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ABSTRACT 
Programmers often omit input validation when inputs can appear 
in many different formats or when validation criteria cannot be 
precisely specified. To enable validation in these situations, we 
present a new technique that puts valid inputs into a consistent 
format and that identifies “questionable” inputs which might be 
valid or invalid, so that these values can be double-checked by a 
person or a program. Our technique relies on the concept of a 
“tope”, which is an application-independent abstraction describ-
ing how to recognize and transform values in a category of data. 
We present our definition of topes and describe a development 
environment that supports the implementation and use of topes.  
Experiments with web application and spreadsheet data indicate 
that using our technique improves the accuracy and reusability of 
validation code and also improves the effectiveness of subsequent 
data cleaning such as duplicate identification. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – data types and structures, input/output 

General Terms 
Reliability, Languages. 

Keywords 
Data, validation, abstraction. 

1. INTRODUCTION 
Programs typically do not validate many kinds of human-readable 
textual input, even though it is well-known that software should 
validate all inputs [3][14]. 

One obstacle to more thorough validation is that the two com-
monly practiced validation approaches, numeric constraints and 
regular expressions (“regexps”) [4][11], are “binary” in that they 
attempt to differentiate between definitely valid and definitely in-
valid inputs. Yet for many data categories such as person names 
and book titles, it is difficult to conclusively determine validity. 
For instance, no numeric constraint or regexp can definitively dis-
tinguish whether an input field contains a valid person name. 

A more effective validation approach should not only identify 
definitely valid and invalid data when feasible, but also identify 
questionable inputs—values that are not clearly valid but are also 
not clearly invalid—so those data can receive additional checking 
from people or programs to ascertain validity. For example, if a 
textbox contains a questionable person name that has an odd mix 
of uppercase and lowercase letters, such as “Lincolnshire MCC”, 
the application could ask the user to double-check and confirm 
the input. Or if the questionable person name was downloaded 
from a web service, then the application might call a different web 
service to double-check the value. Each such strategy first re-
quires identifying questionable values. 

The second obstacle to more thorough validation is that even valid 
data from files, web services, and users appear in multiple for-
mats. For example, mailing addresses may specify a full street 
type such as “Avenue” or an abbreviation such as “Ave.”, and 
books may be referenced by title or ISBN. Prior to using data for 
printing reports or performing analyses, an application typically 
must put data into a consistent format. Even if a programmer 
could write a regexp (with many disjunctions) to recognize multi-
format data, the regexp still would leave inputs in multiple for-
mats at the end of validation. Ideally, an abstraction that supports 
validation should help with transforming data into the format 
needed by the main application. 

Based on these considerations, we present a technique for recogniz-
ing questionable data and putting data into a consistent format. Our 
technique relies on a new abstraction called a “tope”, which robustly 
describes a data category independently of any particular software 
application and which is reusable across applications and across 
software development platforms. A tope contains multiple explicitly 
distinguished formats that recognize valid inputs on a non-binary 
scale, and it contains transformation functions to map values from 
one format to another. In comparison, a regexp with disjunctions 
may recognize several formats, but they are not explicitly distin-
guished, matching is binary, and no transformations are provided. 

To help software engineers implement topes, we have created a 
Tope Development Environment (TDE). This environment is 
based on a direct manipulation user interface that we evaluated in 
previous work, showing that it enables people with minimal for-
mal training in programming to describe data formats quickly and 
accurately [32]. 

This paper does not focus on the user interface. Rather, this pa-
per’s contributions are the new topes data abstraction that soft-
ware engineers implement through the TDE, as well as a valida-
tion technique that associates topes with input fields in order to 
identify invalid data and put valid data into a consistent format.  
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Our empirical evaluation shows that compared to single-format 
binary validation, our technique has three benefits. First, it in-
creases the accuracy of validation. Second, it increases the reus-
ability of validation code. Finally, putting data into a consistent 
format improves the effectiveness of subsequent data cleaning, 
such as identification of duplicate values. 

This paper is organized as follows. Section 2 presents real exam-
ples of data validation in practice, and Section 3 identifies key 
characteristics of the data to be validated. Section 4 presents topes 
in detail and briefly describes the TDE. Section 5 reports on our 
quantitative evaluation, Section 6 discusses related work, and Sec-
tion 7 concludes with limitations and future work. 

2. MOTIVATING EXAMPLES 
Programmers often omit validation for input fields, causing pro-
grams to accept invalid as well as inconsistently formatted data. We 
found many examples of unvalidated fields in “person locator” web 
applications created in the aftermath of Hurricane Katrina [30]. 

To assist the search for survivors displaced by the hurricane, numer-
ous teams created web applications so users could store and retrieve 
data about the status and location of people. Unfortunately, these 
programmers had no way to know that other teams simultaneously 
created essentially identical sites. Within a few days, another team 
recognized that the proliferation of sites forced users to perform 
substantial repetitive work, so this team created “screen scraper” 
software to read and aggregate the other sites’ data into a single site. 
We interviewed six programmers, including two members of the ag-
gregator team. One programmer gave us his application’s source 
code, and we inspected the other sites’ browser-side code. See [30] 
for sampling and data analysis methodology. 

Each web application provided forms for users to enter data about 
survivors, and prior to storing inputs in a database, applications 
validated some inputs by testing them with constraints and  
regexps. For example, one form had fields for the date and time 
when a missing person was found. To validate the time, the appli-
cation checked the string against a regexp. If the regexp check 
succeeded, then the code checked the hour and minute against 
numeric constraints. Similar code validated the date. 

However, interviewees’ web forms did not carefully validate most 
data. For example, they simply checked if person names were 
non-empty but did not check if inputs were excessively long or 
contained strange punctuation (as would be present in an SQL-
injection attack [14]). Most fields were not validated at all. 

Interviewees explained that they intentionally omitted validation 
in order to provide end users with maximal flexibility. While they 
conceded that this resulted in accepting some invalid data, they 
emphasized that aggressive validation might have prevented many 
people from entering valid data. 

Unfortunately, the lack of validation led to subtle errors. For ex-
ample, one end user put “12 Years old” into an “address” field on 
one site. In addition, data formats varied between sites and even 
within each site. For example, one site used the date format 
“09.04.2005”, while another used “9/04/2005,” and another used 
“2005-09-04”. Scrapers recognized this special case and trans-
formed each to “2005-09-04” before aggregation. However, other 
data categories such as mailing addresses also varied in format, 
and scraper developers generally did not write code to put these 

into a consistent format. Because the aggregated data appeared in 
multiple formats, it was often difficult to determine if entries on 
different sites or within the same site referred to the same person. 

We have found similar examples of unvalidated fields in many other 
web applications, such as Google Base. Conceptually, Google Base 
is a large online database, with 13 primary web forms for inserting 
rows into database tables. Each form corresponds to a table, and 
each input field in each form corresponds to a table column. How-
ever, these conceptual table columns are not static, as users can omit 
fields/columns or add custom fields/columns on a per-record basis. 

For example, the Jobs web form lets users enter job openings. By 
default, the form displays fields for the job type, industry, func-
tion, employer, education level, salary, immigration status, salary 
type, publish date, description, and location. The web form offers 
a list of suggested values for many fields (such as “Contractor”, 
“Full time”, and “Part time” for the job type), but users are free to 
type arbitrary values for each field. 

Most Google Base form fields accept unvalidated text. That is, 
Google has not implemented validation for most default 
fields/columns, including job type, industry, function, employer, 
or education level. Moreover, even for numeric fields, the forms 
accept unreasonable numbers (such as a salary of “-45”). When a 
user adds a custom field/column, no validation occurs. 

Web applications are not the only software requiring data validation. 
For example, among people with minimal formal training in pro-
gramming, spreadsheets are the most common platform for imple-
menting computations and generating reports [33]. Prompted by the 
high error rate in spreadsheets [19], researchers have provided tech-
niques for validating formulas and numeric data [6][27].  

Yet in one study, nearly 40% of spreadsheet cells contained non-
numeric, non-date textual data [10]. In a contextual inquiry, we 
found that information workers commonly use spreadsheets to 
gather and organize textual data in preparation for creating reports 
[34]. Our results were consistent with a previous study which 
found that nearly 70% of spreadsheets were created for reporting 
purposes [12]. Despite the importance of textual data, spread-
sheets offer no support for validating strings. Though Excel lets 
users associate data categories such as “social security number” 
with cells for formatting, this does not actually check the data or 
display error messages for invalid values. Our validation tech-
nique and its supporting tope abstraction are platform-agnostic, 
applying in particular to spreadsheets and web applications. 

3. CHARACTERISTICS OF TEXTUAL DATA 
A successful technique must accommodate several key character-
istics of the textual data to be validated. 

First, the data are human-readable character strings appearing in 
input fields, such as spreadsheet cells and web form textboxes. 

Second, each application’s problem domain calls for most fields 
to each contain values from a certain category, such as company 
names or mailing addresses. In many categories, a value is valid if 
it refers to what information extraction researchers call a “named 
entity”—an object in the real world such as a company or a build-
ing [7][16]. Other data categories, such as salaries or tempera-
tures, do not refer to physical entities. In these categories, values 
must be consistent with categorical constraints implicit in the pro-
grammer’s conception of the data. For example, salaries should be 
positive and, depending on the job, generally within some range. 
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Third, many data categories lack a formal specification. For ex-
ample, the Jobs web form in Google Base includes an employer 
field, which usually refers to a company (a named entity). Yet 
what constitutes a “real” company and, therefore, a valid input? A 
company does not need to be listed on a stock exchange or even 
incorporated in order to be real. Even a private individual can 
employ another person. The category’s boundaries are ambiguous. 

This leads to the first limitation of constraints, regexps, context-
free grammars, types, and similar binary validation approaches 
[5][17][18][20], which is that they only attempt to identify defi-
nitely valid and definitely invalid data. Some systems, such as 
those that validate data by checking dimensional units, not only 
are restricted to binary validation but also cannot validate named 
entities [2][8][9][15]. All of these approaches are unsuitable for 
data categories with ambiguous boundaries. In contrast, this paper 
presents a new technique to identify questionable values—those 
that are not definitely valid but are also not definitely invalid. This 
technique can be used to ferret out values that deserve double-
checking in order to gain more confidence in the validity of data. 

Finally, returning to characterizing the textual data in applica-
tions, we note that values in many data categories can be “equiva-
lent” but written in multiple formats. By this, we mean that, for 
data categories referencing named entities, two strings with differ-
ent character sequences can refer to the same entity. For example, 
“Google”, “GOOG”, and “Google, Inc.” refer to the same entity, 
though they have different character sequences. The first exempli-
fies the company’s common name, the second refers to the com-
pany by its stock symbol, and the third refers to the company by 
its official legal name. Within a certain context, people may use 
other formats to reference companies, such as the TIN identifiers 
used by the United States IRS. 

For categories that do not reference named entities, two strings 
with different character sequences may be equivalent according to 

that category’s meaning. For example, a temperature of “212° F” 

is equivalent to “100° C”. As with named entities, certain people 
may use other formats to reference the same temperature, such as 
“313.15 kelvin” used by physicists. 

Because textual data can appear in many formats, inputs are not 
always in an application’s preferred format. For example, when 
Hurricane Katrina screen scrapers downloaded data from web 
sites, the data had a mixture of formats. Our validation technique 
not only helps identify questionable values, but it also helps 
automate the task of putting data into a consistent format. 

4. DATA VALIDATION WITH TOPES 
Our approach models each data category as an abstraction called a 
“tope”. By “abstraction”, we mean the following:  

The essence of abstraction is recognizing a pattern, naming and 
defining it, analyzing it, finding ways to specify it, and provid-
ing some way to invoke the pattern by its name [35]. 

Creating an abstraction for a data category involves recognizing 
the conceptual pattern implicit in that category’s valid values, 
naming the pattern, carefully defining and evaluating the pattern, 
and ultimately implementing software that encodes the pattern and 
uses it to validate values. (Here, “pattern” has the dictionary defi-
nition of “a consistent or characteristic arrangement” rather than 
the specific technical meaning of a Design Pattern) 

For example, consider a simple data category, email addresses. A 
valid email address is a username, followed by an @ symbol and a 
hostname. At the simplest level, the username and hostname can 
contain alphanumeric characters, periods, underscores, and certain 
other characters. This abstraction—a pattern that succinctly de-
scribes the category—could be implemented in various ways, such 
as a regexp, a context-free grammar (CFG), or a Java program. 

More sophisticated abstractions for email addresses are possible. 
For example, a more accurate pattern would note that neither the 
username nor the hostname can contain two adjacent periods. A 
still more accurate abstraction would note that the hostname ends 
with “.com”, “.edu”, country codes, or certain other strings.  

Some data categories mentioned in Section 3 are most easily de-
scribed in terms of several patterns. For example, companies can 
be referenced by common name, legal name, or stock ticker sym-
bol. The common names are typically one to three words, some-
times containing apostrophes, ampersands, or hyphens. The legal 
names may be somewhat longer, though rarely more than 100 
characters, and they sometimes contain periods, commas, and cer-
tain other characters. The ticker symbols are one to five uppercase 
letters, sometimes followed by a period and one or two letters; 
more precisely, these symbols are drawn from a finite set of offi-
cially registered symbols. These three patterns together compose 
an abstraction describing how to recognize companies. 

We refer to each such abstraction as a “tope”, the Greek word for 
“place”, because each data category has a natural place in the 
problem domain. That is, problem domains involve email ad-
dresses and salaries, rather than strings and floats, and it is the 
problem domain that governs whether a string is valid. 

In our data validation technique, a programmer uses our Tope De-
velopment Environment (TDE) to implement a tope for a data 
category. The tope implementation contains two kinds of func-
tions. One kind of function uses grammars to recognize valid val-
ues and to parse values into trees, while the other kind of function 
transforms values between formats by accessing and recombining 
nodes in parse trees. Plug-ins for popular software development 
platforms help programmers to associate a tope implementation 
with a field in an application. At runtime, the application passes 
values from the field into the respective tope implementation 
functions to validate and transform data. 

The remainder of this section discusses topes in detail and reviews 
key features of the TDE. 

4.1 Topes 
The purpose of topes is to validate strings. So we begin with 
strings and build up to a definition of a tope. 

Each string is a sequence of symbols drawn from a finite alphabet 

∑, so each string s∈∑*. (In practice, ∑ is UniCode.) A data cate-
gory D is a set of valid strings. 

Each tope τ is a directed graph (F, T) that has a function associ-

ated with each vertex and edge. For each vertex f∈F, called a 
“format”, isaf is a fuzzy set membership function 

isaf:∑*�[0,1]. For each edge (x,y)∈T, called a “transforma-

tion”, trfxy is a function isat:∑*�∑*. Each vertex’s isa 

function recognizes instances of a conceptual pattern. Each edge’s 
trf function converts strings between formats. 
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Each isaf defines a fuzzy set [36], in that isaf(s) indicates the 

degree to which s is an instance of one conceptual pattern. For ex-
ample, when recognizing strings as company common names 
based whether they have one to three words, a string s with one 
word would match, so isaf(s) = 1. The conceptual pattern might 

allow an input s’ with four words, but with a low degree of mem-
bership, such as isaf(s’) = 0.1. The pattern might completely 

disallow an input s’’ with 30 words, so isaf(s’’) = 0. 

For each tope τ = (F, T), we define the “validation function” 

)]([max)( f
f

ss
F
isa

∈
=φ  

If φ(s) = 1, then τ labels s as valid. If φ(s) = 0, then τ labels s as 

invalid. If 0 < φ(s) < 1, then τ labels s as questionable, meaning 
that it may or may not be valid. The ultimate goal of validation is 
to prevent invalid data from entering the system; for this purpose, 

τ would be perfectly accurate if ∀ s∈∑*, (φ(s) = 0) <=> (s∉D).  

Each trfxy converts strings from format x into equivalent strings in 

format y. For example, the tope in Figure 1 may use lookup tables to 
match common names and official titles with stock symbols. 

Transformations can be chained, so in practice, topes are typically 
not complete (each vertex directly joined to every other vertex), so 
the number of functions grows linearly with respect to the number of 
formats. Some topes may have a central format connected to each 
other format in a star-like structure, which would be appropriate 
when one format can be identified as a canonical format. Alternate 
topologies are appropriate in other cases, such as when a tope is 
conveniently expressed as a chain of sequentially refined formats. 
 

 
Figure 1: Notional depiction of a simple company tope, with 

boxes showing formats and arrows showing transformations 

4.2 Common Patterns 
By reviewing spreadsheets and web forms, we have found that a 
few specific kinds of patterns describe many formats. 

Enumeration patterns: Values in many data categories refer to 
named entities, of which only a finite number actually exist. Each 
such category could be described as a tope with a single format 

whose membership function isaf(s) = 1 if s∈∆, where ∆ is a set 

of names of existing entities, and isaf(s) = 0 otherwise. If two 

strings can refer to the same named entity, it may be convenient to 
partition this set, creating multiple formats each recognizing val-
ues in a partition. The trf functions could use a lookup table to 

match strings in different formats. 

For example, Canada currently has ten provinces. A suitable tope 
for this category would have a format x with 

isax(s) = 1 if s∈{“Alberta”, “British Columbia”,…}, 0 otherwise 

Depending on the programmer’s purpose for this category, a 
slightly more sophisticated format could also recognize the three 
territories of Canada, perhaps with 

isax(s) = 0.9 when s references a territory. 

The tope could include a second format y that recognizes standard 
postal abbreviations for province names using  

isay(s) = 1 if s∈{“AB”, “BC”…}, 0 otherwise 

The trf functions could use a lookup table to map values from 

one format to the other. 

Similar topes could be used to describe many other data catego-
ries, including states in the United States, countries of the world, 
months of the year, products in a company’s catalog, and genders. 
Each of these data categories contains a small number of values. 

List-of-words patterns: Some categories have a finite list of 
valid values but are infeasible to enumerate, either because the list 
is too large, too rapidly changing, or too decentralized in that each 
person might be unaware of valid values known to other people. 
Examples include book titles and company names. Though a tope 

could contain a format x with isax(s) = 1 if s∈∆ (an enumeration 

pattern), this format would omit valid values. 

Most such data categories contain values that are lists of words 
delimited by spaces and punctuation. Valid values typically must 
have a limited length (such as one or two words of several charac-
ters each), and they may contain only certain punctuation or dig-
its. Typical lengths and characters vary by category. 

A tope could contain a format y with isay(s) = r∈(0,1) if s has an 

appropriate length and contains appropriate characters. For a tope 
with an enumeration format x and a list-of-words format y,  

φ(s) = isax(s) = 1 if s∈∆, otherwise φ(s) = isay(s) = r if s 

matches the list-of-words format’s pattern, and 0 otherwise. 

The tope could omit trf functions connecting formats x and y. 

However, from an implementation standpoint, the list-of-words 

format could be generated automatically by examining values in ∆ 
and inferring a pattern using an algorithm such as one provided by 
the TDE [28]. Conversely, at runtime, if a string s appears often, 

then it could be added automatically or semi-automatically to ∆. 

Numeric patterns: Some data categories contain string represen-
tations of numeric data that conform to constraints. Examples in-
clude salaries, weather temperatures, and bicycle tire sizes. In 
many cases, a dimensional unit is present or otherwise implicit, 

with possible unit conversions. For example, “68° F” is equivalent 

to “20° C”. Weather temperatures less than “-30° F” or greater 

than “120° F” are unlikely to be valid. 

A tope having one format for each possible unit could describe 
such a category. For each format f, isaf(s) = 1 if s contains a 

numeric part followed by a certain unit such as “° F”, and if the 
numeric part meets an arithmetic constraint. If s comes close to 

meeting the numeric constraint, then isa(s) = r∈(0,1). 

For these data categories, converting values between formats usu-
ally involves multiplication. Thus, each trfxy could multiply the 

string’s numeric value by a constant, then change the unit label to 
the unit label required for the destination format y. 

Some data categories are numeric but have an implicit unit or no 
unit at all. An example is a North American area code, which 
must be between 200 and 999, and which cannot end with 11. For 
such categories, a suitable tope could have one format. 

Hierarchical patterns: Values in many data categories contain 
substrings drawn from other data categories. One example is 
American mailing addresses, which contain an address line, a city, 
a state, and a zip code. An address line such as “1000 N. Main St. 

Common 

name 

 

Stock ticker 

symbol 

 

Official legal 

name 
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NW, Apt. 110” is also hierarchical, containing a street number 
(recognizable with a numeric pattern), a predirectional (an enu-
meration pattern), a street name (a list-of-words pattern), a postdi-
rectional, a secondary unit designator (an enumeration pattern), 
and a secondary unit (a numeric pattern). Some parts are optional. 
In most cases, spaces, commas, or other punctuation serve as 
separators between adjacent parts. Other examples of hierarchical 
data include phone numbers, dates, email addresses, and URLs.  

A format x for a hierarchical pattern could have  

∏∏=
j

j

i

ii sss )()()( χφ
x

isa
 

Here, i ranges over the value’s parts, each si is the substring for 

part i (which should be valid according to tope τi), and φi(si) is the 

validation function for τi; j ranges over “linking constraints” that 

involve multiple parts, and χj(s)∈[0,1] applies a penalty if any 
linking constraint is violated. As an example of a linking con-
straint, in a date, the set of allowable days depends on the month 

and the year. If s violates this constraint, isax(s) = χj(s) = 0. 

A more specialized isax might require that each part i matches a 

particular format fi∈τi (using isafi instead of φi above). Also, 

isax(s) might equal 1 only if s used certain separators (appending 

additional factors after the χj factors). For example, a date format x 
could accept “12/31/07” but not “Dec 31, 2007”, which could in-
stead be accepted by another specialized format y. Transforming 

“12/31/07” from x to y could apply a trf from τmonth to the month, 

applying a trf from τyear to the year, and changing the separators. 

However, using specialized isa functions can lead to combinatorial 

explosion, since for many categories recognized with hierarchical 
patterns, each part can take on several formats, and each separator 
can be selected from a few choices. Section 4.5 addresses this issue. 

4.3 Tope Implementations 
Just as an abstract type is not executable, topes are not directly 
executable but must be implemented. 

For some simple patterns, software engineers could use a regexp to 
implement a format in which isa(s) = 1 if s matches the  

regexp, and 0 otherwise. On programming platforms where regexps 
support capture groups (assigning a name to parts of a value) [11], 
trf functions could be implemented in code that reads a capture 

group’s value and then performs any necessary transformations.  

However, as described earlier, regexps are insufficient for identi-
fying questionable values, so the TDE provides more sophisti-
cated mechanisms for implementing topes. 

To implement an isa function, a programmer uses the TDE’s for-

mat editor to describe data as a sequence of named parts, with facts 
specified about the parts (Figure 2). Facts can be specified as “al-
ways”, “almost always”, “often”, or “never” true. The user interface 
has an advanced mode where programmers can enter facts that 
“link” parts, such as the intricate rules for validating dates.  

Even information workers, engineering students, and other “end-user 
programmers” with minimal formal training in software engineering 
are able to use the TDE’s format editor to quickly and correctly de-
scribe phone numbers, mailing addresses, and other data [32].  

The format editor’s main visual feature is its sentence-like 
prompts in constraint-like facts. For example, facts can specify 

that a part of the format should be in a numeric range, or that the 
part should match some other tope (or a specific format in a tope). 
One somewhat unintuitive aspect of the user interface is that it 
makes spaces visible by representing them with a special symbol, 
§. This slightly reduces readability but is preferable to having 
spaces that programmers cannot see or debug. 

From a format description, the TDE automatically generates a con-
text-free grammar with constraints on grammar productions. Using 
this grammar, the TDE automatically implements an isa function 

that parses inputs with the grammar and tests the parse tree’s nodes 
with the production constraints. The function returns 0 on parse 
failure, 1 for valid parses that satisfy all constraints, and a number 
between 0 and 1 if the parse succeeds but violates constraints. The 
precise return value depends on how many constraints are violated 
and whether violated constraints should always or often be true [31]. 

Again using an editor based on sentence-like prompts, a program-
mer implements a trf function as a series of instructions that read 

text from nodes in a string’s parse tree, modify the text, and con-
catenate the text to form the trf’s return value. For example, trans-

forming a person name from “Lastname, Firstname” format to 
“FIRSTNAME LASTNAME” format requires capitalizing the two 
parts, permuting them, and changing the separator from “, ” to “ ”. 

The primitives supported by the TDE have sufficed for imple-
menting a wide range of topes, including all of the common pat-
terns described in Section 4.2 and all the topes in Section 5. 

 
Figure 2: Using the TDE to describe person names in  

“Lastname, Firstname” format 

4.4 Validating Data with Topes 
The isa and trf function implementations are stored together in 

an XML tope implementation file. In order to help software engi-
neers use tope implementations to validate data, the TDE provides 
plug-ins for several software development tools, including Visual 
Studio.NET (a web application design tool) and Microsoft Excel. 

To validate a field, such as a textbox in a web form or a cell in a 
spreadsheet, the software engineer uses the tool plug-in to select a 
tope implementation file and a preferred format x in the tope. 

The Visual Studio plug-in generates JavaScript code so that at 
runtime, the application uses the tope implementation to calculate 
isax(s). If isax(s) = 1, the form accepts s, and if isax(s) = 0, 
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the form rejects s. If 0 < isax(s) < 1, the application displays a 

warning message so the end user can double-check and possibly 
correct s before it is accepted. (The software engineer can also 
specify alternate settings, such as always rejecting any input with 
isax(s) < 1, thus dispensing with the warning message.) 

As mentioned above, the software engineer selects a preferred for-
mat x, but an input s may match a non-preferred format y better 
than x. That is, isay(s) > isax(s) > 0. In this case, prior to dis-

playing warning or error messages, the generated code automati-
cally uses trf functions to transform s into format x. This may 

require executing a series of trfs to traverse the format graph. 

The present heuristic chooses a shortest path (that is, a minimal 
number of trfs); we may evaluate more sophisticated heuristics 

in the future. After transformation, the new string is checked with 
isax, since isax(trfyx(s)) could still be less than 1. Because 

transformation precedes form submission, the user can review the 
transformed value and correct it if appropriate. 

In a spreadsheet, tope implementation files are associated with 
cells. In this case, no code generation is required. Instead, an in-
terpreter in the plug-in directly uses the tope implementation to 
validate and transform values. The user interface allows users to 
ignore warning messages and correct transformations. 

4.5 Reuse 
As we will show in Section 5, many tope implementations can be 
reused without modification in multiple applications, both within 
a development platform (such as web applications) and across 
platforms (such as reusing a tope implementation in a web appli-
cation even though it was originally created for a spreadsheet). 

However, different software applications may require slightly dif-
ferent validation for a particular data category, thus limiting reus-
ability. For example, even though most academic course codes 
have a 3-letter department abbreviation, then a hyphen, and then a 
3-digit course number, specific courses differ by institution. Al-
though this simple abstraction covers most institutions’ courses, it 
does not take advantage of institution-specific information that 
could improve accuracy. (These tradeoffs are analogous to typical 
tradeoffs in deciding whether to reuse a general-purpose compo-
nent in a new application or to create a specialized component.) 

To maximize a tope’s reusability, we have found that it is often 
useful to include a general-purpose format that accepts a variety 
of valid values and then add specialized formats as needed. For 
example, a general-purpose American phone format might accept 
“412-555-1212”, “(412) 555-1212”, and “412.555.1212”. When 
validating data in a particular application, we add a specialized 
format such as “###-###-###” and specify it to be the preferred 
format, “feeding” it from the general-purpose format with a trans-
formation. Implementing the specialized format and transforma-
tion function typically requires only a few minutes in the TDE. At 
runtime, our plug-ins automatically uses our transformation to 
convert inputs such as “412.555.1212” to the preferred format. 

In our experience, this strategy prevents the combinatorial explosion 
of hierarchical formats mentioned in Section 4.2. The reason is that 
we only need to implement one general-purpose format as well as 
the specialized formats that are actually used as preferred formats in 
real applications, rather than having to create a specialized format 
for each hypothetically possible combination of parts and separators. 

5. EVALUATION 
We tested topes using the 720 spreadsheets in the EUSES Spread-
sheet Corpus’s “database” section, which contains a high concen-
tration of string data [10]. We analyzed the data to classify values 
into categories. After inspecting the data, we used the TDE to im-
plement topes for the 32 most common categories. 

To evaluate how well these topes classified data as valid or invalid, 
we randomly selected test values for each category, manually deter-
mined the validity of test values, and computed topes’ accuracy. We 
judge accuracy using F1, a standard machine learning statistic used 
to evaluate classifiers such as document classifiers and named entity 
classifiers, with typical F1 scores in the range 0.7 to 1.0 [7][16]. 
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invalid as classifiedly successful inputs invalid of #
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To evaluate reusability, we tested whether web application data 
could be accurately validated by the topes that we implemented 
based on spreadsheet data. We extracted data from the Google 
Base web application and one Hurricane Katrina web site and 
identified data categories where our tope implementations could 
be reused. For each category, we randomly selected test values, 
manually determined their validity, and then computed F1. 

Finally, we focused on the problem that Hurricane Katrina data 
often had mixtures of formats, which interfered with identifying 
duplicate values. To evaluate if topes could help with this prob-
lem, we implemented and applied transformations to test data, 
then counted the number of duplicate values before and after this 
transformation to consistent formats. 

5.1 Data Categories in the Test Data 
Each spreadsheet column in the EUSES corpus typically contains 
values from one category, so columns were our unit of analysis for 
identifying data categories. To focus our evaluation on string data, 
we only extracted columns that contained at least 20 string cells 
(i.e.: cells that Excel did not represent as a date or number), yielding 
4250 columns. We clustered these with hierarchical agglomerative 
clustering [7]. For this algorithm, we used a between-column simi-
larity measure based on a weighted combination of five features: ex-
act match of the column’s first cell (which is typically a label), case-
insensitive match of the first cell, words in common within the first 
cell (after word stemming [22]), values in common within cells 
other than the first cell, and “signatures” in common. Our signatures 
algorithm replaced lowercase letters with ‘a’, uppercase with ‘A’, 
and digits with ‘0’, then collapsed runs of duplicate characters [28]. 

The algorithm yielded 562 clusters containing at least 2 columns 
each, for a total of 2598 columns. We inspected these clusters, ex-
amining spreadsheets as needed to understand each column’s data. 
In many cases, we found that clusters could be further merged into 
larger clusters. For example, the columns with headers “cog-
nome”, “faculty”, and “author” all contained person last names. 

Of the 2598 columns covered by clusters, we discarded 531 (20%) 
that did not refer to named entities nor seemed to obey any im-
plicit constraints; this was generic “text”. In addition, we dis-
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carded 196 columns (8%) containing database data dictionary in-
formation, such as variable names and variable types. These data 
appeared to be automatic extracts from database systems, rather 
than user-entered data, and seemed too clean to be a reasonable 
test of topes. We discarded 76 columns (3%) containing text la-
bels—that is, literal strings used to help people interpret the “real” 
data in the spreadsheet. Finally, we discarded 82 columns (3%) 
because their meaning was unclear, so we were unable to cluster 
them. We discarded a total of 885 columns, leaving 1713 columns 
(66%) in 246 clusters, each representing a data category. 

The Hurricane Katrina web application had 5 unvalidated text fields: 
person last name, first name, phone, address line, and city. (We 
omitted a dropdown field for selecting a state from our test data.) 

Google Base had 13 main web forms, with 3 to 15 fields each. We 
manually grouped the 66 unvalidated text fields into 42 catego-
ries, such as person, organization, and education level. 

5.2 Coverage of Data Categories 
In many situations, when categorizing items into groups, a few 
groups cover most items, followed by a tail of groups each con-
taining few items. One significant question is whether that tail is 
“light” (a few groups cover most items) or “heavy” (many items 
are in small groups) [1]. 

We plotted the number of spreadsheet columns per category and 
performed non-linear fits to determine if the distribution was heavy 
or light. A heavy-tail power-law distribution fit the data better than a 
light-tail exponential distribution (R2 = 0.97 versus 0.80, respec-
tively), indicating that many special-purpose topes exist. This sug-
gests a need for reusable abstractions (since some categories occur 
frequently) as well as a TDE to support implementation of diverse 
custom topes, rather than just a closed library of reusable topes. 

The most common 32 categories covered 70% of the spreadsheet 
columns. These included Booleans (such as “yes” or “x” to indicate 
true, and “no” or blank to indicate false), countries, organizations, 
and person last names. The tail outside of these 32 categories in-
cluded the National Stock Number (a hierarchical pattern used by 
the US government for requisitions), military ranks for the US Ma-
rines, and the standard resource identifier codes stipulated by the 
government’s Energy Analysis and Diagnostic Centers. Although 
these tail categories each cover few columns, they are national stan-
dards and could warrant tope implementations in some contexts. 

We implemented topes for each of the 32 most common categories 
in the spreadsheet data. This yielded 11 topes with enumeration pat-
terns, 10 with list-of-word patterns, 7 with hierarchical patterns, and 
4 with a mixture of hierarchical patterns for some formats and list-
of-word patterns for other formats. None of these required numeric 
patterns, perhaps because we biased our extract toward string data, 
but we noted a few numeric categories in the tail. 

We used an early version of the TDE and added primitives to the 
TDE as needed to implement the topes. We have evaluated the ex-
pressiveness of the system in a separate report [31]. 

5.3 Identifying Questionable Inputs  
To evaluate if identifying questionable inputs improved validation 
accuracy, we considered five conditions. 

Condition 1—Current spreadsheet practice: Spreadsheets allow 
any input. Since no invalid inputs are identified, recall and F1 = 0. 

Condition 2—Current web application practice: As Section 2 dis-
cussed, web application programmers commonly omit validation 
for text fields, except when it is convenient to find or create a  
regexp for the field’s data category. For certain enumerable cate-
gories, programmers sometimes require users to select inputs from 
a dropdown or radio button widget. 

To simulate current practice, we searched the web for regexps, drop-
down widgets, and radio button widgets that could be used to vali-
date the 32 test categories. After searching for hours (more time than 
a programmer is likely to spend), we found 36 regexps covering 3 of 
the 32 categories (email, URL, and phone). In addition, based on the 
visible and internal values in dropdown and radio button widgets 
that we found on the web, we constructed 34 regexps covering 3 ad-
ditional categories (state, country, and gender). Finally, under the 
assumption that programmers would use a checkbox for Boolean 
values, we constructed a regexp covering the Boolean data category. 

In short, our search yielded 71 regexps covering 7 of the 32 cate-
gories. While searching the web, we found that approximately half 
of the sites omitted validation even for some of these 7 categories. 
However, when we calculated F1 (below), we assumed that pro-
grammers would validate these 7 categories and only accept in-
puts from the remaining 25 without validation. 

Condition 3A—Tope rejecting questionable inputs: In this condi-
tion, the tope implementations (discussed in Section 5.2) tested 

each input s, accepting when φ(s) = 1 and rejecting when φ(s) < 1, 
thus making no use of topes’ ability to identify questionable val-
ues. For comparability with Condition 2, we restricted topes to a 
single format each and report on the most accurate below. 

Condition 3B—Tope accepting questionable inputs: In this condi-
tion, a single-format tope validation function tested each input s, 

accepting when φ(s) > 0 and rejecting when φ(s) = 0. 

Condition 4—Tope warning on questionable inputs: In this 
condition, a single-format tope validation function tested each 

input s, accepting when φ(s) = 1 and rejecting when φ(s) = 0. If 
s was questionable, we simulated the process of asking a human 
to double-check s, as discussed in Section 4.4, meaning that s 
was accepted if it was truly valid or rejected if it was truly inva-
lid. The advantage of Condition 4 is that a tope implementation 

relies on human judgment in difficult cases when 0 < φ(s) < 1, 
thereby raising accuracy. The disadvantage is that a user would 
need to manually double-check each questionable input. Conse-
quently, we evaluate the tradeoff between increasing accuracy 
and burdening the user. 

As shown in Table 1, validating the 32 categories with single-
format topes was more accurate than current practice.  

Table 1. Asking the user for help with validating questionable 

inputs leads to higher accuracy in single-format validation 

Condition F1 

1 – Current spreadsheet practice 0.00 

2 – Current web application practice 0.17 

3A – Tope rejecting questionable values 0.32 

3B – Tope accepting questionable values 0.32 

4 – Tope warning on questionable values 0.36 
 



 8 

Condition 2, current web application practice, was inaccurate partly 
because it accepted so many categories of data without validation. F1 
would likely be higher if programmers were in the habit of validat-
ing more fields. However, even in the 7 categories where program-
mers have published regexps on the web, or where we could convert 
dropdown or radio button widgets to regexps, F1 was only 0.31 (the 
same accuracy as Condition 4 in those categories), owing to a lack 
of regexps for unusual international formats that were present in the 
EUSES spreadsheet corpus. To achieve higher accuracy than we did 
with topes, programmers would need to combine numerous interna-
tional formats into a single regexp for each data category, which 
stands in stark contrast to current practice. 

Condition 4 improved accuracy to 0.36 versus 0.32 in conditions 3A 
and 3B by identifying questionable inputs and asking a human to dou-
ble-check certain inputs. This 12% relative difference only required 
asking the user for help on 4.1% of inputs. Rejecting more inputs 
would reduce the burden on the user, at the cost of accuracy. For ex-
ample, rejecting inputs that violate 2 or more production constraints, 
thus only asking about inputs that violate 1 constraint, would require 
asking for help on 1.7% of inputs but would reduce F1 to 0.33. Reject-
ing inputs that violate any constraint would eliminate the need to ask 
about inputs, reducing to condition 3A, with F1=0.32. 

5.4 Matching Multiple Formats 
To evaluate the benefit of implementing multiple formats, we repeated 
the analysis of Section 5.3 using more than one regexp or format per 
category. In particular, we varied the number of regexps or formats (N) 
from 1 to 5. For example, with N=4, Condition 2 accepted each input s 
if s matched any of 4 regexps (selected from the 71 regexps). For each 
N, we report the performance of the best combination of N regexps. 

In Conditions 3A, 3B and 4, we calculated φ(s) = max(isai(s)), 

where i ranged from 1 through N. For each condition and each value 
of N, we report the performance of the best combination of N formats. 

Figure 3 shows that as N increased, so did accuracy. Different  
regexps on the web largely made the same mistakes as one another 
(such as omitting uncommon phone formats), so adding more than 
3 regexps did not improve accuracy further. In contrast, increasing 
the number of formats continued to increase the tope accuracy, 
since the primitives supported by the TDE made it convenient to 
implement formats that are difficult to describe as regexps. 

For each value of N, a 10% relative difference generally remained 
apparent between Conditions 3A/B and Condition 4, highlighting 
the benefit of identifying questionable inputs. In fact, as the number 
of formats increased, the number of questionable inputs decreased 
(as adding formats recognized more inputs as valid). By N=5, the 
12% relative difference between Condition 4 and Conditions 3A/B 
required asking the user for help on only 3.1% of inputs. 
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Figure 3. Including additional formats improves accuracy 

5.5 Reusability 
To evaluate reusability, we tested if the topes that we implemented 
for spreadsheet data could accurately validate web application data.  

Of the 32 topes implemented, 7 corresponded to fields in Google 
Base. We validated an eighth category in Google Base, mailing ad-
dresses, by concatenating existing address line, city, state, and coun-
try topes with separators and a zip code field. (That is, these topes 
corresponded to distinct cells in spreadsheets but were concatenated 
into one field in Google Base.) In addition to these 8 Google Base 
fields, we reused topes to validate the 5 Hurricane Katrina text 
fields. 

We manually validated each of the 1300 test values and computed 
the topes’ F1, as shown in Figure 4. Comparing these results to 
Figure 3 reveals that the topes actually were more accurate on the 
web application data than on the spreadsheet data, largely because 
the spreadsheet corpus demonstrated a wider variety of patterns 
for each category. In particular, for Hurricane Katrina data, accu-
racy was so close to 1 even with a single format that including 
more formats yielded little additional benefit. 

For each of the 32 topes, we also informally assessed what factors 
may limit tope reusability. Language may affect list-of-words pat-
terns that rely on word length and punctuation. Location may limit 
reusability of formats used only within certain geographical 
boundaries, such as phone number formats. Organization bounda-
ries may affect topes describing organization-specific data, such 
as academic course titles. Finally, industry concerns may limit re-
usability of topes, such as manufacturer product codes. 
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Figure 4. Accuracy remained high when reusing topes on  

Hurricane Katrina (HK) and Google Base (GB) data. 

5.6 Data Transformation Results 
In order to evaluate if using topes to put inputs into a consistent 
format would have helped Hurricane Katrina aggregators identify 
duplicate values, we implemented transformations for each 5-
format tope from the less commonly used formats to the most 
commonly used, which we specified as the preferred format for 
each tope. We randomly extracted 10000 values for each of the 5 
categories and transformed data into the preferred format. 

We found approximately 8% more duplicates after transformation, 
including 16% more first name duplicates, 9% more last name 
duplicates, 9% more address line duplicates, 8% more phone 
number duplicates, and 2% more city name duplicates. We dis-
covered so few additional city duplicates because almost all inputs 
contained “New Orleans”, leaving few new duplicates to discover 
(largely by changing uppercase names to title case). We suspect 
that topes would be even more effective on a more diverse city 
dataset. 
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6. RELATED WORK 
This paper introduced a new kind of abstraction that describes 
how to recognize and transform values in a category of data, lead-
ing to a new data validation technique. This section compares 
topes to existing data category abstractions. 

Type systems: “A type system is a tractable syntactic method for 
proving the absence of certain behaviors by classifying phrases 
according to the kinds of values they compute” [20]. Types enable 
a compiler to identify code that attempts to call invalid operations. 
Several programming platforms associate formal types with web 
forms’ text fields. Depending on the language paradigm, these 
systems assign inputs to an instance of an object-oriented class 
[4], a functional programming monad or a free variable [13], or an 
instance of a generated specialization of a generic type [21]. 

Whereas topes can identify questionable inputs, membership in a 
formal type is a binary question—either an expression is or is not 
an instance of a type. Binary membership in a type makes it pos-
sible to prevent certain undesirable program behaviors at compile 
time, but the absence of fuzziness limits types’ usefulness for 
validating ambiguous data categories at runtime. In contrast, each 
isa function serves as a membership function for a fuzzy set 

[36], which allows elements to have a degree of membership. This 
enables topes to identify questionable inputs for double-checking. 

Grammars: PowerForms [5] and phpClick [26] allow programmers 
to specify regexps for validating web form fields. Lapis patterns [17] 
and Apple data detectors [18] recognize values embedded in text by 
matching data to grammars that exceed regexps in expressive power. 

PowerForms is particularly interesting, in that as a user enters an in-
put s, PowerForms annotates the field with a green icon (if s 
matches the regexp), a yellow icon (if s does not yet match but could 
match if the user types more characters), or a red icon (if s is not a 
prefix of the regexp). This bears some resemblance to our technique, 
in identifying “yellow” inputs that are not valid but remain promis-
ing. However, PowerForms still ultimately requires a regexp, which 
is difficult or impossible to construct for many categories.  

Existing validation techniques based on regexps, CFGs, and other 
grammars still leave inputs in multiple formats at the end of vali-
dation, whereas validating with topes transforms data into the 
format needed by the main application. 

Machine learning for information extraction: Many machine 
learning algorithms train a model to notice certain features of val-
ues. Information extraction systems apply the model to identify 
new instances embedded in natural language [16]. These algo-
rithms take advantage of contextual features. For example, the 
words “worked for” may precede a company name in natural lan-
guage. However, for the data validation problem that concerns 
programmers, these contextual cues are not available or not use-
ful. For example, if a programmer places a “Phone:” label beside a 
form field (so users know what data belongs there), then that label 
provides no information about whether a particular input is valid. 

Although these limitations apparently prevent using these algo-
rithms for input validation, the information extraction commu-
nity’s notion of a “named entity” has strongly influenced our con-
ception of topes, as described in Sections 3 and 4. 

Platform-specific numeric and formula constraints: Cues infers 
numeric constraints over web service data [25], and Forms/3 in-
fers numeric constraints over spreadsheet cells [6].  

Several systems use units and dimensions to infer constraints over 

how formulas can combine spreadsheet cells. For example, the σ-
calculus associates types with cells (based on the placement of la-
bels at the top of columns and at the left end of rows), and the cal-
culus specifies how types propagate through the spreadsheet. If 
two cells with different types are combined, then their type is gen-
eralized if an applicable type exists (e.g.: “3 apples + 3 oranges = 
6 fruit”), or else an error message is shown [9]. Slate does similar 
validation using physical units and dimensions, such as kilograms 
and meters [8]. Similar unit-based type systems, with minimal 
support for constraint inference, are supported in other program-
ming environments (such as Java [2] and ML [15]). 

These approaches only apply to numeric data in particular plat-
forms, such as web services, spreadsheets, and Java. In contrast, 
topes can validate strings (including strings representing num-
bers), and they are platform-agnostic. 

Data cleaning techniques: Topes help to ensure data quality by 
identifying questionable data and transforming data to a consistent 
format. In current practice, database administrators or other 
skilled professionals perform these data cleaning tasks offline. 

Researchers have provided tools to simplify data cleaning. For ex-
ample, the Potter’s Wheel is an interactive tool that presents data-
base tables in a spreadsheet-like user interface, allowing adminis-
trators to edit specific cells manually to correct errors or to put 
data into a consistent format [24]. From these edits, the Potter’s 
Wheel infers transformation functions, which administrators can 
save, reload, and replay on other data values that require the same 
cleaning steps. See [23] for a survey of related tools. 

Topes include similar functions for recognizing and transforming 
data. While topes may prove useful for helping administrators to 
clean data in databases, we have focused in this paper on helping 
programmers write applications that use topes to clean data at run-
time. As a result, web applications and other programs can work 
with users to clean inputs before the data reach the database, 
thereby reducing offline work for database administrators. 

Microformats: Microformats are a labeling scheme where a web 
developer affixes a “class” attribute to an HTML element to spec-
ify a category for the element’s text. For example, the web devel-
oper might label an element with “tel” if it contains a phone num-
ber. This does not actually validate the text. It simply labels the 
element with a string that programmers commonly recognize as 
meaning “phone number”. Commonly recognized labels are pub-
lished on a wiki (http://microformats.org/wiki/). Other people can 
write programs that download a labeled web page and retrieve 
phone numbers from the HTML. The values would then require 
validation and, perhaps, transformation to a common format—the 
problems addressed by topes. 

We are working to integrate microformats and topes [29], as people 
could upload tope implementations for common labels to the micro-
format wiki. Then, when other programmers need to download data 
with a certain label, they could find relevant tope implementations 
on the wiki and use them to validate and transform data. 

7. CONCLUSION AND FUTURE WORK 
This paper presented a new technique that improves the accuracy 
and reusability of validation code. The technique is supported by 
a new kind of data abstraction, which describes how to recognize 
and transform instances of a data category. 
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In our evaluation, we noted that categories often repeat across a 
range of spreadsheets and web sites. To support reuse, we are ex-
tending the TDE with a repository system where people can publish 
and find tope implementations. Repository search mechanisms will 
enable software engineers to identify suitable tope implementations 
based on quality criteria and based on relevance to new applications. 

Our evaluation’s main limitation is that it was an experiment on a 
data extract, rather than an “in vivo” evaluation of the TDE in an 
actual software engineering setting. Developing a repository will 
enable us to collect actual tope implementations as well as feed-
back from people using topes in real applications. This will facili-
tate incremental TDE improvements to further assist software en-
gineers as they implement and reuse topes to validate data. 
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