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Abstract 
 

While the architecture of a software system is a 

critical artifact, it is often overlooked during 

development. Instead, developers focus on the 

numerous relationships and dependencies between 

source code files, bug and feature reports, and 

communications between other developers. We 

propose to begin bringing architecture back to the 

forefront of development, by extending the TESSERACT 

environment to support the exploration of the 

relationships and dependencies between the 

architecture, the technical artifacts of software 

development, and the social interactions of developers. 

With this tool support in place, software engineers may 

now begin exploring and reasoning over the 

development process in architectural terms, promoting 

congruence between their understanding of a system’s 

architecture and how this architecture effects and is 

affected by the social and technical activities of 

software development. 

 

1. Introduction 
 

The architecture of a software system is one of the most 

important artifacts of the development lifecycle: it is 

the architecture that captures the essential design 

decisions that frame a system’s functionality. The 

architecture forms the structure around which code is 

fleshed out, and fundamentally affects the system’s 

non-functional properties. 

 

However, the importance of architecture also extends 

beyond just technical concerns, playing a distinct role 

in coordination. Task assignments are often created 

along the separations between architectural boundaries 

by, for example, assigning different modules to 

different teams. However, the architecture also frames, 

and is framed by, the organizational structure of these 

teams. Simply stated, the architecture of a software 

system is inextricably linked to the organization of 

those that develop it. This is commonly referred to as 

Conway’s Law [4], which states that the organizational 

structure of developers is reflected in the architecture 

of the product they eventually produce. 

 

Despite this importance of architecture from both a 

technical and coordination perspective, it is 

unfortunately not at the forefront of the software 

development process. Software developers tend to 

focus more on the numerous artifacts with which they 

interact on a day-to-day basis: source code files, unit 

tests, bug reports, and emails to and from other 

developers. This is not surprising, given the large 

number of these artifacts and the need to achieve a 

basic understanding of the numerous relationships and 

correlations between them. Developers, for example, 

need to be able to edit, compile, and debug their 

changes, while also ensuring that their work integrates 

with the rest of the changes taking place elsewhere in 

the project. These activities are not trivial, require 

considerable effort and consume most of the time and 

attention of software developers. Finally, the lack of a 

direct mapping between architecture and the rest of 

software artifacts makes it difficult for developers to 

treat architecture as a first-class artifact. Consequently, 

the architecture fades away into the background, 

becoming less important and often abandoned, quickly 

becoming obsolete. Architecture is simply still not a 



part of the conventional, everyday development 

toolbox, despite efforts to make it so. 

 

We aim to augment the software development process 

– rather than fundamentally alter it – in such a way as 

to bring architecture closer to the forefront of the 

development process. We propose an approach that 

leverages architecture to tie together information about 

source code files, code changes, defect and new feature 

reports, and developer communication records. This 

cross-linked architectural model will provide a 

cohesive and concise multi-level view of the overall 

development process, while still allowing developers to 

access lower-level information. Our approach rests on 

the integration of architectural information into the 

TESSERACT [19] tool, and building support for focusing 

on the exploration of different technical and social data 

about a system’s development process through an 

architectural lens. By providing capabilities such as 

these, we aim to focus on supporting architectural 

congruence: bringing our understanding of the 

prescriptive architecture of a software system closer to 

the artifacts that implement it, and the social and 

organizational processes that created it. 

 

We posit that fulfilling this vision will bring benefits 

organized along two dimensions: development process 

awareness, and software quality. By understanding the 

relationship between architecture and the 

communication patterns of its developers, we can better 

understand how to organize teams and assign work 

[15]]. By correlating code changes that span multiple 

components, for example, we can identify component 

dependencies and realign team assignments to match 

these dependencies: Therefore, we can ensure that the 

development of these components is assigned to a 

single team, so that the shared mental models and work 

practices of this team promote easier integration of 

these components. 

 

We can also better understand the qualities of the 

architectural design itself. On a simple level, we can 

identify code changes that affect parts of the 

architecture that they should not, by tracking the 

mappings between architectural elements and code 

units that change. Using these mappings, we can also 

reason about modularity and brittleness. Displaying and 

understanding source code changes in architectural 

terms will, for example, clearly illustrate the elements 

of the architecture which are under constant evolution 

and modification. This frequency of change may 

indicate brittleness in those architectural components, 

and motivate more careful testing in future 

maintenance. Explicitly identifying elements of the 

architecture that are affected by a change may also 

indicate the degree of modularity exhibited by the 

architecture: continual changes to one component for 

an extended period of time, for example, may motivate 

a re-design that better modularizes and separates the 

concerns captured by that particular component. 

Furthermore, this work enables exploration of the 

relationships between other architectural concepts, such 

as architectural style, in the context of an 

organization’s structure. 

 

2. Background and Related Work 
 

Our works relies on the integration of insights from 

software architecture and research in providing support 

for exploration and awareness of the software 

development process. 

 

2.1. Software Architecture 
 

Software architecture revolves around capturing the 

decisions that frame the design of a software system 

[22]. Most commonly, these decisions relate to the 

logical components that encapsulate functionality and 

the connections that coherently compose them into 

systems. Architectural styles [21] provide guidance for 

the design of software architectures that are particularly 

well-suited for specialized tasks or specific application 

domains. Architectures, however, are not just design-

time artifacts: By explicitly modeling architectures 

using architecture description languages (ADLs) [13], 

the utility of architecture extends to all phases of 

software development: architectures, for example, are 

used for guiding runtime evolution [17] and designing 

self-adaptive systems [11]. 

 

Architectural models can also be used as the central 

artifact in the development process. The ARCHEVOL 

system [16], for example, focuses on supporting an 

architecture-centric development process by explicitly 

mapping the architecture to changing source code 

artifacts. The LIGHTHOUSE approach [7] focuses on 

providing a view of a system’s emerging design, as 

discovered through code analysis during development, 

so that developers may trace the effects of their work 

on others. Other tools [2] support traceability between 

multiple software development processes, such as 

quality assurance and testing, through a central 

architectural model. 

 

The work we discuss differs from this previous work by 

focusing on post-hoc analysis of development 



information, which is less disruptive to established 

processes than tools that are intended to be used during 

development. Rather than directly aimed at providing 

capabilities to be used during development, we aim at 

supporting the exploration and analysis of what 

actually took place, with an eye toward better 

understanding the development process and gleaning 

insights to be used in future efforts. 

 

2.1. Development Exploration and Awareness 
 

A typical software project is composed of thousands of 

software artifacts, including code, design documents, 

bug reports, communication records, and task 

assignments. Further, these project elements are 

intrinsically inter related. Software Development 

environments are increasingly trying to capture and 

convey these relationships to the user. Consider the 

example where editing a file of source code may affect 

many other relevant artifacts. Considerable research 

effort has been focused on using a variety of techniques 

such as static code analyses [1], task definition [12], 

text analysis [5], and records of prior developer activity 

to identify these related artifacts [10] and make them 

easily accessible when they are likely to be useful. 

Similarly, there exists basic support for tracking when 

changes to source code may require certain test cases to 

be regenerated [18]. 

 

There is also an increasing interest in understanding 

and using relationships among individuals in a team to 

improve software development. Research has focused 

on increasing awareness among developers about each 

other’s relevant activities [20], and on using the social 

relations among developers to identify implicit teams 

[3] or to predict software defects [14]. Such efforts 

often draw on social network analysis (SNA). 

 

While these development environments serve as first 

steps towards investigating and understanding the 

myriad relationships among different project elements, 

they provide limited support. Most of these 

environments typically focus on the code archive and at 

the maximum only link two kinds of data (e.g., test 

suites or communication records). Doing so has three 

drawbacks. First, the information is at a low granularity 

making it difficult to gain an overall picture of changes 

taking place at the systems level. Second, information 

at such granularity can quickly lead to information 

overload for the user. Finally, these environments only 

present a partial picture of the project relationships, 

since other elements of the project are ignored. While 

this partial picture is better than nothing, it still leaves 

significant amounts of information unavailable for the 

developer. 

  

Developers are intuitively aware of this need, and 

actively engage in informal communications while 

developing or restructuring code. There is a need for 

environments that allow investigation of socio-

technical information in a project in useful, actionable 

ways, such that they don’t overwhelm the user. The 

need for such tools is reflected by findings from field 

studies, which have shown that developers find it 

difficult to decipher how their work binds them with 

that of others. Consequently, they spend a significant 

portion of their time in managing their changes or in 

finding the right person with whom to communicate [9] 

. 

3. Research Plan 
 

In order to reify our approach, we will need to provide 

support for: modeling the relationships between 

explicit architectural models and the social and 

technical artifacts of development, and visualize and 

explore these relationships. 

 

3.1. Data Model 
 

The current incarnation of TESSERACT relies on 

collecting data from tools commonly used in large 

software projects: a configuration management system, 

a bug-tracking database, and project mailing lists. By 

extracting and cross-linking information from these 

tools, the tool builds a number of visualizations 

showing: the relationships between source code, 

developers, and bug reports; the communication 

patterns between developers; and how well the 

technical aspects of development match the project’s 

social interactions. 

 

Integrating architectural information with TESSERACT’s 

current design demands that artifacts such as source 

code, bug reports, and email communication are linked 

to an explicit architectural model, which shows the 

relationships between each of these and the elements of 

the architecture. Beyond the modeling problem 

involved in this integration, an additional challenge is 

imposed by the fact that – due to the post-hoc 

exploratory nature of proposed tool – the architectural 

model must be generated after parts or even the entire 

development process is complete. 

 

In order to minimize additional development, we plan 

on addressing the integration of architectural 

information into TESSERACT by focusing on the links 



between architectural elements, such as components 

and connectors, and the source code files that 

implement these elements. TESSERACT already includes 

support for modeling and correlating relationships 

between source code files, bug reports, and developer 

communication emails. Based on this support, the 

mapping between source code files and architecture 

becomes the focal point of this initial integration. This 

provides a direct relationship between architecture and 

source code, and an indirect relationship between 

architecture and bug reports or social communications. 

For this initial integration, we will rely on modeling 

architectures through an extension of the core xADL 

2.0 ADL [8]. We will extend the current definition of 

the language to support one-to-many associations 

between architectural elements and units of source 

code. As our work progresses, we plan on exploring 

whether this linkage is sufficient, or whether direct 

connections between architecture and all other artifacts 

are needed. 

 

Given that our initial plans for this effort are targeted to 

post-hoc analysis of development process information, 

another challenge involves the recovery of architectural 

models. The initial body of information from the 

GNOME project, for example, used for the initial 

deployment of TESSERACT does not contain 

architectural information: The project is simply not 

guided by an explicit architectural model throughout 

development. As a result, in order to create these links 

between architectural elements and source code files, 

we must first recover the architecture. Based on the 

architectural recovery techniques of the FOCUS 

approach [13], we will model the descriptive 

architecture of the GNOME project, which – integrated 

with the information on source code changes, bug 

reports, and communication information – will serve as 

the basis for the development and initial usage of our 

architectural extension to TESSERACT. 

 

3.2. Initial Design 
 

The primary goal of TESSERACT is to provide an 

interactive exploratory environment with which 

developers can investigate relationships across 

architecture, code, bugs, and communication records in 

mailing lists and bug databases. It also allows 

developers to visually investigate how these 

relationships evolve over time and find interesting 

development patterns in their project. Specifically, 

TESSERACT consists of five cross-linked panes each 

showing a different facet of the software project: 

• The Project activity pane (Figure 1(a)) displays the 

overall activities in a project (code commits at the 

top and communication at the bottom) as a time 

series display. This view helps users visually 

identify when there are spurts in activity; these can 

be either code contributions or communication. 

Users can select a particular time period for their 

investigation, which is reflected in all other panes. 

• The Files/Bugs network pane (Figure 1(b)) displays 

a bi-partite network of artifact associations and bugs 

associated with particular artifacts. Here, file-to-file 

associations are created by linking files that are 

frequently changed together (logical coupling). The 

edges of the network represent the number of times 

pairs of files have been committed together and can 

be ‘thresholded’ by the user. Textual listing of the 

file names allows quick identification of specific 

files via a search function. Bugs that are associated 

with a particular file are also represented in the 

same graph, enabling users to quickly identify 

which artifacts have bugs associated with them and 

whether sets of files that are changed together tend 

to have common bug associations. 

• The Architecture Pane (Figure 1(c)) presents the 

architecture of the project, where components that 

are being edited in the selected time frame are 

highlighted in gray. Further, components that have 

bugs associated with it are bordered in red, drawing 

the users’ attention. Similar to the previous pane, a 

textual listing of components is provided for easier 

search and navigation. 

• The Developers network pane (Figure 1(d)) 

displays developers and links among them. Two 

developers are linked if they either edited the same 

artifact or interdependent artifacts. The edges in this 

network are colored (in green or red) to show when 

developers have communicated via either email or 

the bug repository (e.g., comments or activities in 

Bugzilla). The thickness of the edges is based on 

the number of times developers communicated. 

Similar to the file network, a textual listing of the 

developer names is provided. 

• The Issues pane (Figure 1(e)) displays defect or 

feature related information as a stacked area chart, 

as well as, in a detailed listing. 

 

TESSERACT enables exploration of project data and its 

underlying relationships in multiple ways. First, 

clicking on an entity (graph element or line in the 

textual lists) will highlight that entity and will also 

show all related entities in the other panes. For 

example, selecting a node (bug) in the file/bug network 

highlights all the files and architectural components 



that are included in that bug fix and also highlights the 

developer who had fixed the bug. Similarly, selecting a 

developer in the developer network highlights all the 

files, bugs, and architectural components that the 

developer has worked on. Second, hovering over a 

node in any of the nodes, displays additional 

information about the node and highlights its 

neighbors. Third, a user can pan (background drag), 

zoom (wheel), and move individual nodes in the graph. 

Fourth, search functionality allows users to quickly find 

an entity when they know its full or partial details. 

Finally, TESSERACT allows users to change the 

perspective of their investigation by drilling down on 

specific artifact(s) or developer(s). For instance, a user 

might drill-down to view a particular component in the 

architecture to find which files and developers are 

associated with that component. 

 

3.3. Sample Usage Scenario 
 

Here we present an example usage scenario where 

TESSERACT can enable the investigation of the 

technical and social relationships in a project through 

an architectural perspective. Assume the hypothetical 

case where a manager is interested in investigating the 

development history of a particular component 

(Sequencing Connector) from the last release till the 

current date. To do so, she first selects the appropriate 

time period from the Activity panel, following which 

she selects the particular component in the Architecture 

pane. On performing this step the following 

information is highlighted in TESSERACT (see Figure 

1): (1) files that are associated with that component and 

have changed in the desired time frame, (2) developers 

who have edited those files, and (3) any bugs that are 

associated with those files. 

 

Drawing on her knowledge of the project, the manager 

uncovers the following facts. First, the chosen 

component involves artifacts that occupy a central 

position in the artifact network implying intricate 

dependencies with two other components, she realizes 

that the code structure is not appropriately reflecting 

the architecture and decides she would need to talk to 

the team about it. Second, some of the files that belong 

to the component had had defects, most of which had 

low priority (normal) and were all fixed. Finally, she 

confirms that the component was largely developed by 

the team that was assigned the task. However, she is 

surprised to find that an outlying developer who is a 

member of a team responsible for another component 

(Scanner Control) has been involved. Further 

investigation of the code contributions of the outlier 

reveals that that developer made unplanned 

modification to the Sequencing Connector and that an 

undocumented interface method was added so that the 

(a) 

(b) (c) 

(e) 

(d) 

Figure 1. TESSERACT architecture extension UI mockup showing five display panes: (a) project activity pane with code 

commits (top) and communication (bottom), (b) file and bug bi-partite network, (c) architecture, (d) developer 

communication network, and (e) textual listing of bugs. 



component Scanner Control could call the Sequencing 

Connector component.  

 

The architecture clearly indicates that all calls from 

Scanner Control should connect through another 

component (Reactive Connector) and the new interface 

method violates the architectural assumptions. Further 

investigation of the developer communication network 

shows that the said developer has not communicated 

with the rest of the team indicating a possibility that the 

team may not be aware of this architecture violation. 

She decides to immediately contact the main 

development team and the outlier developer to resolve 

this issue immediately. 

 

4. Discussion and Future Work 
 

TESSERACT is the first exploratory environment that not 

only allows the investigation of the different socio-

technical relationships that exist among project 

elements, but also helps a user understand their 

evolution over time. More specifically, TESSERACT 

creates networks among code, bugs, and developers. It 

creates file-to-file associations based on which files are 

frequently changed together, and then connects which 

artifacts are associated with which bugs. TESSERACT 

also creates a developer communication network by 

creating links among developers who have 

communicated either via mailing list or discussion via 

the bug repository. A critical contribution of 

TESSERACT is the cross-linking of different project 

elements in such a way that users can investigate a 

pattern or project occurrence across multiple project 

elements and over time. 

 

Here, we have discussed extending the capabilities of 

TESSERACT to provide an architectural perspective to 

project investigations. The architecture of a project 

provides the right level of abstraction, using which 

individuals can correlate lower granularity changes (at 

the level of files/bugs). Doing so, not only presents 

changes taking place at the design level, but also helps 

in making the information presentation and 

investigation more scalable.  

 

Although, the architecture of a project is a critical 

element that captures the design decisions of a project 

and to a large extent determines the team interactions, 

it frequently becomes an obsolete artifact. Developers 

tend to focus more on the numerous artifacts with 

which they interact on a day-to-day basis: source code 

files, unit tests, bug reports, and emails to and from 

other developers. This is not surprising, given the fact 

that developers have to contend with an extremely 

large set of such artifacts and that there exists no tool 

support which treats architecture as a central element. 

In our work, we aim to overcome this problem and 

enable the investigation of project level changes 

through an architectural perspective. 

 

4.1. Planned Validation 
 

Evaluation of any software tool involves two criteria: 

usefulness and usability. There exists a large body of 

literature that argues for the need for architecture to be 

considered as a central element [22] and field studies 

that show that doing so is rarely possible in the real 

world [6]. These studies help ascertain the usefulness 

of a tool such as TESSERACT, that allows the 

investigation of project changes through an 

architectural perspective. We plan to augment this body 

of knowledge by demonstrating our tool to software 

architects, managers, and developers and collecting 

their feedback on how they would use the tool in their 

daily activities. Our central goal would be to elicit how 

these stakeholders currently manage their tasks and 

how TESSERACT can help them. 

 

We plan to validate the usability of the tool by 

performing user studies both in controlled lab settings 

and deployment in the field. Towards this direction, we 

will first instrument TESSERACT with real projects to 

ensure that it scales well to real projects and so that 

users can investigate their own projects during our 

study. Doing so will also help us validate the efficacy 

of our architectural recovery techniques from available 

source code. 

 

We plan to conduct a series of user studies through 

which we will determine how users investigate a given 

set of changes when using our tool as compared to 

using other available tools. Based on our understanding 

of these studies and after implementing feedback from 

our studies, we will identify sites that treat architecture 

as a central component (e.g., the aerospace industry). 

We will then deploy TESSERACT to these sites and 

investigate the usefulness and usability of the tool in 

real-life settings. 

 

4.2. Enabled Future Research 
 

The approach we discussed in the previous section is 

focused on the exploration of the relationships between 

an instance of an architecture and the technical and 

social interactions that result in its implementation. Our 

work, however, enables the investigation of a broader 



set of questions and research directions in the 

intersection of architectural concepts and the practical 

aspects of software development. 

 

One very exciting question we plan on exploring next 

is the relationships of architectural styles with the 

social structures of software developers. The selection 

of a specific architectural style for a software system is 

primarily based on the technical characteristics of the 

system in question: Does the style foster needed 

qualities, for example, or has the style been shown 

effective in the problem domain in the past? 

 

What the tool support we propose to build does, 

however, is to enable asking questions about the effects 

or demands (if any) of specific architectural styles on 

the social structures of the developers that will use it. 

By exploring and understanding these relationships, the 

richness of considerations during the selection of an 

architectural style is greatly enhanced: Does the style 

fit our established social practices, or how must we 

arrange our development teams to better align their 

organization with the style’s social demands? By 

providing the fundamental tool support for even asking 

such questions, we look forward to exploring if such 

correlations exist and how to leverage them in better 

matching communication and teaming practices with 

architectural styles. 
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