

Inferring Reusability of End-User Programmers’ Code
from Low-Ceremony Evidence

Chris Scaffidi, Mary Shaw
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213

{cscaffid, mary.shaw}@cs.cmu.edu

ABSTRACT
While end-user programmers sometimes combine, learn
from, or otherwise reuse existing code to quickly create
new programs, not all code is equally reusable. Some code
is reused by its creator or by others, but other code simply
languishes on servers and never provides any help in the
creation of subsequent programs. In this paper, we draw on
numerous empirical studies of end-user and professional
programmers to show that the reusability of code can be
inferred on the basis of “low-ceremony” evidence. This
evidence is information that is often informal, possibly un-
reliable, but that can be quickly gathered, interpreted and
synthesized without the investment of substantial effort or
skill by code producers or consumers. In the studies consid-
ered here, it includes information about code’s mass appeal,
flexibility, understandability, functional size, authorship,
and prior reuses. We summarize a simple machine learning
model that has successfully predicted reuse of web macros
based on this low-ceremony evidence.

INTRODUCTION
End-user programmers have many opportunities to reuse
code in programming tasks. For example, they might
download a script and use it to validate web form inputs, or
they might download and run a web macro to scrape data
from web sites into a spreadsheet.

Yet for every reusable piece of end-user programmer code,
there are typically many pieces of code that are never re-
used by anyone [6, 14, 16]. Actually identifying the reus-
able pieces of code within the mass of other code can be
like looking for a needle in a haystack.

Conventional software engineering provides methods for
assessing or ensuring the quality of code. These methods
include formal verification, code generation by a trusted
automatic generator, systematic testing, and empirical fol-
low-up evaluation of how well the software works in prac-
tice. We have used the term “high-ceremony evidence” to
describe the information produced by these methods [15],
since applying them requires producers or consumers of
code to exert high levels of skill and effort, in exchange for
strong guarantees about code quality.

But end-user programmers (and some professional pro-
grammers) often lack the skill, time, and interest to apply

these methods. What they need instead are methods based
on “low-ceremony” evidence: information that may be in-
formal, imprecise, and unreliable, but that can nevertheless
be gathered, interpreted, and synthesized with a minimal
amount of effort and skill in order to generate confidence
(not a guarantee) that code is reusable.

Low-ceremony evidence would be particularly appropriate
for end-user programmers because they rarely need the re-
sulting program to perform perfectly. For example, in one
study, teachers reported that their gradebook spreadsheets
were “not life-and-death matters” [17], and in another
study, web developers “did not see their efforts as ‘high
stakes’ and held a correspondingly casual view of quality”
[12]. For these people, the strong quality guarantees of
high-ceremony methods are probably not worthwhile
enough to justify the requisite effort. But low-ceremony
evidence might suffice, if it is possible to make reasonably
accurate assessments of code’s reusability based on what-
ever low-ceremony evidence is available about that code at
a particular moment in time.

In this paper, we empirically show that the reusability of end-
user programmers’ code can indeed be inferred from certain
kinds of low-ceremony evidence. We proceed in two stages.

First, we draw on numerous empirical studies to develop a
catalog of low-ceremony evidence that is known to relate to
reuse of end-user programmers’ code. We categorize the
evidence based on its source: evidence based on the code
itself, evidence based on the code’s authorship, and evi-
dence based on prior uses of the code. For example, code is
more likely to be reusable if it contains variables rather than
hard-coded values, if it was authored by somebody who has
been assigned to create reusable code, and if it was previ-
ously used by other people who rated it highly. Our catalog
of kinds of evidence can be extended in the future if addi-
tional studies empirically document new sources of low-
ceremony evidence that are indicative of code reusability.

Second, we summarize a recent study that combined the
first two categories of low-ceremony evidence to accurately
predict whether web macro scripts would be reused [14].
Our results open several research opportunities aimed at
further exploring the range and practical usefulness of low-
ceremony evidence.

EMPIRICAL STUDIES OF END-USER PROGRAMMERS
As shown in Table 1, we draw on 11 empirical studies of
end-user programmers:

• Retrospective analyses of a web macro repository [3, 14]
• Interviews of software kiosk designers [4]
• A report about running a Matlab code repository [6]
• Observations of college students in a classroom setting [7]
• An ethnography of spreadsheet programmers [10]
• Observations of children using programmable toys [11]
• Interviews [12] and a survey of web developers [18]
• Interviews of consultants and scientists [16]
• Interviews of K-12 teachers [17]

Where relevant, we supplement these with one simulation
of end-user programmer behavior [2], as well as empirical
work related to professional programmers [1, 5, 9, 13]. In
the sections below, we underline citations of work related to
professional programmers in order to make it clear when a
statement is only supported by research on professionals.

Table 1. Many studies mention evidence that is based on the
code itself. This evidence contains information about mass ap-
peal, flexibility, understandability, and functional size. A few
studies mention evidence based on authorship or prior uses.

Evidence based on_ End-user Professionals
 Information about 2 3 4 6 7 10 11 12 14 16 17 18 1 5 9 13

Code itself
 Mass appeal x x x x x
 Flexibility x x x x x x x x
 Understandability x x x x x x x x x
 Functional size x x x x x

Code’s authorship x x
Code’s prior uses x

EVIDENCE BASED ON THE CODE ITSELF
It is widely believed that professional programmers’ code is
more reusable if it has certain traits [1]. In particular, the
code must be relevant to the requirements of multiple pro-
gramming tasks, it must be flexible enough to meet those
varying requirements, it must be understandable to the
people who would reuse it, and it must be functionally large
enough to justify reuse rather than coding from scratch.

These traits also apparently contribute to the reusability of
end-user programmers’ code, since all 11 end-user pro-
gramming studies produced findings of the form, “Code
was hard to reuse unless it had X,” where X was a piece of
low-ceremony evidence related to one of these four traits.
For example, unless code contained comments, teachers
had difficulty understanding and reusing it [17]. In this ex-
ample, the evidence is the presence of comments in the
code, and the trait is understandability. Thus, the evidence
was an indicator of a trait, and thus an indicator (but not a
guarantee) of reusability.

Evidence about Mass Appeal / Functional Relevance
The presence of keywords or other tokens in a certain piece
of code appeared to be evidence of whether the code was
relevant to many peoples’ needs. For instance, web macros
that operated on web sites with certain tokens in the URL
(such as “google”) were more likely to be reused by people
other than the macro author [14]. Perhaps one reason why
keywords were so predictive of reuse is that repositories
and programming environments usually provide a search
interface where users can type keywords to locate code [7,
8]. Thus, the presence of certain keywords can be evidence
of mass appeal, suggesting a higher potential for reuse.

But when programmers seek reusable code, they are look-
ing for more than certain keywords. Keywords are just a
signal of what the programmer is really looking for: code
that provides functionality required in the context of the
programmer’s work [5, 7, 13]. Typically, only a small
amount of code is functionally relevant to many contexts,
so a simple functional categorization of code can be evi-
dence of its reusability. For example, 78% of mashup pro-
grammers in one survey created mapping mashups [18]. All
other kinds of mashups were created by far fewer people.
Thus, just knowing that a mashup component was related to
mapping (rather than photos, news, trivia, or the study’s
other categories) suggested mass appeal.

Evidence about Flexibility and Composability
Reusable code must not only perform a relevant function,
but it must do it in a flexible way so that it can be applied in
new usage contexts. Flexibility can be evidenced by use of
variables rather than hardcoded values. In a study of chil-
dren, parameter-tweaking served as an easy way to “change
the appearance, behaviour, or effect of an element [compo-
nent]”, often in preparation for composition of components
into new programs [11]. Web macro scripts were more
likely to be reused if they contained variables [3, 14].

Flexibility can be limited when code has non-local effects
that could affect the behavior of other code. Such effects
reduce reusability because the programmer must carefully
coordinate different pieces of code to work together [7, 17].
For example, web page scripts were less reusable if they
happened to “mess up the whole page” [12], rather than
simply affected one widget on the page. In general, non-
local effects are evidenced by the presence of operations in
the code that write to non-local data structures (such as the
web page’s document object model).

Finally, flexibility can be limited when the code has de-
pendencies on other code or data sources. If that other code
or data become unavailable, then the dependent code be-
comes unusable [18]. Dependencies are evidenced by ex-
ternal references. For example, users were generally unable
to reuse web macros that contained operations which read
data from intranet sites (i.e.: sites that cannot be accessed
unless the user was located on a certain local network) [3].

Evidence about Understandability
Understanding code is an essential part of evaluating it,
planning any modifications, and combining it with other
code [7]. Moreover, understanding existing code can be
valuable even if the programmer chooses not to directly
incorporate it into a new project, since people often learn
from existing code and use it as an example when writing
code from scratch [12, 13]. This highlights the value of ex-
isting code not only for verbatim blackbox or near-verbatim
whitebox reuse, but also for indirect conceptual reuse.

Many studies of end-user programmers have noted that
understandability is greatly facilitated by the presence of
comments, documentation, and other secondary notation.
Scientists often struggled to reuse code unless it was care-
fully documented [16], teachers’ “comprehension was also
slow and tedious because of the lack of documentation”
[17], office workers often had to ask for help in order to
reuse spreadsheets that lacked adequate labeling and com-
ments [10], and web macros were much more likely to be
reused if they contained comments [14]. End-user pro-
grammers typically skipped putting comments into code
unless they intended for it to be reused [4]. In short, the
presence of comments and other notations can be strong
evidence of understandability and, indirectly, of reusability.

Evidence about Functional Size
When asked about whether and why they reuse code, pro-
fessional programmers made “explicit in their verbalisation
the trade-off between design and reuse cost” [5], preferring
to reuse code only if the effort of doing so was much lower
than the effort of implementing similar functionality from
scratch. In general, larger components give a larger “pay-
off” than smaller components, with the caveat that larger
components can be more specialized and therefore have less
mass appeal [1]. Empirically, components that are reused
tend to be larger than components that are not reused [9].

Simulations suggest that end-user programmers probably
evaluate costs in a similar manner when deciding whether
or not to reuse existing code [2], though we are not aware
of any surveys or interviews which show that end-user pro-
grammers evaluate these costs consciously. Nonetheless,
there is empirical evidence that functional size does affect
reuse of end-user programmers’ code. Specifically, web
macros that were reused tended to have more lines of code
than web macros that were not reused [14].

EVIDENCE BASED ON THE CODE’S AUTHORSHIP
In some organizations, certain end-user programmers have
been tasked with cultivating a repository of reusable spread-
sheets [10]. Thus, the identity of a spreadsheet’s author
might be evidence about the spreadsheet’s reusability.

Even when an author’s identity is unknown, certain evi-
dence about the author can be useful for inferring code’s
reusability. For example, CoScripter web macros were
more likely to be reused if they were uploaded by authors

located at internet addresses belonging to IBM (which de-
veloped the CoScripter platform) [14]. In addition, web
macros were more likely to be reused if they were created
by authors who previously created heavily-reused macros.

EVIDENCE BASED ON THE CODE’S PRIOR REUSES
Once someone has tried to reuse code, recording that per-
son’s experiences can capture information about the code’s
reusability. Repositories of end-user code typically record
this information as reviews, recommendations, and ratings
[6, 8]. In the Matlab repository, capturing and displaying
these forms of reusability evidence has helped users to find
high-quality reusable code [6].

COMBINING LOW-CEREMONY EVIDENCE
As a first step toward finding effective models for combin-
ing low-ceremony evidence into predictions of reusability,
we have designed and evaluated a machine learning model
that predicts reuse of CoScripter web macros [14].

Before applying this model, it must be trained using infor-
mation about macros (low-ceremony evidence) and about
whether those macros were ever reused. In particular, while
evaluating this model, we used low-ceremony evidence
based on the code itself and authorship. For example, we
used the number of comments in each web macro.

The training produces a set of simple arithmetic constraints
that we call “predictors”. For example, one predictor might
be a constraint on the number of comments ≥ 3, and another
might be that the number of referenced intranet sites ≤ 1.
Ideally, all such predictors would be true for every reused
macro and false for every un-reused macro.

After the training process produces this set of predictors, a
second algorithm uses this set to predict if some other
macro will be reused. The algorithm counts the number of
predictors matched by the macro and predicts that it will be
reused if it matches at least a certain number of predictors.

The model predicted reuse quite accurately, even using just
the low-ceremony evidence collected directly from code or
from information about the code’s author. Specifically, the
model predicted with 70-80% recall (at 40% false positive
rate) whether other end-user programmers would reuse a
given macro. The most useful predictors related to mass
appeal, functional size, flexibility, and authorship.

These results show that low-ceremony evidence can be
combined in a simple manner to yield accurate predictions
of web macro reuse. While there may be other equally-
accurate methods of combining evidence, our model has the
advantage of being relatively simple, which might make it
possible to automatically generate explanations of why the
model generated certain predictions. Moreover, the model
is defined in such a way that it does not require that the
programs under consideration must be web macros. Thus,
we are optimistic that it will be possible to apply the model
to other kinds of end-user code.

CONCLUSION AND FUTURE DIRECTIONS
In this paper, we have argued that the reusability of end-
user programmers’ code can be characterized on the basis
of low-ceremony evidence. This conclusion is supported by
the fact that diverse empirical studies have reported a quali-
tative or quantitative relationship between code reuse and
certain information that is based on the code itself, the
code’s authorship, or the code’s prior uses. This informa-
tion can be collected, interpreted, and synthesized without
substantial investment of skill or effort by producers or
consumers of the code. Our conclusion is also supported by
the success of our machine learning model in predicting
reuse of web macros based on low-ceremony evidence.
This conclusion suggests three directions for future work.

First, we have found relatively few studies showing that
code reuse is related to the code’s authorship or prior uses.
This was somewhat surprising, since evidence about prior
uses has been incorporated into many repositories in the
form of rating, review, and reputation features. Thus, one
direction for future work is to perform more studies aimed
at empirically identifying situations where this and other
low-ceremony evidence helps to guide end-user program-
mers to highly reusable code. Further empirical studies
might also help to extend our catalog by identifying new
sources of low-ceremony evidence, beyond the code itself,
authorship, and prior uses.

Second, it will be desirable to empirically confirm the gen-
eralizability of our machine learning model. This will re-
quire amassing logs of code reuse in some domain other
than web macros (such as spreadsheets), collecting low-
ceremony evidence for that kind of code, and testing the
model on the data. At present, except for the CoScripter
system, we are unaware of any end-user programming re-
pository with enough history and users to support such an
experiment. Ideally, just as we have drawn on research
from studies performed by many teams, the machine learn-
ing model would be confirmed on different kinds of code
by different research teams.

Finally, our results create the opportunity to collect and
exploit low-ceremony evidence in new system features
aimed at supporting reuse. For example, code that matches
many reuse predictors could be ranked higher in search
results, potentially making it easier to discover reusable
code. Having already shown that low-ceremony evidence is
predictive of reusability, implementing features like these
would show that it is possible to put these predictions to
good practical use in a real system.

ACKNOWLEDGEMENTS
We thank the members of the EUSES Consortium for con-
structive discussions. This work was supported by the
EUSES Consortium via NSF ITR-0325273, and by NSF
grants CCF-0438929 and CCF-0613823. Opinions, find-

ings, and recommendations are the authors’ and not neces-
sarily those of the sponsors.

REFERENCES
1. T. Biggerstaff and C. Richter. Reusability Framework, As-

sessment, and Directions. IEEE Software Vol. 4, No. 2, March
1987, 41-49.

2. A. Blackwell. First Steps in Programming: A Rationale for
Attention Investment Models. 2002 IEEE Symp. Human Cen-
tric Computing Lang. and Env., 2002, 2-10.

3. C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi. End-User
Programming in the Wild: A Field Study of CoScripter
Scripts. 2008 IEEE Symp. Visual Lang. and Human-Centric
Computing, 2008, 39-46.

4. J. Brandt, P. Guo, J. Lewenstein, and S. Klemmer. Op-
portunistic Programming: How Rapid Ideation and Pro-
totyping Occur in Practice. Proc. 4th Intl. Workshop on End-
User Software Engineering, 2008, 1-5.

5. J. Burkhardt and F. Détienne. An Empirical Study of Software
Reuse by Experts in Object-Oriented Design. Proc. 5th Intl.
Conf. Human-Computer Interaction, 1995, 38-138.

6. N. Gulley, Improving the Quality of Contributed Software and
the MATLAB File Exchange, Proc. 2nd Workshop on End
User Software Engineering (WEUSE II), 2006, 8-9.

7. A. Ko, B. Myers, and H. Aung. Six Learning Barriers in End-
User Programming Systems. 2004 IEEE Symp. Visual Lang.
and Human-Centric Computing, 2004, 199-206.

8. G. Little, T. Lau, A. Cypher, J. Lin, E. Haber, and E. Kandogan.
Koala: Capture, Share, Automate, Personalize Business Proc-
esses on the Web. Proc. 25th SIGCHI Conf. Human Factors in
Computing Sys., 2007, 943-946.

9. P. Mohagheghi, R. Conradi, O. Killi, and H. Schwarz. An Em-
pirical Study of Software Reuse vs. Defect-Density and Stabil-
ity. Proc. 26th Intl. Conf. Software Engineering, 2004, 282-291.

10. B. Nardi. A Small Matter of Programming, MIT Press, 1993.
11. M. Petre and A. Blackwell. Children as Unwitting End-User

Programmers. 2007 IEEE Symp. Visual Lang. and Human-
Centric Computing, 2007, pp. 239-242.

12. M. Rosson, J. Ballin, and H. Nash. Everyday Programming:
Challenges and Opportunities for Informal Web Development.
2004 IEEE Symp. Visual Lang. and Human-Centric Comput-
ing, 2004, 123-130.

13. M. Rosson and J. Carroll. The Reuse of Uses in Smalltalk
Programming. Trans. Computer-Human Interaction (TOCHI),
Vol. 3, No. 3, 1996, 219-253.

14. C. Scaffidi, C. Bogart, M. Burnett, A. Cypher, B. Myers, and M.
Shaw. Predicting Reuse of End-User Web Macro Scripts. Sub-
mitted to 31st Intl. Conf. Software Engineering (ICSE 2009).

15. C. Scaffidi, M. Shaw. Toward a Calculus of Confidence. 1st Intl.
Workshop on Economics of Software and Computation, 2007.

16. J. Segal. Professional End User Developers and Software
Development Knowledge. Tech. Rpt. 2004/25, Dept. of Com-
puting, Faculty of Mathematics and Computing, The Open
University, Milton Keynes, United Kingdom, Oct 2004.

17. S. Wiedenbeck. Facilitators and Inhibitors of End-User Devel-
opment by Teachers in a School Environment. 2005 IEEE Symp.
Visual Lang. and Human-Centric Computing, 2005, 215-222.

18. N. Zang, M. Beth Rosson, and V. Nasser. Mashups: Who?
What? Why?. Proc. 26th SIGCHI Conf. Human Factors in
Computing Sys. - Work-in-Progress Posters, 2008, 3171-3176.

