
An Approach for Categorizing End User Programmers
to Guide Software Engineering Research

Christopher Scaffidi

Institute for Software Research Intl.
School of Computer Science
Carnegie Mellon University

+1-412-268-3564
www.cs.cmu.edu/~cscaffid

cscaffid+isri@cs.cmu.edu

Mary Shaw

Sloan Software Industry Center &
School of Computer Science
Carnegie Mellon University

+1-412-268-2589
www.cs.cmu.edu/~shaw

mary.shaw@cs.cmu.edu

Brad Myers

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

+412-268-5150
www-2.cs.cmu.edu/~bam/

bam@cs.cmu.edu

ABSTRACT

Over 64 million Americans used computers at work in 1997, and
we estimate this number will grow to 90 million in 2012,
including over 55 million spreadsheet and database users and 13
million self-reported programmers. Existing characterizations of
this end user population based on software usage provide minimal
guidance on how to help end user programmers practice better
software engineering. We describe an enhanced method of
characterizing the end user population, based on categorizing end
users according to the ways they represent abstractions. Since the
use of abstraction can facilitate or impede achieving key software
engineering goals (such as improving reusability and
maintainability), this categorization promises an improved ability
to highlight niches of end users with special software engineering
capabilities or struggles. We have incorporated this approach into
an in-progress survey of end user programming practices.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments –
interactive environments, graphical environments, integrated

environment; D.2.11 [Software Engineering]: Software

Architectures – data abstraction; K.8.1 [Personal Computing]:
Application Packages – database processing, spreadsheets.

General Terms
Design

Keywords

end user software engineering, end user programming, abstraction

1. INTRODUCTION
As reported in 1995 [6], and widely disseminated in 2000 [7],
Boehm et. al. estimated that end user programmers would number
55 million in 2005, compared to fewer than 3 million professional
programmers.

We examined the context and method that generated this “55
million” estimate and discovered that it actually constitutes an
estimate of Americans using computers at work—rather than end
user programmers, per se [25]. Here, we seek to distinguish end
user programmers from non-programmers in a way that goes
beyond just a single number and helps guide the design of tools to
support end user software engineering.

Specifically, a simple binary division of “end user programmers”
from “end user non-programmers” provides inadequate insight
into end user behavior to guide future research and tool
development. Instead, we argue that end users exhibit a variety of
practices ranging from programming-like to non-programming-
like, and we believe that we can fruitfully characterize this
distribution on the basis of how end users represent abstractions.
(While we argue for this approach on the basis of its relevance to
software engineering research, Blackwell has made similar
arguments from the standpoint of studying the cognitive aspects
of programming [2].)

In Section 2, we describe how previous research has attempted to
categorize end users based on software usage, and we highlight
this method's inadequacies. In Section 3, we detail a
categorization of end users based on how they represent
abstractions, and we describe an in-progress survey that
incorporates this abstraction-oriented approach.

2. PROBLEM BACKGROUND

2.1 The End User Population’s Size
Boehm estimated that end users in American workplaces would
number 55 million in 2005 [6], but in fact the end user population
already exceeded 64 million in 1997 and continues to grow [25].
This realization prompted us in a previous report [25] to extend
Boehm’s “55 million” estimate with fresh data and a richer model
accounting for rising computer usage rates among workers. Using
survey results and projections from the Bureau of Labor Statistics
(BLS), we estimated that over 90 million Americans will use a
computer at work in 2012 (the year for which BLS published
occupational projections), including over 55 million spreadsheet
and database users and 13 million self-reported programmers,
compared to fewer than 3 million professional programmers [25].
Thus, the potential pool of end user programmers will
significantly exceed the population of professional programmers
for the foreseeable future.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First Workshop on End-User Software Engineering (WEUSE I).May 21
2005, Saint Louis, Missouri, USA.
Copyright ACM 1-59593-131-7/05/0005$5.00.

1

2.2 End Users’ Diverse Software Usage
How many end users actually program? BLS software usage data
from 2001 [25] offer a coarse-grained answer shown in Table 1.

End users exhibit a diversity of software usage practices.
Although only 15% of end users reported that they “do
programming” at work in 2001, over 60% of end users used
spreadsheets or databases at work. Further, the BLS data do not
explicitly address many other end user programming
environments, such as “educational simulation builders, web
authoring systems, multimedia authoring systems, e-mail filtering
rules, CAD systems” [24] and other scripting environments.

Moreover, within the context of a given software tool such as
spreadsheet editors, end users exhibit a range of usage patterns.
For example, Fisher and Rothermel’s survey of 4498 spreadsheets
on the web found that only 44% contained formulas [12]. Hall’s
study of 106 spreadsheets created by well-educated Australian
workers revealed that 47% used “if” functions, while only “21%
involved links with a database” [15]. To date, researchers appear
to have studied spreadsheet usage more than any other end user
programming environment; however, we anticipate that studying
end users’ practices in other environments (such as web page
authoring) would also reveal a comparable variety of activities
ranging from programming-like to non-programming-like.

In short, the burgeoning end user population demonstrates a
diversity of software usage practices, and software usage data like
these constitute a coarse-grained characterization of the extent to
which end users engage in programming.

2.3 Past Software-Focused Categorizations
Unfortunately, a coarse-grained categorization based on software
usage is inadequate for guiding programming tool designers: it
tells what tools people use but not why, nor how to improve tools.
First, as discussed below, it glosses over niches of end users with
special needs or capabilities. Second, it fails to highlight
concerns spanning multiple types of programming environments.

These limitations are apparent, for example, in Nardi’s taxonomy
of programming environments [20]:

• Textual languages, including spreadsheet formulas

• Programming by example (PBE) systems, exemplified
by the Eager extensions to HyperCard

• Automatic programming systems, such as WorldBuilder

• Form-input tools, like FrameMaker’s style designer,
where users fill in a form to specify the style

• Visual programming languages, such as LabView

First, purely tool-based categorizations like Nardi’s mask poten-
tially interesting sub-populations. For instance, both FileMaker
and FrontPage mainly rely on visual design (and fall into the last
bullet above) to support creation of forms by end users. However,
FileMaker (unlike FrontPage) allows end users to define a data
structure and associate multiple forms with that data structure.
Thus, FileMaker gives extra capabilities to users (who may say, “I
chose to delete a data field, and FileMaker conveniently removed
it from all forms”); on the other hand, FileMaker also presents
extra challenges (“I accidentally deleted a data field, and
FileMaker removed it from all my forms!”) So FileMaker users
may constitute a niche with special capabilities and challenges.
Coarse tool-based categorizations like Nardi’s fail to reveal much
of the variation in power among tools within the same category.

Second, purely tool-focused categorization fails to emphasize
issues affecting many tools. For instance, though research has
documented the prevalence of spreadsheet bugs [21], it is not
clear whether the same types of end user bugs abound in textual,
PBE, automatic, visual, and form-based environments. This lack
of research may hinder generalizing reliability research from one
end user programming venue (like spreadsheets) to others.

Indeed, most software engineering concerns, including reliability,
apply to many programming environments. These goals include
fostering constructability, safety, maintainability, efficiency, cost-
effectiveness, dependability, security, and ubiquity. Learning how
these cross-cutting issues impact multiple categories of end user
programmers may guide research that will benefit more than one
category of end user programmer at a time.

3. PROPOSED APPROACH
We believe that studying how end users represent abstractions
will uncover interesting niches of end user programmers and will
highlight key end user software engineering challenges and
opportunities. In this section, we define “abstraction” and discuss
three common ways to represent abstractions (variables, functions,
and data structures). After discussing the interplay between
abstraction and key software engineering concerns (such as
reliability and maintainability), we explain how our focus on
abstraction guided our survey of end user programming practices.

3.1 Abstraction’s Definition and Purpose
One formal view of “abstraction” comes from lambda calculus.
“Abstracting a composed value v from some simple value a means
‘stripping off’ the a property from v, creating a generalized
object—a function to be applied later. Technically, the result of
such an abstraction is replacing each occurrence of a in v by a
variable x, yielding a function of a single parameter x” [1]. For
example, the expressions “(80.0/100)” and “(60.0/100)” are
represented by the abstraction “(x/100)” by “stripping off” 80.0
and 60.0, respectively, and replacing them with variable x.

Applied to programming practice, “abstraction” acquires a
pragmatic flavor. In this context, “a good abstraction is one that
emphasizes details that are significant to the reader or user and
suppresses details that are, at least for the moment, immaterial or
diversionary” [26]. For example, consider writing an algorithm to

Table 1. Software application usage by US workers in 2001

Question: Do You…
Thousands

of Users

Percent of

Computer

Users

Use a computer at your main job? 72,277 <<100%>>

• Connect to the Internet or use email? 51,895 71.8%

• Do word processing or desktop
publishing?

48,426 67.0

• Use spreadsheets or databases? 45,029 62.3

• Use a calendar or do scheduling on
the computer?

38,235 52.9

• Do graphics and design? 20,816 28.8

• Do programming? 10,986 15.2

2

convert percentages to decimal fractions. The algorithm
implementer mainly focuses on dividing by 100; in contrast, the
algorithm users mainly focus on specifying percentages to
convert. Representing the abstract algorithm as a function cleanly
separates implementer concerns and user concerns.

Abstractions hold value (in part) because they facilitate focusing
on the general aspects of a problem and reusing the solution on
many instances of that problem. For example, an accountant
might define a calcInterest function to calculate total interest
on an arbitrary loan and then apply this function to specific loans.
In short, representing an abstract generalization may facilitate
reuse across problem instances.

3.2 Abstraction as a Focus of Past Research
Researchers have developed tools that facilitate representing
abstractions as variables, functions, and data structures.

3.2.1 Variables
Variables constitute the simplest programming representation of
abstraction. They separate value generation (when some variable
V is set equal to some expression E) from value usage (when V’s
value is retrieved for use in some later computation C0).

Unfortunately, a coder may skip defining V and embed E directly
inside C0 and other computations C1, C2, and CN, resulting in less
maintainable code. For example, if he uses a 6% interest rate to
compute the total owed on a $200 loan and the interest accrued,
he may skip defining temporary variables, instead coding:

print("Total="); print(200*exp(1+6/100));
print(", Interest="); print(200*exp(1+6/100)-200);

Note that the failure to define temporary variables led to wasteful
replication of expressions, resulting in less efficient, maintainable,
and reusable code. Hence, researchers have provided tools that a
professional programmer can use (after code is written as in the
example above) to automatically extract expression E from each
computation Ci, replacing each usage with a variable V initialized
once from E and reused in each Ci [14]. Supporting abstraction

with variables is particularly valuable, since variables participate
in other representations, such as functions and data structures.

3.2.2 Functions
Functions represent algorithmic abstractions. They existed since
the invention of macros and assemblers in the 1950’s [26] (and, of
course, in mathematics since Leibniz coined the term in 1694).
More sophisticated types of functions now exist, including
spreadsheet macros, JavaScript event handlers, and stored
procedures. Functions encompass what Blackwell refers to as
“abstraction over time” [3], where a user records behavior for
playback; however, since functions accept parametric variables,
they separate behavior concerns from data concerns, in addition to
separating behavior concerns from time of execution.

Many research prototypes of end user programming environments
provide a means for end users to represent algorithmic
abstractions (see Table 2). Conversely, in the “real world,”
spreadsheet tools provide little or no support for defining and
reusing functions, yet these tools constitute the most widely used
type of end user programming environment [16].

Though researchers have extended spreadsheets to ease definition
of formulas [16], the disparity between functional abstraction
research and practice raises a number of questions: Do end users
often define functions in tools that support functional abstraction?
If not, is it because of tool deficiencies, learning barriers, or
simply because representing new algorithmic abstractions holds
little value for end users? We will return to such questions below.

3.2.3 Data structures
Finally, many abstractions involve composing pieces of data into
a structured whole. Various end user programming environments
support representation of such abstractions (see Table 2). Data
structures offer a fairly simple concrete representation of what
Blackwell terms “abstraction over a class of entities” [3], though
in the software engineering literature, structured data research
dovetailed into more advanced innovations: abstract data types,
generic types, and inheritance (see [26] for a survey). It is unclear

Table 2. A sampling of end user programming environments and their support for representing new abstractions

Environment Domain Support for functions Support for data structures

AutoHAN [3] Home automation
Channel Cubes can map to scripts that call
functions on appliances.

Aggregate Cubes can represent a
collection of other Media Cubes.

BOOMS [1] Music editing Functions record series of music edits. Structures contain notes and phrases.

Forms/3 [8] Spreadsheet editing
Forms simultaneously represent a function
and an activation record.

Types are structured collections of cells
and graphical objects.

Gamut [17] Game design
Behaviors are learned from positive and
negative examples.

Decks of cards serve as graphical
containers with properties.

Janus [11] Floor plan design
Critic rules encode algorithms for deciding
if a floor plan is “good.”

Instances of classes may possess
attributes and sub-objects.

KidSim [27] Simulation design
Graphical rewrite rules describe agent
behavior.

Agents may possess properties and are
cloned for new instances.

Lapis [18] Structured text editing Scripts automate a series of edits. Text patterns can contain sub-structure.

Pursuit [19] File management Scripts automate a series of manipulations. Filter sets contain files and folders.

QUICK [9] UI design
Actions may be associated with objects
(that are then cloned).

Objects may have attributes and be
cloned and/or aggregated.

3

whether end users utilize any of these more advanced
representations of abstraction, nor how researchers might enhance
existing tools to provide better support in this area.

3.3 Abstraction and Software Engineering
The use of abstraction can significantly affect key software
qualities such as maintainability and reliability.

On one hand, abstraction can increase the quality of software. For
example, high notation viscosity (the difficulty of making local
changes) can damage software maintainability, but it is known
that “viscosity can be reduced by increasing the number of
abstractions” [13]. Of course, simply adding more abstraction
does not automatically reduce viscosity. Abstractions must be
selected prudently in order to encapsulate features that are likely
to change in the future; this prevents local changes from cascading
into other sections of the application. Though this
maintainability-enhancing design principle first appeared in the
software engineering literature over thirty years ago [23], it seems
likely that it has not yet significantly impacted actual end user
programming practice.

Likewise, researchers realized long ago that comprehensive
testing requires modular code for several reasons. First, modular
structures tend to exhibit much lower complexity, thereby
reducing the number of tests required to achieve adequate
confidence in code correctness. Second, if a system is built by
combining smaller abstraction “building blocks,” then each
abstraction’s module may ideally be tested independently of the
others, further simplifying the testing task. Finally, the
opportunity to reuse modules may save coding time, which the
programmer may then invest in other activities, such as testing.
For all these reasons, abstraction-centric, modularized code has
the potential to exhibit high correctness and reliability [10] [22].

On the other hand, “increasing abstractions tends to create hidden
dependencies” because “quite often abstractions themselves bring
problems of visibility” [13]. In other words, abstractions can
hinder changing the system without introducing bugs. Thus, used
incorrectly, abstraction can degrade maintainability and reliability.
Tool designers cannot simply provide support for representing
abstractions and assume this will alone improve maintainability
and reliability; instead, tools must also provide guidance to help
programmers effectively create and comprehend abstractions.
Achieving this requires understanding whether, when, and how
end user programmers create and understand abstractions.

Abstraction can benefit or harm a wide variety of other software
quality attributes, each of which involves many categories of
programmer and programming environment. Thus, studying end
user abstraction representation promises insight into the software
engineering challenges and opportunities facing end users today.

3.4 Abstraction as the Focus of Our Survey
Based on these considerations, we tailored our data collection to
emphasize abstraction representation by end users. We created a
survey that first asks users about their software usage and then
about usage of features related to the representation of abstraction.

Our survey was fielded in Information Week magazine beginning
in February 2005 (using a questionnaire posted on their web site),
and we will have results by May 2005. We will follow this with

an updated survey on a targeted, scientific sample. Based on
discussions with researchers, we identified the following popular
end user programming tools in the business context:

• Spreadsheets

• Word processors and presentation tools

• Web page editing tools

• Web server scripting languages

• Databases

• Reporting tools / business intelligence

For each type of software, our survey asks about features that end
users might utilize for representing abstractions. Different
programming environments represent abstractions differently, and
we have worded our questions accordingly. For example, to test
for function-like representations of algorithmic abstractions, we
ask spreadsheet users about recording macros, as well as creating
or editing macros in the macro editor; for databases, we ask about
creating stored procedures.

The survey also contains several questions related to
programming practices. For example, we ask spreadsheet users
whether they test their spreadsheets. We ask all respondents
several questions about documentation habits, how they use the
web during programming, and their knowledge of programming
terminology. We also ask about background information for use
as independent variables.

We expect to launch a web-based survey of 2500 marketing
professionals in 2005. We selected this population because
preliminary discussions with marketing professionals suggested
that they perform a wide variety of programming activities,
ranging from manipulating numerical data to publishing web
pages. In a sense, marketing professionals may represent an
“upper-bound” on the amount and diversity of end user
programming in the workplace.

3.5 Building on the Survey Results
Our surveys will likely show that each abstraction representation
is used less often in some programming environments than in
others. For example, we may discover that end users frequently
represent functional abstractions in web pages (using JavaScript
functions) but only rarely in spreadsheet environments (through
macros) and databases (through stored procedures). Relatively
low usage rates raise an important question: Do users rarely utilize
a given abstraction representation in certain environments because
it is not useful in those contexts, or would they like to use the
representation but fail due to inadequate tool support? Although
our surveys will not answer this question directly, they will
highlight areas where the question applies.

A related question concerns how well end users understand
abstraction and the extent to which they want to represent new
abstractions. This issue influences what type of assistance the
environment must provide. For example, using the terminology
of Bloom’s taxonomy in the cognitive domain [5], suppose an end
user currently manipulates abstractions at the Knowledge level of
understanding (perhaps he has memorized that a script needs to be
wrapped with Tcl keywords, as in Lapis [18]). In such a case, it
would not be reasonable for the tool to require Synthesis of
multiple scripts in order to achieve useful work, since synthesis
involves a much higher level of understanding within Bloom’s

4

taxonomy. This mismatch between user and system requirements
exemplifies the pitfall of excessive “abstraction-hunger” [13].

Answering these questions will require interviews and
observational studies of end users at work. Combining the results
from these future studies with our survey data will provide
guidance for how to improve tools to better support end users’
programming goals.

4. ACKNOWLEDGEMENTS
We thank Andrew Ko for comments on drafts. This work has
been funded in part by the EUSES Consortium via the National
Science Foundation (ITR-0325273), by the National Science
Foundation under Grant CCF-0438929, by the Sloan Software
Industry Center at Carnegie Mellon, and by the High De-
pendability Computing Program from NASA Ames cooperative
agreement NCC-2-1298. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

5. REFERENCES
[1] Balaban, M., Barzilay, E., and Elhadad, M. Abstraction as a

Means for End User Computing in Creative Applications.
IEEE Transactions on Systems, Man and Cybernetics, Part

A, 32, 6 (Nov. 2002), 640-653.

[2] Blackwell, A. First Steps in Programming: A Rationale for
Attention Investment Models. In Proceedings of the IEEE

2002 Symposia on Human Centric Computing Languages

and Environments, 2002, 2-10.

[3] Blackwell, A., and Hague, R. AutoHAN: An Architecture for
Programming the Home. In Proceedings of the IEEE 2001

Symposia on Human Centric Computing Languages and

Environments, 2001, 150-157.

[5] Bloom, B., Mesia, B., and Krathwohl, D. Taxonomy of

Educational Objectives. David McKay Publishers, New
York, NY, 1964.

[6] Boehm, B., et al. Cost Models for Future Software Life
Cycle Processes: COCOMO 2.0. Annals of Software

Engineering Special Volume on Software Process and

Product Measurement, J.C. Baltzer AG Science Publishers,
Amsterdam, The Netherlands, 1995.

[7] Boehm, B., et al. Software Cost Estimation with COCOMO

II. Prentice-Hall, 2000.

[8] Burnett, M., et al. Forms/3: A First-Order Visual Language
to Explore the Boundaries of the Spreadsheet Paradigm.
Journal of Functional Programming, 11, 2 (Mar. 2001),
155-206.

[9] Douglas, S., Doerry, E., and Novick, D. Quick: A User-
Interface Design Kit for Non-Programmers. In Proceedings

of the 3rd Annual ACM SIGGRAPH Symposium on User

Interface Software and Technology, 1990, 47-56.

[10] Edwards, N. The Effect of Certain Modular Design
Principles on Testability. In Proceedings of the International

Conference on Reliable Software, 1975, 401-410.

[11] Fischer, G., and Girgensohn, A. End User Modifiability in
Design Environments. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 1990,
183-192.

[12] Fisher II, M., and Rothermel, G. The EUSES Spreadsheet
Corpus: A Shared Resource for Supporting Experimentation
with Spreadsheet Dependability Mechanisms. Technical
Report 04-12-03, University of Nebraska--Lincoln, Lincoln,
NE, Dec. 2004.

[13] Green, T., and Petre, M. Usability Analysis of Visual
Programming Environments: A Cognitive Dimensions
Framework. Journal of Visual Languages and Computing, 7,
2 (June 1996), 131–174.

[14] Griswold, W., and Notkin, D. Automated Assistance for
Program Restructuring. ACM Transactions on Software

Engineering Methodology, 2, 3 (July 1993), 228-269.

[15] Hall, J.. A Risk and Control-Oriented Study of the Practices
of Spreadsheet Application Developers. In Proceedings of

the 29th Hawaii International Conference on System

Sciences, 1996, 364-373.

[16] Jones, S., Blackwell, A., and Burnett, M. A User-Centred
Approach to Functions in Excel. In Proceedings of the 8th

ACM SIGPLAN International Conference on Functional

Programming, 2003, 165-176.

[17] McDaniel, R., and Myers, B. Getting More Out of
Programming-By-Demonstration. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, 1999, 442-449.

[18] Miller, R., and Myers, B. LAPIS: Smart Editing with Text
Structure. In CHI '02 Extended Abstracts on Human Factors

in Computing Systems, 2002, 496-497.

[19] Modugno, F., and Myers, B. Pursuit: Graphically
Representing Programs in a Demonstrational Visual Shell. In
Proceedings of the CHI '94 Conference Companion on

Human Factors in Computing Systems, 1994, 455-456.

[20] Nardi, B. A Small Matter of Programming, MIT Press,
Cambridge, MA, 1993.

[21] Panko, R. What we know about spreadsheet errors. Journal

of End User Computing, 10, 2 (Spring 1998), 15-21.

[22] Parnas, D. The Influence of Software Structure on
Reliability. In Proceedings of the International Conference

on Reliable Software, 1975, 358-362.

[23] Parnas, D. On the Criteria to Be Used in Decomposing
Systems into Modules. Communications of the ACM, 15, 12

(Dec. 1972), 1053-1058.

[24] Ruthruff, J., et al. Debugging and Finding Faults: End User
Software Visualizations for Fault Localization. In
Proceedings of the 2003 ACM Symposium on Software

Visualization, 2003, 123-132.

[25] Scaffidi, C., Shaw, M., and Myers, B. The “55M End User
Programmers” Estimate Revisited. Technical Report CMU-
ISRI-05-100, Carnegie Mellon University, Pittsburgh, PA,
2005.

[26] Shaw, M. Abstraction Techniques in Modern Programming
Languages. IEEE Software, 1, 4 (Oct.1984), 10-26.

[27] Smith, D., Cypher, A., and Spohrer, J. KidSim:
Programming Agents without a Programming Language.
Communications of ACM, 37, 7 (July 1994), 54-67.

5

