-level information. Our approach rests on

the integration of architectural information into the

TESSERACT [19] tool, and building support for focusing

on the exploration of different technical and social data

about a system’s development process through an

architectural lens. By providing capabilities such as

these, we aim to focus on supporting architectural

congruence: bringing our understanding of the

prescriptive architecture of a software system closer to

the artifacts that implement it, and the social and

organizational processes that created it.

We posit that fulfilling this vision will bring benefits

organized along two dimensions: development process

awareness, and software quality. By understanding the

relationship between architecture and the

communication patterns of its developers, we can better

understand how to organize teams and assign work

[15]]. By correlating code changes that span multiple

components, for example, we can identify component

dependencies and realign team assignments to match

these dependencies: Therefore, we can ensure that the

development of these components is assigned to a

single team, so that the shared mental models and work

practices of this team promote easier integration of

these components.

We can also better understand the qualities of the

architectural design itself. On a simple level, we can

identify code changes that affect parts of the

architecture that they should not, by tracking the

mappings between architectural elements and code

units that change. Using these mappings, we can also

reason about modularity and brittleness. Displaying and

understanding source code changes in architectural

terms will, for example, clearly illustrate the elements

of the architecture which are under constant evolution

and modification. This frequency of change may

indicate brittleness in those architectural components,

and motivate more careful testing in future

maintenance. Explicitly identifying elements of the

architecture that are affected by a change may also

indicate the degree of modularity exhibited by the

architecture: continual changes to one component for

an extended period of time, for example, may motivate

a re-design that better modularizes and separates the

concerns captured by that particular component.

Furthermore, this work enables exploration of the

relationships between other architectural concepts, such

as architectural style, in the context of an

organization’s structure.

2. Background and Related Work

Our works relies on the integration of insights from

software architecture and research in providing support

for exploration and awareness of the software

development process.

2.1. Software Architecture

Software architecture revolves around capturing the

decisions that frame the design of a software system

[22]. Most commonly, these decisions relate to the

logical components that encapsulate functionality and

the connections that coherently compose them into

systems. Architectural styles [21] provide guidance for

the design of software architectures that are particularly

well-suited for specialized tasks or specific application

domains. Architectures, however, are not just design-

time artifacts: By explicitly modeling architectures

using architecture description languages (ADLs) [13],

the utility of architecture extends to all phases of

software development: architectures, for example, are

used for guiding runtime evolution [17] and designing

self-adaptive systems [11].

Architectural models can also be used as the central

artifact in the development process. The ARCHEVOL

system [16], for example, focuses on supporting an

architecture-centric development process by explicitly

mapping the architecture to changing source code

artifacts. The LIGHTHOUSE approach [7] focuses on

providing a view of a system’s emerging design, as

discovered through code analysis during development,

so that developers may trace the effects of their work

on others. Other tools [2] support traceability between

multiple software development processes, such as

quality assurance and testing, through a central

architectural model.

The work we discuss differs from this previous work by

focusing on post-hoc analysis of development

information, which is less disruptive to established

processes than tools that are intended to be used during

development. Rather than directly aimed at providing

capabilities to be used during development, we aim at

supporting the exploration and analysis of what

actually took place, with an eye toward better

understanding the development process and gleaning

insights to be used in future efforts.

2.1. Development Exploration and Awareness

A typical software project is composed of thousands of

software artifacts, including code, design documents,

bug reports, communication records, and task

assignments. Further, these project elements are

intrinsically inter related. Software Development

environments are increasingly trying to capture and

convey these relationships to the user. Consider the

example where editing a file of source code may affect

many other relevant artifacts. Considerable research

effort has been focused on using a variety of techniques

such as static code analyses [1], task definition [12],

text analysis [5], and records of prior developer activity

to identify these related artifacts [10] and make them

easily accessible when they are likely to be useful.

Similarly, there exists basic support for tracking when

changes to source code may require certain test cases to

be regenerated [18].

There is also an increasing interest in understanding

and using relationships among individuals in a team to

improve software development. Research has focused

on increasing awareness among developers about each

other’s relevant activities [20], and on using the social

relations among developers to identify implicit teams

[3] or to predict software defects [14]. Such efforts

often draw on social network analysis (SNA).

While these development environments serve as first

steps towards investigating and understanding the

myriad relationships among different project elements,

they provide limited support. Most of these

environments typically focus on the code archive and at

the maximum only link two kinds of data (e.g., test

suites or communication records). Doing so has three

drawbacks. First, the information is at a low granularity

making it difficult to gain an overall picture of changes

taking place at the systems level. Second, information

at such granularity can quickly lead to information

overload for the user. Finally, these environments only

present a partial picture of the project relationships,

since other elements of the project are ignored. While

this partial picture is better than nothing, it still leaves

significant amounts of information unavailable for the

developer.

Developers are intuitively aware of this need, and

actively engage in informal communications while

developing or restructuring code. There is a need for

environments that allow investigation of socio-

technical information in a project in useful, actionable

ways, such that they don’t overwhelm the user. The

need for such tools is reflected by findings from field

studies, which have shown that developers find it

difficult to decipher how their work binds them with

that of others. Consequently, they spend a significant

portion of their time in managing their changes or in

finding the right person with whom to communicate [9]

.

3. Research Plan

In order to reify our approach, we will need to provide

support for: modeling the relationships between

explicit architectural models and the social and

technical artifacts of development, and visualize and

explore these relationships.

3.1. Data Model

The current incarnation of TESSERACT relies on

collecting data from tools commonly used in large

software projects: a configuration management system,

a bug-tracking database, and project mailing lists. By

extracting and cross-linking information from these

tools, the tool builds a number of visualizations

showing: the relationships between source code,

developers, and bug reports; the communication

patterns between developers; and how well the

technical aspects of development match the project’s

social interactions.

Integrating architectural information with TESSERACT’s

current design demands that artifacts such as source

code, bug reports, and email communication are linked

to an explicit architectural model, which shows the

relationships between each of these and the elements of

the architecture. Beyond the modeling problem

involved in this integration, an additional challenge is

imposed by the fact that – due to the post-hoc

exploratory nature of proposed tool – the architectural

model must be generated after parts or even the entire

development process is complete.

In order to minimize additional development, we plan

on addressing the integration of architectural

information into TESSERACT by focusing on the links

between architectural elements, such as components

and connectors, and the source code files that

implement these elements. TESSERACT already includes

support for modeling and correlating relationships

between source code files, bug reports, and developer

communication emails. Based on this support, the

mapping between source code files and architecture

becomes the focal point of this initial integration. This

provides a direct relationship between architecture and

source code, and an indirect relationship between

architecture and bug reports or social communications.

For this initial integration, we will rely on modeling

architectures through an extension of the core xADL

2.0 ADL [8]. We will extend the current definition of

the language to support one-to-many associations

between architectural elements and units of source

code. As our work progresses, we plan on exploring

whether this linkage is sufficient, or whether direct

connections between architecture and all other artifacts

are needed.

Given that our initial plans for this effort are targeted to

post-hoc analysis of development process information,

another challenge involves the recovery of architectural

models. The initial body of information from the

GNOME project, for example, used for the initial

deployment of TESSERACT does not contain

architectural information: The project is simply not

guided by an explicit architectural model throughout

development. As a result, in order to create these links

between architectural elements and source code files,

we must first recover the architecture. Based on the

architectural recovery techniques of the FOCUS

approach [13], we will model the descriptive

architecture of the GNOME project, which – integrated

with the information on source code changes, bug

reports, and communication information – will serve as

the basis for the development and initial usage of our

architectural extension to TESSERACT.

3.2. Initial Design

The primary goal of TESSERACT is to provide an

interactive exploratory environment with which

developers can investigate relationships across

architecture, code, bugs, and communication records in

mailing lists and bug databases. It also allows

developers to visually investigate how these

relationships evolve over time and find interesting

development patterns in their project. Specifically,

TESSERACT consists of five cross-linked panes each

showing a different facet of the software project:

• The Project activity pane (Figure 1(a)) displays the

overall activities in a project (code commits at the

top and communication at the bottom) as a time

series display. This view helps users visually

identify when there are spurts in activity; these can

be either code contributions or communication.

Users can select a particular time period for their

investigation, which is reflected in all other panes.

• The Files/Bugs network pane (Figure 1(b)) displays

a bi-partite network of artifact associations and bugs

associated with particular artifacts. Here, file-to-file

associations are created by linking files that are

frequently changed together (logical coupling). The

edges of the network represent the number of times

pairs of files have been committed together and can

be ‘thresholded’ by the user. Textual listing of the

file names allows quick identification of specific

files via a search function. Bugs that are associated

with a particular file are also represented in the

same graph, enabling users to quickly identify

which artifacts have bugs associated with them and

whether sets of files that are changed together tend

to have common bug associations.

• The Architecture Pane (Figure 1(c)) presents the

architecture of the project, where components that

are being edited in the selected time frame are

highlighted in gray. Further, components that have

bugs associated with it are bordered in red, drawing

the users’ attention. Similar to the previous pane, a

textual listing of components is provided for easier

search and navigation.

• The Developers network pane (Figure 1(d))

displays developers and links among them. Two

developers are linked if they either edited the same

artifact or interdependent artifacts. The edges in this

network are colored (in green or red) to show when

developers have communicated via either email or

the bug repository (e.g., comments or activities in

Bugzilla). The thickness of the edges is based on

the number of times developers communicated.

Similar to the file network, a textual listing of the

developer names is provided.

• The Issues pane (Figure 1(e)) displays defect or

feature related information as a stacked area chart,

as well as, in a detailed listing.

TESSERACT enables exploration of project data and its

underlying relationships in multiple ways. First,

clicking on an entity (graph element or line in the

textual lists) will highlight that entity and will also

show all related entities in the other panes. For

example, selecting a node (bug) in the file/bug network

highlights all the files and architectural components

that are included in that bug fix and also highlights the

developer who had fixed the bug. Similarly, selecting a

developer in the developer network highlights all the

files, bugs, and architectural components that the

developer has worked on. Second, hovering over a

node in any of the nodes, displays additional

information about the node and highlights its

neighbors. Third, a user can pan (background drag),

zoom (wheel), and move individual nodes in the graph.

Fourth, search functionality allows users to quickly find

an entity when they know its full or partial details.

Finally, TESSERACT allows users to change the

perspective of their investigation by drilling down on

specific artifact(s) or developer(s). For instance, a user

might drill-down to view a particular component in the

architecture to find which files and developers are

associated with that component.

3.3. Sample Usage Scenario

Here we present an example usage scenario where

TESSERACT can enable the investigation of the

technical and social relationships in a project through

an architectural perspective. Assume the hypothetical

case where a manager is interested in investigating the

development history of a particular component

(Sequencing Connector) from the last release till the

current date. To do so, she first selects the appropriate

time period from the Activity panel, following which

she selects the particular component in the Architecture

pane. On performing this step the following

information is highlighted in TESSERACT (see Figure

1): (1) files that are associated with that component and

have changed in the desired time frame, (2) developers

who have edited those files, and (3) any bugs that are

associated with those files.

Drawing on her knowledge of the project, the manager

uncovers the following facts. First, the chosen

component involves artifacts that occupy a central

position in the artifact network implying intricate

dependencies with two other components, she realizes

that the code structure is not appropriately reflecting

the architecture and decides she would need to talk to

the team about it. Second, some of the files that belong

to the component had had defects, most of which had

low priority (normal) and were all fixed. Finally, she

confirms that the component was largely developed by

the team that was assigned the task. However, she is

surprised to find that an outlying developer who is a

member of a team responsible for another component

(Scanner Control) has been involved. Further

investigation of the code contributions of the outlier

reveals that that developer made unplanned

modification to the Sequencing Connector and that an

undocumented interface method was added so that the

(a)

(b) (c)

(e)

(d)

Figure 1. TESSERACT architecture extension UI mockup showing five display panes: (a) project activity pane with code

commits (top) and communication (bottom), (b) file and bug bi-partite network, (c) architecture, (d) developer

communication network, and (e) textual listing of bugs.

component Scanner Control could call the Sequencing

Connector component.

The architecture clearly indicates that all calls from

Scanner Control should connect through another

component (Reactive Connector) and the new interface

method violates the architectural assumptions. Further

investigation of the developer communication network

shows that the said developer has not communicated

with the rest of the team indicating a possibility that the

team may not be aware of this architecture violation.

She decides to immediately contact the main

development team and the outlier developer to resolve

this issue immediately.

4. Discussion and Future Work

TESSERACT is the first exploratory environment that not

only allows the investigation of the different socio-

technical relationships that exist among project

elements, but also helps a user understand their

evolution over time. More specifically, TESSERACT

creates networks among code, bugs, and developers. It

creates file-to-file associations based on which files are

frequently changed together, and then connects which

artifacts are associated with which bugs. TESSERACT

also creates a developer communication network by

creating links among developers who have

communicated either via mailing list or discussion via

the bug repository. A critical contribution of

TESSERACT is the cross-linking of different project

elements in such a way that users can investigate a

pattern or project occurrence across multiple project

elements and over time.

Here, we have discussed extending the capabilities of

TESSERACT to provide an architectural perspective to

project investigations. The architecture of a project

provides the right level of abstraction, using which

individuals can correlate lower granularity changes (at

the level of files/bugs). Doing so, not only presents

changes taking place at the design level, but also helps

in making the information presentation and

investigation more scalable.

Although, the architecture of a project is a critical

element that captures the design decisions of a project

and to a large extent determines the team interactions,

it frequently becomes an obsolete artifact. Developers

tend to focus more on the numerous artifacts with

which they interact on a day-to-day basis: source code

files, unit tests, bug reports, and emails to and from

other developers. This is not surprising, given the fact

that developers have to contend with an extremely

large set of such artifacts and that there exists no tool

support which treats architecture as a central element.

In our work, we aim to overcome this problem and

enable the investigation of project level changes

through an architectural perspective.

4.1. Planned Validation

Evaluation of any software tool involves two criteria:

usefulness and usability. There exists a large body of

literature that argues for the need for architecture to be

considered as a central element [22] and field studies

that show that doing so is rarely possible in the real

world [6]. These studies help ascertain the usefulness

of a tool such as TESSERACT, that allows the

investigation of project changes through an

architectural perspective. We plan to augment this body

of knowledge by demonstrating our tool to software

architects, managers, and developers and collecting

their feedback on how they would use the tool in their

daily activities. Our central goal would be to elicit how

these stakeholders currently manage their tasks and

how TESSERACT can help them.

We plan to validate the usability of the tool by

performing user studies both in controlled lab settings

and deployment in the field. Towards this direction, we

will first instrument TESSERACT with real projects to

ensure that it scales well to real projects and so that

users can investigate their own projects during our

study. Doing so will also help us validate the efficacy

of our architectural recovery techniques from available

source code.

We plan to conduct a series of user studies through

which we will determine how users investigate a given

set of changes when using our tool as compared to

using other available tools. Based on our understanding

of these studies and after implementing feedback from

our studies, we will identify sites that treat architecture

as a central component (e.g., the aerospace industry).

We will then deploy TESSERACT to these sites and

investigate the usefulness and usability of the tool in

real-life settings.

4.2. Enabled Future Research

The approach we discussed in the previous section is

focused on the exploration of the relationships between

an instance of an architecture and the technical and

social interactions that result in its implementation. Our

work, however, enables the investigation of a broader

set of questions and research directions in the

intersection of architectural concepts and the practical

aspects of software development.

One very exciting question we plan on exploring next

is the relationships of architectural styles with the

social structures of software developers. The selection

of a specific architectural style for a software system is

primarily based on the technical characteristics of the

system in question: Does the style foster needed

qualities, for example, or has the style been shown

effective in the problem domain in the past?

What the tool support we propose to build does,

however, is to enable asking questions about the effects

or demands (if any) of specific architectural styles on

the social structures of the developers that will use it.

By exploring and understanding these relationships, the

richness of considerations during the selection of an

architectural style is greatly enhanced: Does the style

fit our established social practices, or how must we

arrange our development teams to better align their

organization with the style’s social demands? By

providing the fundamental tool support for even asking

such questions, we look forward to exploring if such

correlations exist and how to leverage them in better

matching communication and teaming practices with

architectural styles.

5. Acknowledgements

We would like to thank Larry Maccherone and Patrick

Wagstrom for their help in the development of

TESSERACT. This effort is partially funded by the NSF

grant number IIS-0414698 and IIS 0534656, and the

Software Industry Center and its sponsors, particularly

the Alfred P. Sloan Foundation. Effort also supported

by a 2007 Jazz Faculty Grant.

6. References
[1] Arnold, R.S. 1996. The Year 2000 problem: Impact,

Strategies and Tools. Software Evolution Technology,

Inc. Tech. Report.Tech Report.

[2] Asuncion, H.N., et al. 2007. An End-to-End Industrial

Software Traceability Tool. European Software

Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software

Engineering. ACM. p. 115-124.

[3] Bird, C., et al. 2008. Chapels in the Bazaar? Latent

Social Structure in OSS. 16th ACM SigSoft

International Symposium on the Foundations of

Software Engineering. p. 24-35.

[4] Conway, M.E.,1968. How do committees invent?

Datamation, 14(4): p. 28-31.

[5] Cubranic, D., et al.,2005. Hipikat: A Project Memory

for Software Development IEEE Transactions on

Software Engineering, 31(6): p. 446-465.

[6] Curtis, B.,1992. Insights from Empirical Studies of the

Software Design Process. Future Generation Computer

Systems, 7(2-3): p. 139-149

[7] da Silva, I., et al. 2006. Lighthouse: Coordination

through Emerging Design. OOPSLA workshop on

Eclipse Technology eXchange. p. 11-15.

[8] Dashofy, E., et al.,2005. A Comprehensive Approach for

the Development of Modular Software Architecture

Description Languages. In ACM Transactions on

Software Engineering and Methodology, to appear. ,

14(2): p. 199-245.

[9] de Souza, C.R.B. and D. Redmiles. 2008. An Empirical

Study of Software Developers' Management of

Dependencies and Changes. Thirteeth International

Conference on Software Engineering. p. 241-250.

[10] DeLine, R., et al. 2005. Towards Understanding

Programs through Wear-Based Filtering. ACM

Symposium on Software Visualization. p. 183-192.

[11] Georgas, J.C. 2008. Supporting Architecture- and

Policy-Based Self-Adaptive Software Systems. Thesis. in

Informatics. University of California, Irvine.

[12] Kersten, M. and G.C. Murphy. 2006. Using Task

Context to Improve Programmer Productivity.

Fourteenth ACM SIGSOFT International Symposium

on Foundations of Software Engineering. p. 1-11.

[13] Medvidovic, N. and V. Jakobac,2006. Using Software

Evolution to Focus Architectural Recovery. Automated

Software Engineering, 13(2): p. 225-256.

[14] Meneely, A., et al. 2008. Predicting Failures with

Developer Networks and Social Network Analysis.

ACM SIGSOFT International Symposium on the

Foundations of Software Engineering. p. (to appear).

[15] Mockus, A. and G. Weiss,2001. Globalization by

Chunking: A Quantitative Approach. IEEE Software,

18(2): p. 30-37.

[16] Nistor, E., et al. 2005. ArchEvol: Versioning

Architectural-Implementation Relationships. Twelfth

International Workshop on Software Configuration

Management. ACM. p. 99-111.

[17] Peyman, O., et al. 1998. Architecture-based Runtime

Software Evolution. Twentieth International Conference

on Software Engineering. IEEE Computer Society. p.

177-186.

[18] Ren, X., et al. 2004. Chianti: A Tool for Change Impact

Analysis of Java Programs. Conference on Object-

Oriented Programming, Systems, Languages, and

Applications. p. 432-448.

[19] Sarma, A., et al. 2009. Tesseract: Interactive Visual

Exploration of Socio-Technical Relationships in

Software Development,. Thirty-first International

Conference on Software Engineering. p. (to appear).

[20] Sarma, A., et al. 2008. Empirical evidence of the

benefits of workspace awareness in software

configuration management. Proceedings of the 16th

ACM SIGSOFT International Symposium on

Foundations of software engineering. ACM. p. 113-123.

[21] Shaw, M. and P. Clements. 1997. A Field Guide to

Boxology: Preliminary Classification of Architectural

Styles for Software Systems. Computer Software and

Applications Conference. p. 6-13.

[22] Taylor, R., et al., 2009. Software Architecture:

Foundations, Theory, and Practice John Wiley & Sons.

pages. 750.

