
1 

 

A Qualitative Study of Animation Programming in the Wild 
Aniket Dahotre 

Oregon State University 
1148 Kelley Engineering Center 

Corvallis, OR 97330 

dahotrea@onid.orst.edu

Yan Zhang 
Oregon State University 

1148 Kelley Engineering Center 
Corvallis, OR 97330 

zhangy3@onid.orst.edu

Christopher Scaffidi 
Oregon State University 

1148 Kelley Engineering Center 
Corvallis, OR 97330 

cscaffid@eecs.oregonstate.edu 

 

 

ABSTRACT 
Scratch is the latest iteration in a series of animation tools aimed 
at teaching programming skills. Scratch, in particular, aims not 
only to teach technical skills, but also skills related to 
collaboration and code reuse. In order to assess the strengths and 
weaknesses of Scratch relative to these goals, we have 
performed an empirical field study of Scratch animations and 
associated user comments from the online animation repository. 
Overall, we found that Scratch represents substantial progress 
toward its designers’ goals, though we also identified several 
opportunities for significant improvement. In particular, many 
Scratch programs revealed significant technical mastery of the 
programming environment by programmers, and some 
animations even demonstrated design patterns. On the other 
hand, while the Scratch repository has successfully served as a 
supportive environment for generating constructive feedback 
among users, we did not find any occasions within our sample 
where this interaction led to online collaboration. In addition, we 
found low levels of code reuse, in terms of both frequency and 
success. Based on these results, we identify implications for 
improving the design of animation tools, for using these tools to 
teach programming skills, and for fostering successful 
collaboration and code reuse among end-user programmers. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computer Uses in Educa-
tion – Collaborative learning.  

General Terms 
Design, Experimentation. 

Keywords 
Animation, end-user programming, collaboration, repositories. 

1. INTRODUCTION 
The world is rapidly shifting from one where people are passive 
consumers of digital media to one in which ordinary people can 
contribute new media. This evolution began with simple chat 
forums where people could contribute textual content, then pro-
gressed to online communities like YouTube where people 
could exchange images, movies and other multimedia artifacts. 

The evolution continues and now encompasses online communi-
ties where people can share interactive programs that they have 
created. One of these is MIT’s Scratch environment, which 
claims to be “the YouTube of interactive media” [19]. With the 
Scratch programming tool, people can create “video games, 
interactive newsletters, science simulations” and a host of other 
interactive animated programs [19]. They can then publish their 
work in an online repository, where other people can see it, 
comment on it, be inspired by it, download it, and “remix” it 
(Scratch parlance for whitebox reuse).  

Scratch is swiftly attracting new users, whose count now stands 
at nearly 500,000 [20]. Most of these are children who have 
learned about the programming environment from other children 
or from teachers. Scratch was originally introduced through 
after-school programming clubs [12], but recently it has been 
more widely adopted by users on the web at large [19]. The 
Scratch site now reports that 34% of registered users are 17 or 
older. In short, Scratch has moved from being primarily used 
under classroom supervision to being used “in the wild” by 
children and young adults toward self-directed goals. 

Scratch’s primary purpose is not to turn every user into a profes-
sional programmer, but rather to help people develop program-
ming skills that they can apply later in everyday work and life 
[12][19]. These include technical skills related to making pro-
grams, social skills related to collaborating with other users, and 
socio-technical remixing skills related to using community re-
sources to produce new programs. In short, Scratch is meant for 
teaching well-rounded end-user programming skills. In that 
regard, it represents the latest iteration in a series of animation 
environments that includes Logo [17], KidSim [4], AgentSheets 
[18], Alice [2], and Hands [15].  

Where Scratch primarily differs from earlier environments is 
that it includes a rapidly-growing online repository containing 
animation projects and user comments [20]. The functional pur-
pose of this repository is to support collaboration and remixing. 
A valuable side-effect is to provide a supply of animations and 
user comments that capture, with high ecological validity, the 
ways in which people actually use Scratch in the real world. As 
a result, we are now able to evaluate the real-world strengths and 
weaknesses of Scratch in a way that has never before been poss-
ible with earlier animation programming environments. 

Our goal in this study was to assess whether Scratch is succeed-
ing as a basis for developing various programming skills. In 
particular, we analyzed 100 Scratch animation projects and as-
sociated user comments to address the following questions: 

RQ1: To what extent is Scratch succeeding as a basis for devel-
oping technical programming skills in the wild? More precisely, 

 
 
 



2 

 

what fraction of projects demonstrate correct usage of program-
ming primitives toward functionally meaningful goals? Do their 
implementations tend to demonstrate a coherently organized 
structure, or are they a haphazard mess?  

RQ2: To what extent is Scratch succeeding as a basis for devel-
oping social programming skills in the wild? In particular, how 
frequently do users provide useful feedback to one another? Do 
animation owners reply constructively to other users’ feedback, 
do they act on feedback, and does any meaningful collaboration 
result? Is the overall culture supportive and constructive, or is it 
condemnatory and nit-picking? 

RQ3: To what extent is Scratch succeeding as a basis for devel-
oping remixing skills in the wild? How frequently are animation 
projects remixed? How often does the downloading of source 
code actually result in remixing? Does remixing typically in-
volve code, multimedia content, or both?  

Overall, we found that the Scratch environment represents 
substantial progress toward its designers’ goals of supporting the 
development of programming skills, though we also identified 
several opportunities for significant improvement.  

With regard to technical skills, we found that projects in the 
Scratch repository generally did demonstrate mastery of pro-
gramming primitives and program design, though only half were 
oriented toward functional purposes (such as storytelling or 
gaming) rather than experimental or artistic purposes (e.g., spin-
ning a picture of a face). Animation projects tended to be ap-
proximately as com-
plex as end-user pro-
grams in other domains 
(such as spreadsheets). 
Within animation 
projects, we found 
particular recurring 
implementation struc-
tures, which we de-
scribe in terms of de-
sign patterns. 

With regard to collabo-
ration and remixing, 
we found that the repo-
sitory served as a sup-
portive environment 
for generating con-
structive feedback from 
other users. However, 
we count not find even 
a single case where 
programmers actually 
acted on bug reports or 
feature requests from 
other people, nor did 
we observe any anima-
tion projects created by 
multiple programmers 
working in collabora-
tion. Moreover, we 
found a low quantity of 
reuse, in that only 5% 
of projects were ever 

remixed by people other than the original author, and reuse was 
generally multimedia-centric rather than code-oriented. These 
weaknesses present opportunities for improvement. 

The remainder of this paper is organized as follows. Section 2 
provides background on Scratch as well as prior empirical work 
studying other repositories of end-user code. Section 3 describes 
the methodology of our process for acquiring and analyzing 
data. Section 4 discusses the technical aspects of animation 
projects that people created (RQ1), including common design 
patterns. Section 5 analyzes how users interacted with one 
another (RQ2), while Section 6 describes the low level of code 
remixing that we observed (RQ3). Sections 7 and 8 conclude by 
discussing the threats to validity as well as implications of these 
results for future research, including opportunities for improving 
animation tools and cultivating online communities where end-
user programmers not only interact but actually collaborate.  

2. BACKGROUND AND RELATED WORK 
In Scratch and other typical animation design environments, a 
program consists of a set of animated sprites—images whose 
position and appearance are controlled with scripts (Figure 1) 
[19]. Perhaps the earliest such environment was Logo, a textual 
language and supporting toolset introduced in the late 1960’s to 
teach children problem-solving skills, as well as technical skills 
such as how to properly construct loops and conditionals [17]. 
More recent environments such as Alice have added support for 
3D animation [2], while other tools such as AgentSheets [18], 
KidSim [4] and Hands [15] have augmented the textual scripting 

 
Figure 1. Editing the three scripts for one stick-figure sprite in an animated dance video. The 
programmer lays out sprites on the right; clicking a sprite brings up its scripts for editing in 
the center. Primitives can be dragged-and-dropped from the toolbox at left. 



3 

 

language with programming-by-demonstration (PBD) features: 
the programmer shows examples of inputs as well as examples 
of outputs, and the tool infers a program that produces the de-
sired input-output relationship. The programmer can then review 
and modify the program if desired. (Scratch lacks PBD support.)  

Laboratory experiments and field tests in classrooms have 
shown that animation tools like these can serve as effective plat-
forms for teaching use of programming primitives [12][15], 
algorithm design [2] and problem-solving skills [15][18], as well 
as for motivating children and computer science majors to con-
tinue programming after they leave the classroom [4][14]. 

Scratch goes beyond prior tools by also including an online re-
pository, whose purpose is to help programmers to learn social 
and remixing skills [13][19]. Specifically, Scratch’s designers 
hoped that this repository would enable students to practice 
providing constructive feedback to one another, to form colla-
borative partnerships, and to creatively appropriate and adapt 
one another’s animations. 

Since the repository was launched in May 2007, many anecdotes 
have been gathered about its effectiveness for achieving these 
goals [13][19]. These anecdotes show that several programmers 
have indeed received significant feedback on some of the anima-
tions that they published to the repository; one project even ob-
tained over 100 user comments. Several programmers have 
formed partnerships aimed at producing animations. And some 
15% of repository animations have been created from old 
projects through remixing; for example, one particular Tetris 
game has been remixed dozens of times. These anecdotes sug-
gest that the repository is succeeding in helping some program-
mers to develop social and remixing skills. 

While we recognize the value of anecdotes in supporting qua-
litative statements, such as the claim that the community is sup-
portive and collaborative, anecdotal evidence has a serious me-
thodological weakness: because anecdotes focus on specific 
cases, there is a risk that they may have the unintended effect of 
portraying unusual episodes as common. Thus, it is difficult to 
generalize from anecdotes, unless if they are supplemented with 
statistical information indicating how representative they are. 
Moreover, when statistics are provided (such as the 15% num-
ber, above), it is difficult to understand whether to interpret 
these statistics as high or low unless if a basis for comparison is 
also provided. 

Therefore, our goal in this paper is supply this statistical infor-
mation, as well as to make informed comparisons to other rele-
vant statistics, in order to assess whether and how we can gene-
ralize these anecdotes of success to the rest of Scratch’s users. 
We do this by analyzing projects and online user comments, 
then comparing results to other end-user code repositories. 

Methodologically-similar field studies have previously ex-
amined data from other repositories of end-user programming 
code, and four of these will periodically serve as a point of com-
parison in our work below. Two of these field studies examined 
spreadsheet programming; one was an analysis of over 4000 
spreadsheets downloaded from the web [5], while the second 
was a survey of several studies looking at error rates in spread-
sheets that companies had created [16]. The other two studies 
examined web macros (scripts that automate browser actions, 
for instance to direct the browser to visit a certain URL, to fill 
out a web form, then to submit it); one study of 120 macros 

aimed to characterize what kinds of macros were being created 
[1], while the other study of over 700 macros identified traits 
that differentiated oft-reused macros from rarely-reused macros 
[21]. These studies are useful points of comparison because they 
yielded statistics about the size, complexity and reuse of end-
user programs, providing a quantitative basis for assessing how 
well Scratch is succeeding relative to other end-user program-
ming environments. We also compare our results to several sta-
tistics that were collected during an intervention aimed at teach-
ing students how to use Scratch in an after-school “Clubhouse” 
[12], in order to assess if end-user programmers in the wild have 
succeeded as well as those who had access to mentors. 

3. RESEARCH METHODOLOGY 
Obtaining data: To obtain animations and user comments for 
our analyses, we wrote a “screen scraper” program that down-
loaded 100 animations using the Scratch repository’s rando-
mized “surprise me” feature. In addition to each animation’s 
code, we downloaded the HTML for the repository web page 
that gave the animation’s usage statistics (counts of views, 
comments, downloads, and remixes) as well as the log of com-
ments that users had posted about the animation (yielding a total 
of 269 comments). 

Coding and analysis: At several points in our study, we needed 
to develop coding schemes to achieve our goal of assessing 
whether Scratch is succeeding as a basis for developing various 
programming skills required developing coding schemes. Al-
though we were motivated by this research concern, we did not 
want to impose a particular pre-ordained coding scheme on the 
data but rather wanted to observe what the data told us about 
animation programming that was happening in the wild.  

Therefore, except for specific situations discussed below, we 
used a grounded theory [8] approach to develop and apply 
codes. In grounded theoretical approaches, artifacts such as in-
terview text are analyzed in pieces, concepts are identified in 
pieces, and codes are used to label pieces according to the con-
cepts they reflect. Note that the codes are derived from the con-
cepts reflected by the pieces, rather than imposed from an out-
side theory. In our case, we wanted to analyze animations and 
user comments, and the “pieces” of interest in our analyses of 
animations were visual pieces concretely implemented in sprites 
and scripts. For example, if one piece of an animation was a 
scoreboard, then this indicated that the animation was a game. 

Our procedure was as follows. First, one co-author examined a 
subset of the animations or comments (~20%) and developed a 
tentative coding scheme. This coding scheme was then provided 
to a second researcher. They each applied the scheme to half of 
the animations and identified situations where the concept set 
represented by the codes were incomplete or a poor fit. In some 
cases, the scheme needed to be extended or otherwise modified, 
which they discussed until agreement was reached. After each 
had separately coded half of the animations, they tested the ap-
plication of the coding schemes by checking each other’s work. 
This resulted in disagreements for several animations (<10% of 
the total), all of which were completely resolved after discus-
sion. Finally, we coalesced codes in each scheme when doing so 
increased clarity without reducing informativeness.  

We used this procedure to generate new coding schemes when 
necessary, but there were a few situations where there was an 
old existing coding scheme that was clearly appropriate to use 



4 

 

Table 1. Coding scheme for categorizing projects

Category Main functional role Example 
Education To teach a procedural 

skill or declarative facts, 
including do-it-yourself 

Indicate when to per-
form the Heimlich 
maneuver 

Game To entertainingly chal-
lenge user to complete a 
goal  

Get user to steer cat to 
collect food and avoid 
dog 

Story To communicate a fic-
tional plot or storyline 

Tell tale of mouse who 
has problems during 
visit to beach 

Ani-inter 
trial 

No clear functional role, 
has animation, has user 
interaction 

Show letters J and L; 
flash J when user 
types the letter j 

Animated 
trial 

No clear functional role, 
has animation, no user 
interaction 

Show several faces, 
one spinning and 
others flashing 

Static 
trial 

No clear functional role, 
no animation,  
no user interaction  

Play background mu-
sic and display a cat 
with a purple tail 

 
 
 
 
 
 
 
 
 

Education 8%

Game 25%

Story 11%
Ani‐inter trial 

17%

Animated trial 
33%

Static trial 6%

 

Figure 2. Distribution of projects by functional role

(which we explicitly indicate in the following sections). For 
example, in Section 4.2, we used a categorization scheme devel-
oped in related work, as well as the scheme that is concretely 
reflected in Scratch’s user interface. In Section 4.3, we reviewed 
animations for the presence of certain design patterns that re-
lated work had hypothesized would be useful in animation pro-
gramming. In such cases, using a grounded approach to develop 
a novel coding scheme would have interfered with comparing 
our results to those presented in related work. 

4. SCRATCH AS A BASIS FOR 
DEVELOPING TECHNICAL SKILLS 
Our first research question asks to what extent Scratch is suc-
ceeding as a basis for developing technical programming skills. 
This question was motivated by the fact that one of Scratch’s 
primary purposes is “to nurture a new generation of creative, 
systematic thinkers comfortable using programming to express 
their ideas” [19]. Scratch’s effectiveness for teaching technical 
skills had been previously demonstrated in a Clubhouse setting, 
where mentors were available to guide students as they learned 
programming concepts such as variables [12]. To assess whether 
Scratch users on the web would prove equally adept at demon-
strating “creative, systematic” use of programming concepts, we 
examined what sort of functionality people were creating, what 
programming constructs they were using, and whether the im-
plementations reflected any coherent structural patterns suggest-
ing systematic design. 

4.1 Functional roles of animations 
Scratch’s designers summarize the repository’s contents by writ-
ing, “The site’s collection of projects is wildly diverse, including 
video games, interactive newsletters, science simulations, virtual 
tours, birthday cards, animated dance contests, and interactive 
tutorials, all programmed in Scratch” [19]. Similar lists else-
where also mention stories and dance videos [12][13]. We won-
dered, how diverse is “wildly diverse” in practice? Are all of the 
kinds of projects mentioned in the summary list above actually 
common, or are Scratch programmers mostly succeeding at 
creating a few particular kinds of animations? 

The repository summary list above was striking to us in that 
each animation mentioned has a functional role—a game’s func-
tion is to entertain and challenge, a newsletter’s function is to 
communicate knowledge, and so forth. Scratch’s designers note 
that Clubhouse students sometimes created “pre-scripting” 
projects whose purpose was to experiment with Scratch rather 
than to implement particular functionality [12]; however, they 
do not mention the presence of such experimental projects in the 
repository. We wondered whether programmers in the wild were 
also creating experimental projects. 

As we examined projects, we identified three codes—
education, game and story—for labeling projects based on 
primary functional role (Table 1). The animations mentioned in 
the summary list above exemplify these codes: we coded video 
games and contests as games, tours and tutorials as education 
projects, stories and plot-like dance videos as stories. We 
observed no newsletters or birthday cards. 

In contrast with these functional projects, we also observed 
many experimental projects with no clear functional role (except 
perhaps as art). In fact, some might not even be properly called 
“animations,” in that their appearance was static. For example, 

one such static trial project simply played a Japanese tune 
while displaying a non-animated sketch of a purple-tailed cat. 
Projects coded as animated trial added some animation, for 
example by spinning or moving images around, though for no 
clear functional purpose. The ani-inter trial projects per-
formed animation in response to user interaction, such as spin-
ning or flashing images after receiving a keystroke or mouse 
input (though again to no clear functional purpose).  

After coding projects, we computed the distribution of projects 
among categories (Figure 2). We found that only 44% had a 
functional role. Slightly over half of these were games, a quarter 
were stories, and the remainder were educational. Education 
and game projects almost always had animation and interactivi-
ty; stories always had animation but rarely had interactivity. 
Among the 56% remaining “trial” projects, which had no clear 
functional purpose, virtually all had animation but only a third 
had interactivity. Overall, 44% of all projects had some func-
tional role, 94% had animation, and 45% had user interactivity. 

When Scratch’s designers examined 536 Clubhouse projects, 
they found that 79% had scripts [12]. They characterize the re-
maining 21% as pre-scripting experiments. Our results indicate 
that experimentation continues long after programmers begin 



5 

 

using programming primitives. Moreover, the resulting experi-
mental animations make their way in large numbers into the 
repository where they are mixed indistinguishably among non-
experimental projects.  

4.2 Use of programming constructs 
The Clubhouse represented a constructionist, learner-directed 
education environment [10]. That is, mentors “did very little to 
explicitly ‘teach’ programming concepts; rather, youth worked 
on projects of their own choosing and requested assistance from 
mentors when needed” [12]. When students wanted help, men-
tors showed how to use difficult programming primitives (e.g., 
variables [12]) or tool features (e.g., for image editing [10]).  

In order to assess whether this mentoring approach enabled stu-
dents to learn programming skills, Scratch’s designers analyzed 
536 Clubhouse projects to determine how many of the projects 
demonstrated usage of different programming primitives [12] 
(Table 2). They found that many primitives were used by some 
or many students, which they deemed a success. (They did not 
report whether the primitives were used properly.) Moreover, 
Scratch’s designers argue that since mentors played a minimal 
role in teaching Clubhouse students how to program, it must 
therefore be true that much of students’ learning resulted from 
the Scratch environment itself [12]. If this ascription is accurate, 
we would expect people outside of the Clubhouse to be just as 
successful at using programming primitives.  

Upon examining Scratch projects from the repository, we found 
that they did indeed include key programming primitives at least 
as commonly as had previously been reported for Clubhouse 
projects (Table 2). This is consistent with the inference made by 
Scratch’s designers that much of students’ learning resulted 
from the Scratch environment itself rather than from mentor 
intervention. (This is not conclusive proof, however, since there 
could have been a selection effect in our data because program-
mers might choose not to upload low-quality animations.) In 
addition, while the Clubhouse analysis did not examine whether 
primitives were used correctly, we reviewed programs and only 
found 7 with major implementation bugs. This is a much lower 
rate than the 25% or higher typically found in spreadsheets [16]. 

We noted that repository projects demonstrated comparable or 
higher usage of programming primitives relative to other end-
user programs. Specifically, whereas 45% of repository Scratch 
projects used variables, only 35% of spreadsheets used any cells 
as variable inputs for formulas [5]. Moreover, whereas 28% of 
animations used conditionals, only 8% of spreadsheets did [5]. 
In a study of web macros downloaded from a repository, only 
20% contained variables, again lower than Scratch repository 
projects [1]. (The web macro tool did not support loops or con-
ditionals, and average macro length was not reported.) Overall, 
Scratch projects averaged 110 primitives per project, nearly as 
many as spreadsheets, which averaged 168 formulas each [5]. 

Scratch was meant to teach not only general programming pri-
mitives (e.g., loops) but also animation-specific constructs. Us-
ing Scratch’s user interface as a starting point (Figure 1), we 
grouped primitives into categories, then classified these catego-
ries as general or animation-specific (Table 3). We computed 
how many projects contained primitives of each category 
(Figure 3), and we computed total numbers of primitives for 
each kind of project, with a break down between general and 
animation-specific primitives (Figure 4). (We omitted Pen pri-

Table 2. Frequency of scripting and primitive usage

% of all projects with Clubhouse [12] Repository 
≥ 1 script 79 % 87 % 
≥ 2 scripts 70 % 74 % 
≥ 1 input event handler 43 % 45 % 
≥ 1 loop 41 % 58 % 
≥ 1 conditional 21 % 28 % 
≥ 1 variable 8 % 23 % 
 

Table 3. Codes for categorizing primitives; asterisks 
indicate general programming primitives. 

 Category Meaning 
 start Event handler fired when project loads on reposi-

tory (or runs in programming tool) 
* control Loops, conditionals, thread synchronization 

 looks Modifies the appearance of a sprite 

 motion Slides or rotates a sprite 

 sound Plays music or other sounds 

* event Event handlers fired by user input 

 sensing Functions to read values, such as to detect 
whether sprites are touching 

* number Operators for numerical (and Boolean) values 

* variable Declare or reference variable 
 

 

Figure 3. Commonness of primitives, by category 

 
Figure 4. Numbers of primitives used in projects 

0

10

20

30

40

50

60

70

80

90

%
 o

f p
ro

je
ct

s 
us

in
g 

pr
im

iti
ve

s general programming

animation-specif ic

88 82 87
56

13

144

95 68

73

12
0

50

100

150

200

250

P
ro

je
ct

 s
iz

e 
(#

 p
rim

iti
ve

s)

general programming

animation-specific



6 

 

mitives, since they were used very rarely. We separated out the 
start signal and the user input event primitives from the non-
interactive control primitives, such as conditionals and loops.) 

We found that most animation-specific primitives appeared just 
as frequently as most general programming primitives. Overall, 
projects contained approximately equal numbers of animation-
specific and general programming primitives (averaging 51 and 
59, per project, respectively), with a fairly even balance general-
ly demonstrated within most kinds of project. Of course, interac-
tive projects tended to contain many more primitives than non-
interactive experiments. We were surprised that education 
projects contained the most animations; this high count resulted 
from the large numbers of primitives required to implement 
educational simulations. Overall, Scratch users appear to dem-
onstrate as much competence with animation-specific primitives 
as with general programming constructs. 

4.3 Design patterns 
While Scratch’s designers have primarily focused on Scratch’s 
usefulness for teaching children how to use programming primi-
tives [12], we wondered whether Scratch projects also common-
ly reflect any sort of higher-level programming design skills, or 
if instead they are what professional programmers sometimes 
refer to as “spaghetti code.” To frame our investigation, we fo-
cused on whether Scratch projects demonstrate design patterns, 
which are general solutions for structuring programs in response 
to common programming problems [6]. Related work examined 
one particular game (implemented in Java) in order to identify 
design patterns that might be expected to appear in many games, 
and which therefore might be teachable by having computer 
science students implement games [7]. Using this prior study as 
a starting point, we asked whether and how Scratch projects 
commonly implement these six design patterns, in order to as-
sess if Scratch might be useful for teaching the patterns. While 
the case study mentions six patterns, only two are particularly 
prominent in Scratch animations, so we focus on these below. 

Game Loop design pattern 
In the Game Loop pattern originally identified by the case study,  
a Controller object with a “while(!game is over)” loop conti-
nually watches for user inputs and sends messages to sprites, 
telling them to update their state accordingly (Figure 5). (In 
Java, the loop typically contains some code for double-buffering 
[7], but the Scratch environment handles all buffering and ren-
dering, so Scratch scripts omit this part of the loop.) By centra-
lizing all input-processing code and the mapping to sprite mes-
sages in a single Controller object, this pattern makes it easy to 
find and maintain this code later [7].  

 
Figure 5. Game Loop design pattern 

A handful of complex Scratch games implement this pattern by 
making the Stage sprite serve as Controller. The Stage is a glob-
al Scratch object that serves as a white visual background in all 
projects. Like other sprites, the  Stage can have a script. Within 
this script, the programmer can place a “repeat until game ends” 
loop, and inside of that loop, lines of code can read inputs, may 
set global variables, and then send messages to other sprites. For 

example, when one particular game’s Stage receives keystrokes 
from the user, it sends all “enemy” sprites a message so that they 
move a step toward the “player” sprite.  

Frequently, Scratch animations only contain a single interactive 
sprite. In these cases, programmers placed the game loop direct-
ly in that sole interactive sprite’s script. This is sensible, since in 
these cases, applying the pattern to separate logic into a Control-
ler would increase rather than decrease complexity. 

A handful of games had multiple interactive sprites but did not 
apply this pattern, even though doing so would have helped to 
centralize input collection. Instead, these attached game loop-
like logic to every single sprite (with a great deal of repetitive 
code). Another handful applied the pattern but inconsistently, 
using it to centralize some aspects of interactivity but not others.  

Collision Detection design pattern 
The Game Loop pattern originally identified in the case study 
associated a CollisionHandler object with each sprite (Figure 6). 
This handler for each sprite implements a variant of the Visitor 
Pattern [6], in that its “onHit” method would be called for each 
sprite that had collided with the handler’s sprite. The handler 
subclass could then update the state of its sprite if appropriate by 
overriding whichever onHit methods are needed for whatever 
kinds of collision are important for gameplay. For example, if a 
“player” sprite hits a “bomb,” then the player sprite’s handler 
could update the player sprite to a “dead” state. 

 

Figure 6. Collision Detection design pattern; note that 
the handler subclasses polymorphically implement 

only selected versions of the onHit method 

Since Scratch lacks double-dispatch, polymorphism, and even 
inheritance, it is impossible to precisely implement this pattern 
as shown above. However, we observed over a dozen projects 
that implemented an approximation of this pattern.  

Specifically, when a project’s gameplay required testing whether 
two sprites intersected, each sprite contained a loop that con-
stantly checked for collisions with certain other sprites. For ex-
ample, in one project, a “cat food” sprite continually checked for 
collisions with a “cat” sprite so that the food could be changed 
to an “eaten” state on contact. Many sprites also had a second 
loop that continually watched for collisions with a second kind 
of sprite. For example, the “cat food” sprite also watched for 
collisions with a “dog” sprite (and, on collision, the food went 
away). Separating these collision checks into distinct scripts 
represents an approximation of the separation of concerns into 

CollisionHandler 
onHit(type2)  
 

Sprite of type 1 

CollisionHandler 
onHit(type1)  
onHit(type2) 

Sprite of type 3 

CollisionHandler 
onHit(type1)  
onHit(type2) 

Sprite of type 2 

AbstractHandler 
onHit(type1)  
onHit(type2)  
onHit(type3)  

Controller 
methodWithLoop() 

Sprite 
Sprite 

Sprite 
onMessage() 



7 

 

distinct methods that is reflected by the Visitor-like pattern 
above (essentially implementing the equivalent of two “onHit” 
methods). We only saw one situation where this pattern was not 
implemented correctly (omitting the loop, resulting in collisions 
not being reliably detected). 

In short, we found some evidence of two design patterns in ap-
proximately a dozen of 100 animations, suggesting that Scratch 
might be useful for developing skill with these patterns, just as it 
seems to serve as an effective basis for learning primitives.  

5. INTERACTION AMONG USERS 
Our second research question asks to what extent Scratch is 
succeeding as a basis for developing social skills related to pro-
gramming. Scratch’s designers write, “For Scratch to succeed, 
the language needs to be linked to a community where people 
can support, collaborate, and critique one another” [19]. As evi-
dence that Scratch achieves this goal, at least two papers de-
scribe a collaboration between six children who work together to 
create an entire gallery of animations, each person contributing 
different skills aimed at implementing specific features such as 
sliding backgrounds [13][19]. Another piece of evidence cited in 
support of Scratch’s success is that fact that one particular pro-
grammer once received over 100 comments on a specific 
project, and that she then organized a contest for other pro-
grammers to create extensions for her project [19].  

We wondered whether the experiences of the seven children 
mentioned above are actually typical, or if these are instead 
representative of the “high end” of collaboration and socializa-
tion on the site. We wondered whether the majority of Scratch 
programmers are demonstrating effective collaboration and oth-
er supportive social skills, or if the community is rude and hy-
per-critical. Therefore, we analyzed all of the 269 comments that 
people exchanged with one another in the context of the 100 
projects that we downloaded, enabling us to assess what kinds of 
feedback are exchanged, whether comments are constructive or 
nit-picking, and what collaboration is revealed by communica-
tion among programmers. 

5.1 Commenting on each other’s projects 
Based on project statistics, we noted that virtually all projects 
had received enough exposure on the site that they could plausi-
bly have received comments. Specifically, every one of the 100 
projects was viewed at least one time, and approximately 90% 
were viewed at least 5 times, with the overall average being 24.1 
views. On average, projects had been published on the reposito-
ry 397 days, with approximately 90% exceeding 200 days. 

We found 60% received at least one comment, with an overall 
average of  2.66 and maximum of 20 (Figure 7). Thus, most 
projects did receive some user feedback, with 1 in 9 views lead-
ing to a comment. However, none even approached the 100+ 
comments that some project once received (above). 

In performing the coding procedure outlined in Section 3, we 
discovered three categories that involved feedback about project 
quality—criticism, feature suggestions, and compli-
ments (Table 4). Outright compliments constituted 27% of 
comments, and the 21% that were feature suggestions also 
tended to be positive (Figure 8). Of the 6% that were criti-
cisms, some were polite bug reports, while others were just nit-
picking or rude. Together, these three categories of comments 

 

Figure 7. Distributions of numbers of views, comments, 
downloads, and remixes 

 

Table 4. Coding scheme for categorizing comments 

Category Main message Example 
Criticism I do not like your project; 

may mention specific bug 
“this is creepy and stupid 
no offence” 

Feature 
suggestion 

I like your project and 
have an idea to improve it 

“nice drawing but a bit 
tall. but aren’t L.E.P. flight 
suits jet black? not 
green.” 

Compliment I like your project; does 
not mention improvement 
ideas 

“its so nice and like wat 
spongie06 said its relax-
ing” 

Chit-chat I have something to say 
that isn’t a criticism, sug-
gestion, or compliment  

“did you make mario out 
of clay?” 

Author 
replies 

I acknowledge your com-
ment and have a re-
sponse 

“ur strainge. no i dont 
torture stuffed animals. i 
take good care em.”  

 

 

Criticism 6%

Feature 
suggestion 

21%

Compliment 
27%

Chit‐chat 26%

Author replies 
20%

 

Figure 8. Distribution of kinds of comments 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 5 7 10 20 50 70 100

%
 o

f p
ro

je
ct

s 
w

ith
 ≥

 th
is

 m
a

n
y 

e
ve

n
ts

Number of events

views

comments

downloads

remixes



8 

 

demonstrate that Scratch participants overwhelming are offering 
helpful critiques without sacrificing congeniality. 

The repository has also become a venue for socializing, as re-
flected by the fact that 26% of comments were chit-chat. 
These represent comments that were not specifically about the 
project but seemed to be sparked by the project. For example, 
commenting on a game project, one person said that he had a 
similar game for his Xbox. Very many chit-chat comments 
were questions to the project author about prior experiences, 
either with this project or with other projects. For example, one 
person asked, “Why do you have so many projects?”  

One in four comments garnered an author reply. It appears 
that most replies were directed in response to chit-chat, and 
we noted that certain authors seemed much more likely than 
others to habitually respond. 

5.2 Active collaboration on projects 
As we reviewed projects and comments, we looked for any indi-
cation that interactions led to collaboration. By “collaboration,” 
we mean joint design or implementation by a team of multiple 
people consciously working on a common intellectual goal (as 
in the anecdotes mentioned at the start of this section). Suc-
cinctly: we hoped to see people working together. For example, 
collaboration could hypothetically be reflected in comments 
like, “Thanks for the compliment—my friend helped me to 
make that,” or “I have implemented the redesign that you sug-
gested; how do you like the result?” or perhaps comments from 
multiple people implying that they had contributed code to a 
project. We also compared the feature suggestions to the 
projects themselves, looking for any indication that authors ap-
peared to have actually acted on any suggestions (without an 
explicit author reply). 

We found no such indications at all for even one project. While 
we accept that people might be reusing each other’s code (as 
discussed below), and they might be inspired by each other’s 
projects (as argued by Scratch’s designers [13][19]), these inte-
ractions differ from people consciously working together toward 
a common goal. Thus, we must conclude that the design and 
implementation of Scratch projects is rarely collaborative, or at 
least that it rarely leaves discernible traces in online comments. 

6. REMIXING 
Our final research question asks to what extent Scratch is suc-
ceeding as a basis for developing remixing skills. By “remix-
ing,” Scratch’s designers mean “creative appropriation… the 
utilization of someone else’s creative work in the making of a 
new one” [13]. Professional programmers would recognize this 
as whitebox reuse. In the context of animation programming, 
remixing encompasses code as well as multimedia content.  

Remixing differs from collaboration, in the sense that it is possi-
ble to appropriate another person’s belongings without having 
any shared intellectual goals with that other person. Indeed, the 
other person might not even be aware that remixing occurred. 
(Soon after the repository opened, some users expressed irrita-
tion that their materials had been appropriated [13]. This 
prompted Scratch’s designers to tweak the site’s features and 
wording to emphasize that the remixed project’s author has been 
successful rather than robbed [19].) 

Prior reports indicate that 15% of repository projects have been 
created by remixing materials from other projects [19]. We 
wondered about the inverse question: How proportion of anima-
tions are remixed? The two statistics could differ quite a bit, for 
example if one or two projects are remixed often but no others 
are remixed. We also wanted to understand whether remixing 
frequently follows downloading, or if people frequently down-
load code without successful remixing. Also, thinking of the 
analogy to whitebox reuse, we wanted to understand what 
changes are made by programmers during remixing.  

6.1 Frequency of downloading and remixing 
Based on statistics provided by the repository for our 100 ran-
domly selected end-user projects, we found that half had been 
downloaded at least once, with an overall mean of 1.16 down-
loads per project (Figure 7). After these 116 downloads, 15 re-
mixes were created. It is not possible to know whether any of 
these downloads accounted for multiple remixes, but it is certain 
that at least 116-15=101 downloads did not lead to remixing. 
Thus, for the most part, downloading does not lead to successful 
remixing. Instead, when downloading occurs, something else 
must normally ensue: perhaps programmers read the code to 
learn from it, or perhaps they attempt to remix it and fail. 

We found that 10% of projects had been remixed once, 3% had 
been remixed twice, and 1% remixed three times. That is, 40% 
of the remixed projects accounted for 60% of the remixes—so 
the remixes that do occur are not concentrated in a small subset 
of remixed projects, but rather are spread around. Of the 15 
remixes, 10 were done by the programmer who initially created 
the code, and 5 were done by others. 

These levels of reuse do not appear to be markedly higher than 
the level of reuse previously observed in a study of CoScripter 
web macro reuse [21]. In that study over a 90 day period, only 
4% of web macros were ever copied and used to create another 
macro by any person other than the original macro author. Here, 
in the Scratch repository, we noted a corresponding 5% rate of 
reuse by other people. Observe that this figure for Scratch in-
cludes remixes over a much longer period averaging 397 days. 
Given this consideration, it is notable that the Scratch rate was 
so close to that of CoScripter macros rather that conspicuously 
higher. 

For comparability to the Scratch statistic previously reported, 
that 15% of all Scratch projects are remixes of old projects [19], 
we computed what fraction of our 100 projects were remixes. 
We found that 20 were remixes, fairly close to the previously-
reported statistic. Of these, 7 were remixes of the author’s own 
prior work, 11 were remixes of other end-user programmer 
code, and 2 were remixes of a sample project previously created 
by Scratch’s designers. 1 

                                                                 
1 This sample project that was remixed twice is one of provided 

by Scratch’s designers at MIT. According to the repository, a 
total of 3870 of its 912,431 current projects are remixes of this 
one sample project. Scratch’s designers are not end-user pro-
grammers, of course, and the sample project is a well-written, 
engaging “Pong” game that serves as a Scratch tutorial. There-
fore, it is unsurprising that the sample’s level of remixing is so 
much higher than that of typical end-user projects. 



9 

 

6.2 Changes during remixing 
In order to understand what changes are typically entailed in 
remixing, we compared the 20 of our 100 projects that were 
remixes to the old projects that they were based on. 

In 70% of these remixes, we found that the new project had 
multimedia changes relative to the old project (Figure 9). Half of 
these multimedia remixes simply involved replacing one sprite 
image with another image and publishing the result. The other 
half included creating new images as well as tweaking the old. 

In 40% of remixes, we found changes to scripts. Most of these 
changes added or changed features, such as adding a new inter-
active sprite. Many script changes also included bug fixes. 
However, approximately half of the script changes introduced 
new bugs that were serious enough to render the resulting 
project mostly or completely unusable. 

In 15% of remixes, we observed no modifications at all to the 
remixed project. It was simply republished with a new title 
and/or description. 

 

Figure 9. Events that occurred during 20 remixes 

In order to give an idea of the “best case” remixing that we ob-
served, we close by describing two remixes that we consider to 
be the most successful of the 20. More precisely, these remixes 
were not buggy, they reused substantial functionality from the 
old project, and they also added noticeable new features.  

The first of these is a game where the user steers a “player” 
sprite through a series of puzzles. In each puzzle, the user must 
move the “player” sprite so it intersects a “door” sprite, in order 
that the user may progress to the next puzzle. The game includes 
logic for steering sprites, simulating gravity, computing the ef-
fects of barriers, moving doors around the screen, and detecting 
when to move to the next puzzle.  

The remixed version was created by a different person than the 
first project’s author. This remixed version includes several new 
puzzles, which are apparently implemented entirely by adding 
new images to the old code—no script changes were required. 
These images are like visual configuration files for the scripts, 
since the colors of the pixels indicate the presence of barriers 
and other puzzle details. In a sense, this remix successfully pro-
vides new functionality by loading new data into the old project. 

The other particularly successful remix that we observed was an 
extension of a “paint” program. This source project had a tool-
box panel for selecting a painting tool, as well as a space for 
users to draw lines and patterns with the selected tool. One usa-
bility problem (not a functional bug) is that the toolbox took up 
so much screen that little space was left for actual drawing. 

In order to fix this usability problem, another user remixed this 
project by adding functionality for minimizing the toolbox. This 
is implemented with a new button for toggling between “hide” 
and “show.” Implementing this remix required adding a new 
button sprite, including the image for its appearance and the 
hide/show script for responding to button presses. 

Although these two remixes successfully reused significant 
functionality while adding substantial bug-free functionality, 
they were outliers among the 20. Most of the other multimedia 
tweaks in remixes were artistic tweaks to sprite appearance, and 
most of the other functional enhancements in remixes were more 
minor than the “add button” change that we described above. 
Thus, while 20 of our 100 projects were indeed based on prior 
projects, only a handful added substantial bug-free functionality. 

7. THREATS TO VALIDITY 
The primary threat to this study’s internal validity is that ex-
amining artifacts (such as animations and web pages) offers an 
imperfect view of peoples’ context and knowledge. Our goal 
was to assess whether Scratch is succeeding as a basis for devel-
oping various programming skills. Based on an analysis of the 
animations, it appears that programmers had particular skills 
when they created animations, but we cannot be certain that they 
actually had these skills. An alternate explanation is that they 
could have gotten help from other people, or they could have 
randomly experimented with Scratch until they finally produced 
animations without actually understanding the result or process 
(and hence without actually having any skill). These concerns 
are a direct result of the fact that we have very little contextual 
data about the people who use the Scratch repository; for exam-
ple, as outlined in Section 1, we believe that Scratch is being 
used primarily by independent users at this point, but it is possi-
ble that some subset of them are physically co-located with one 
another and might collaborate in person. As sketched in Section 
8, such concerns could be resolved by experimenting with pro-
grammers directly, making it possible to control the context. 

In addition, our coding schemes were induced from the data (as 
in grounded theory research) rather than being imposed on the 
basis of some external theory. As a result, a threat to external 
validity is that the coding schemes could be “overfit” to this data 
set and not generalize to other data or other repositories. To 
mitigate against this threat, we reviewed all coding schemes and 
examined if the codes depended on properties of Scratch, or if 
the codes were instead conceptually abstracted from this particu-
lar programming platform. Reviewing the Figures and Tables in 
this paper quickly reveals that none of the coded concepts are 
specific to Scratch, though many are particular to animation 
rather than programming in general. Therefore, we anticipate 
that our codes could also be applied to other animation environ-
ments but not to all cases of end-user programming. 

8. CONCLUSIONS 
We have analyzed animation programs and user comments from 
the online Scratch repository in order to evaluate how well the 
development environment is successfully serving as a basis for 
demonstrating technical, social, and remixing skills related to 
programming. Overall, we found that Scratch represents sub-
stantial progress toward these three goals, though we also identi-
fied several opportunities for significant improvement.  

Technical skills: Concerning technical programming skills, we 
found that repository projects utilized key programming primi-

0

2

4

6

8

10

12

14

multimedia 
changes

script 
changes

feature 
add/change

bug 
removed

bug added

N
u

m
b

e
r o

f r
e

m
ix

e
s



10 

 

tives at least as commonly as had previously been reported for 
Clubhouse projects. Moreover, repository animations were just 
as complex as other end-user programs such as spreadsheets and 
web macros. Scratch programs were at least as bug-free as 
spreadsheets, as well. We even found a small amount of evi-
dence that Scratch programmers use a few higher-level design 
patterns (albeit inconsistently and quite possibly at a subcons-
cious level). All of these pieces of evidence point toward 
Scratch’s success as a platform for developing technical pro-
gramming skills.  

Further research could aim to identify additional design patterns 
in Scratch programs, as well as to augment the Scratch environ-
ment with new features that help programmers to select and 
apply patterns as needed. Laboratory experiments would meas-
ure whether these enhancements enable people to more tho-
roughly develop crucial higher-level programming skills.  

Social skills: We found that that Scratch programmers generally 
have offered helpful critiques online without sacrificing conge-
niality, yet as far as we could determine, these interactions never 
led to online collaborations.  

To facilitate online collaboration, new data structures and sup-
porting repository features could be provided to help multiple 
programmers divide up the work of creating an animation, then 
to coordinate and combine their pieces. Between-subjects field 
testing could assess whether such enhancements facilitate the 
development and application of social programming skills. 

Remixing skills: Repository projects demonstrate somewhat 
more success with multimedia-oriented remixing than code-
oriented remixing. Most remixes included changes to multime-
dia artifacts, but most did not include changes to code. Moreo-
ver, nearly half of the code-remixing activities led to the intro-
duction of major bugs. 

Researchers have developed many tools to support code reuse 
by professional programmers, including automated tools for 
code slicing [11], transformation [3] and dependency-tracing 
[9]. These powerful techniques enable programmers to explore, 
analyze, modify, combine and extend code. Further research 
might simplify and adapt these approaches to the context of end-
user programmers so that they can more successfully perform 
similar tasks with Scratch animation code. The effectiveness of 
many such features could be evaluated in a laboratory setting. 

Skill transfer: In all three areas of skill development—technical, 
social and remixing—the ultimate purpose of Scratch is not to 
provoke students into becoming professional programmers, but 
rather to provide them with skills that will prove useful in ca-
reers outside professional software development. It is therefore 
appropriate to explore whether any skills developed through 
Scratch successfully transfer to other domains.  

The effectiveness of Scratch for teaching transferable skills 
could be assessed with longitudinal studies aimed at measuring 
whether students with Scratch experience are more adept at 
learning other end-user programming tools. Studies such as 
these require attention to adequate controls, as well as the oppor-
tunity to establish multi-year contact with study participants. 
Such an experiment would not only evaluate the transferability 
of skills taught with Scratch, but it might also identify additional 
opportunities to improve the Scratch environment to further 
assist and motivate students as they develop programming skills. 

9. REFERENCES  
[1] Bogart, C., et al. 2008. End-user programming in the wild: 

A field study of CoScripter scripts. 2008 Symp. on Visual 
Lang. and Human-Centric Computing, 39-46. 

[2] Cooper, S., Dann, W., and Pausch, R.  2000. Developing 
algorithmic thinking with Alice. Information Sys. Educa-
tors Conf., 506-539. 

[3] Cottrell, R., Walker, R., and Denzinger. 2008. Semi-
automating small-scale source code reuse via structural cor-
respondence. 16th Intl. Symp. on Foundations of Software 
Engineering, 214-225. 

[4] Cypher, A., Smith, D, and Tessler, L.  2001. Novice pro-
gramming comes of age. In Your Wish is My Command, 
Morgan Kaufmann, 7-20. 

[5] Fisher, M., and Rothermel, G.  2005. The EUSES spread-
sheet corpus: A shared resource for supporting experimen-
tation with spreadsheet dependability mechanisms. 1st 
Workshop on End-User Software Engineering, 47-51. 

[6] Gamma, E., et al.  1995. Design Patterns: Elements of 
Reusable Object-oriented Software. Addison-Wesley Pro-
fessional Computing Series. 

[7] Gestwicki, P.  2007. Computer games as motivation for 
design patterns. 38th SIGCSE Technical Symp. on Comp. 
Sci. Education, 233-237. 

[8] Glaser, B., and Strauss, A.  1967. The Discovery of 
Grounded Theory: Strategies for Qualitative Research, Al-
dine Publishers. 

[9] Holmes, R., and Walker, R.  2007. Supporting the investi-
gation and planning of pragmatic reuse tasks. 29th Intl. 
Conf. on Software Engineering, 447-457. 

[10] Kafai, Y., et al. 2008. Mentoring partnerships in a commu-
nity technology center: A constructionist approach for fos-
tering equitable service learning. Mentoring and Tutoring: 
Partnership in learning, 16, 2, 191-205. 

[11] Lanubile, F., and Visaggio, G.  1997. Extracting reusable 
functions by program slicing. Transactions on Software 
Engineering, 23, 4, 246-259. 

[12] Maloney, J., et al. 2008. Programming by choice: Urban 
youth learning programming with Scratch. 39th SIGCSE 
Technical Symp. on Comp. Sci. Education, 367-371. 

[13] Monroy-Hernández, A., and Resnick, M. 2008. Empower-
ing kids to create and share programmable media. Interac-
tions, 15, 2 (Mar-Apr 2008), 50-53. 

[14] Moskal, B., Lurie, D., and Cooper, S.  2004. Evaluating the 
effectiveness of a new instructional approach. ACM 
SIGCSE Bulletin, 36, 1 (Mar 2004), 75-79. 

[15] Pane, J.  2002. A Programming System for Children that is 
Designed for Usability. PhD Dissertation, School of Com-
puter Science, Carnegie Mellon Univ.. 

[16] Panko, R.  1998. What we know about spreadsheet errors. 
J. End User Computing, 10, 2, 15-21. 

[17] Papert, S.  1980. Mindstorms: Children, Computers, and 
Powerful Ideas, Basic Books, Inc. 

[18] Repenning, A. 1993. Agentsheets: A tool for building do-
main-oriented dynamic, visual environments. PhD Disserta-
tion, Dept. of Computer Science, Univ. Colorado-Boulder. 

[19] Resnick, M., et al. 2009. Scratch: Programming for all. 
Communications of the ACM, 52, 11 (Nov 2009), 60-67. 

[20] http://scratch.mit.edu 
[21] Scaffidi, C., et al. 2009. Predicting reuse of end-user web 

macro scripts, 2009 Symp. on Visual Lang. and Human-
Centric Computing, 93-100.  


